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Abstract. We construct the energy operator for particles obeying infinite statistics
defined by a g-deformation of the Heisenberg algebra.

The aim of this paper is to construct the energy operator for particles which
obey the so-called infinite statistics defined by the ^-deformation of the Heisenberg
algebra. This topic was studied in the previous article [1], where a conjecture was
formulated concerning the form of the energy operator. Our main result is a proof of
this conjecture in a slightly modified form (cf. Remark 1).

We will essentially use the same notations as in [1]. Thus, T\k will denote the
particular elements of &n which send [1, 2, . . . , n] to [fc, 1, . . . , k — 1, fc+1, . . . , n],
i.e.

( f c , i f i = l ;

i- 1, if Ki< k

i, if k < ί < n;

and Θnjp will represent the following subsets of &n:

Sn,P = {σ G 6n, with σ - TlklTlk2, . . . , Tlkp, K fci < . . . < kp < n} ,

for 1 < p < n — 1 and &n$ = {!}. (This differs from the definition of &njp in [1].)
In [1] an n! x n! matrix An(π, σ), π, σ £ Θn, with coefficients in Z[g] was studied

and shown to be invertible for \q\ < 1. As in [1], we will work with the group algebra
C[Θn] rather than its matrix representation, so we have elements

~l(ρ,l)ρ. (1)

Let % be the energy operator of particles obeying infinite statistics, defined by the
commutation relation (1) in [1]. *& acts on 3$(q) and each x\ is an eigenvector of &
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satisfying the eigenvalue equation

ln) . . . αt(Jι)|0) - Σ £(Wαtω αt(Zι)|0) , (2)
i=\

where E(li) is the energy of a particle with momentum ^.

Theorem. The energy operator & has the form

with
n

%*= Σ Σ Σci(q,π)E(kπW)a\kπ(n))...ai(kπW)a(kl)...a(kn), (3)
kι, ..., kn ττe6n i=\

where the coefficients Ci(g, π) are given by

= a-\l - qXT12)(l - q2XT13) ... (1 - qn~l XTln) € C[X] [©„]

or, explicitly,

r€βn > i_ι

π G ©n, 1 < * < n.

Remark 1. The theorem agrees with Zagier's conjecture in [1] except that he has
E(ki) instead of E(kπ(i)) Thus the formulas agree if (and only if)

, π) = Crater, π) ,

for all 1 < i < n, π e Θn. This is true for n < 4, but we do not know if it holds in
general.

Remark 2. Although & contains an infinite sum, when applied on a given n-particle
state, only the first n terms will give a nonzero contribution.

Remark 3. For q = 0 this agrees with the results of Greenberg [2], who gave an
expression for the energy operator of the form

where the number operator n(ϊ) is given by

s>0

with obvious notation.
To prove this theorem we need some preparation. We know from [1] that the

Hubert space of states β$(q) splits into an infinite direct sum of finite dimensional
blocks. Each block is determined by the unordered n-tuple {k\ ...kn}, whereas a
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particular state in it is specified by an ordered version of that n-tuple. In other words,
we identify the Fock space states with ordered sets K = [k\ . . . kn]. For such a finite
ordered set A we denote by s(A) and l(A) respectively the smallest and the largest
element of A. Ordered sets can be concatenated, e.g., if we consider two disjoint
ordered sets A\ and AΊ we can form a new ordered set A\ U A^, such that if α^ G AI
then a\ < a^. Also, if B is a subset of an ordered set A, one can form the ordered set
A — B. Moreover, we can invert the order of a given set, the new one being denoted
by A

The permutation group &n acts naturally on the ordered sets of n elements; and
this action extends to an action of the group algebra C[Θn] on the vector space J^
of formal linear combinations of such sets. If A is a given ordered set and σ G βn

we define IA(&A) = /(σ).
We conclude these general considerations by introducing a linear evaluation map

ξ acting on J2?[JΓ] and defined by

^(σAX1-1) = E((σA)(i))σA.

In order to be able to determine the coefficients Ci(q, π) in (3), we have to under-
stand how the energy operator ^ and, in particular, each ϊ£p acts on an arbitrary state.
For that we will need two steps.

Proposition 1. The action of the p-particle term of the energy operator on given n-
particle state K is given by

- J) U Rp(q, X) J\ , (4)

/
\J\=p /

where

7Γ<E6n i=l

for all I < p < n.

Proof. To begin with, let us consider the case p — n. We have ([1], § 2)

Thus, applying &n on an n-particle state we obtain

Σ
σ,πe6n i=\ /

= ξ(Rn(q,X)K).

