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Abstract. Without using product representations or elaborate comparisons of zeros
we prove the two key properties of the Bessel function ratio J p + ι ( j p + ι , ι χ ) / J p ( J p , ι χ )
that we used to prove the Payne-Pόlya-Weinberger conjecture. In these new proofs
we use only differential equations and the Rayleigh-Ritz method for estimating
lowest eigenvalues. The new proofs admit generalization to other related problems
where our previous proofs fail.

1. Introduction

In our recent proof [3, 4] of the Payne-Pόlya- Weinberger conjecture [12, 13], the
success of our method turned on certain technical results concerning Bessel
functions. To be specific, two key properties of the function

for xe[0,l] (1.1)
Jp(θLX)

are used (at x = 0 and x = 1 we define w(x) by its limiting values from within (0, 1)),
where α =jpΛ and β=jp+ljί denote the first positive zeros of the Bessel functions
Jp(x) and Jp+l(x) (our notation follows that of Abramowitz and Stegun [1]). The
two properties are

(1) w(x) is increasing for xe[0, 1], and
(2) B(x) ΞΞ w'(x)2 + (2p + l)w(x)2/*2 is decreasing for xe[0, 1].
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For the PPW conjecture in n dimensions these properties are needed for the value
p = n/2 — 1; however, in this paper we shall treat all p ̂  0 as this requires no
additional effort. For more discussion concerning the PPW conjecture the reader
should consult our papers [3,4]; this paper is directed only toward proving
properties (1) and (2) above and then discussing various technical points concerning
Bessel functions.

In our previous papers the proofs that we gave of (1) and (2) went by way of
product representations for Bessel functions and a certain inequality between ratios
of zeros of Bessel functions which we established using a somewhat technical differen-
tial comparison argument. This argument was quite involved and also proved
substantially more than is actually needed since property (2) was obtained by
showing that w'(x) and w(x)/x are individually decreasing on [0, 1] (they are both
nonnegative there). It therefore seemed to us that a simpler proof of (1) and (2) might
be found. Actually property (1) is relatively easy to prove and even before the papers
[3, 4] were written we had proofs of it which avoided the technical details alluded
to above. Thus our main objective in this paper is to given an alternative proof of
property (2). Along the way we also provide alternative proofs of (1).

Our new proofs are based only on a direct analysis of the behavior of w(x) and
B(x) based on a simple (Riccati) differential equation satisfied by the function

and on inequalities between the first zeros of the Bessel functions Jp(x) and Jp + 1 (x)
which we prove by simple Rayleigh-Ritz arguments (after all, the first zeros of Bessel
functions give the first eigenvalues of certain naturally associated differential
operators). Thus our new proofs entirely avoid the use of product representations
and the inequalities comparing all the zeros of the Bessel functions Jp(x) and Jp+1 (x)
and work instead via the differential equations involved and inequalities between
their fn st eigenvalues. This approach can be used to generalize our proof of the
PPW conjecture in certain interesting directions which we discuss briefly in our
concluding remarks (Sect. 5).

2. The New Proofs

With q defined by (1.2) and B as in property (2) above it is easy to see that

x)2 (2.1)
and

B' = 2lqq' + (q- l)(q2 + (2p + l))/x](w/x)2. (2.2)

From (1.2) and (2.2) it is clear that properties (1) and (2) will follow if we can show
that

0 g q g 1 (2.3)
and

q'^Q (2.4)

hold for 0 ̂  x ̂  1. This is what we now proceed to do. For this we shall rely on a
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differential equation satisfied by q for 0 < x < 1, specifically,

4 = (α2 - j?2)x + (1 - q)(q + (2p + l))/x + laqJp+1(*x)/Jp(*x). (2.5)

To arrive at this equation, first compute from (1.2) that

χxj

and then use the standard Bessel function identities

and

p x

to eliminate the derivatives of Bessel functions, obtaining

(2p + 1). (2.9)
p+1 p

Next, differentiate (2.9), use (2.7) and (2.8) again to eliminate all derivatives of Bessel
functions, and finally eliminate Jp(βx)/Jp+1(βx) in favor of q and Jp+1(αx)/Jp(αx)
using (2.9). One will then have (2.5).

Since we shall need the boundary behavior of q at x = 0 and x = 1 (this is
necessitated by the fact that the coefficients in the right-hand side of the differential
Eq. (2.5) become singular at the two endpoints) we give these now. We find the
following.

=1, ί'(0) = 0, 4"(0) = α 2/(p+l)-£ 2/(p + 2) (2.10)
and

p+l+α 2 -/? 2 )/3. (2.H)

We next establish that q[(\) < 0 and q"(ϋ) < 0, which are necessary for (2.3) and (2.4)
to hold.

Lemma 2.1. With notation as above, for p ̂  0

2p+l+α 2 -β 2 <0. (2.12)

Hence <?'