We must now determine how a generic term ^ acts on the n-particle state. Its
action can be described in the following way: it chooses a subset J c K, \J\ =
p, such that the p annihilation operators of 3̂  will "contract" with the p creation
operators of J, leaving the remaining creation operators of K in unaltered order i.e.,
characterized by the set (K — J). This yields a new n-particle state, characterized
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by the permutation (K — J) U J multiplied by the numerical coefficient incurred in
by repeated application of the commutation relation (1) in [1] and which is given by
qiκ((κ-j)L\j)^ Qear}y? Rp(q^X) acts now on J and, because the evaluation map ξ
is defined on the whole n-particle state, we have to shift the polynomial in X by a
common factor X\K~J\ = χn~p in order to obtain the correct energies. Hence, it
follows that

%PK = ξ (Xn~p Σ qIκ((K~J}UJ\K - J) U Rp(q, X)J\. ϋ

I jcκ i
\ \J\=p /

Proposition 2. The action of the group ring element Rp(q, X) on the ordered set J is
given by

Rp(q,X)J = qIjLU(J-L}\LU(J-L))(-X)L. (6)
LcJ

Proof. We shall essentially show that (6) yields the correct energy operator, i.e., that
it satisfies the eigenvalue equation. Therefore, we insert Rp(q, X) in the expression
for g^ and we compute

JCK LCJ I
\J\=ps(J)<£L /

But, obviously,

IK((K - J) U J) + Ij(L U (J - L)) = IK((K - J) U L U (J - L)),

such that we obtain

r-L))jfn-p+iLiV
JcK LcJ ]
\J\=ps(J)£L /

For given J and L, we consider those terms in the sum which are characterized by
l(K — J) > /(L). Then the corresponding set can be viewed in another way, namely,

(K - J) U L U (J - L) = ((K - J) - {l(K - J)}) U ({l(K - J)} U L) U (J - L),

having now l((K - J) - {l(K - J)}) < 1({(K - J)} U L) and thus corresponding
to another set which contributes as well to the sum. As one can easily see, these two
terms will occur with identical coefficients but with opposite signs and will therefore
cancel.

Thus, it only remains to discuss the case L = 0. If l(K — J) > s( J), then we can
proceed analogously, writing

(K - J) U 0 U J = ((K - J) - {l(K - J)}) U {l(K - J)} U J,
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such that we obtain the usual cancellation. But if I (K - J) > s, then (K
and we finally obtain

p=l

= t( Σ Σ qIκ((K~J}UJ\K - J) U JXn~P
I p=l JCK

. D

Now we are ready to prove the theorem stated at the very beginning.

Proof. Let us return now to the usual permutation language. One can easily see that
the permutations of the form Lu(J-L), with \L\ = s can be written as T\mι ...T\ma,
with 1 < πι\ < - < ms < n, so that

n-l

Rn(q,X) = 2-^ / . (-i)sqm{ πi2 + πis xsTιrnι...Tιms,
s=0 l<mι< <ms<n

where we used the fact that I(T\^) = k — 1.
Now we only have to identify this expression obtained for Rn(q, X) with its

definition (5), and we obtain the desired result; that is, the generating function for the
coefficients Q(g, π) is given by

n

/ _ , __\ ~vi—l Λ ~1/Ί Λ VT1 \ (λ s3< VT1 \ (Λ Λ^~~l VT1 \\q, Έ)Λ. 7Γ = Oίn \L — ζ^A JL12 A1 — q Λ. ±13) . . .{I — q A J. \n) ,

with αn given by (1).
The coefficients Q(#, π) can be also given in another equivalent form. Using (1),

the right-hand side of the equation above can be written as

Σ Σ (-i

where we made the substitution σ = ^>ττ G 6n and we used the fact that A~l(σ, π) =
A~^(σπ~l, 1). Thus, identifying with the left-hand side, we obtain

It only remains to show that the solution obtained is unique. First of all it is
obvious that the form (3) of the energy operator is the most general which can be
assumed for such a system, so that we only need to consider the possibility of having
another set of coefficients c*(g,π), such that the corresponding £?* yields the same
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eigenvalue equation. Hence we must have (^ — &*)K — 0, VK. If we consider a
1-particle state, we immediately obtain Ac\(q, 1) = c\(q, 1) — cf (<?, 1) = 0, for n = 1.
Assume now Δci(q, π) = 0, for all 1 < i < p, π G Θp in all orders 1 <p<n—l.
Then for an n-particle state we will have (^ - &*)K = ((ξn - &*)K = 0. But, on
the other hand

Taking into account the fact that ρ and E(ρ(ί)) are linearly independent we get

]Γ An(q)(ρ, π)Δa(q, π) = 0 V^ G ©n, 1 < i < n .

πe6n

Since -An(g) is invertible, it follows that Δci(q, π) = 0. Hence the energy operator is
uniquely determined. D
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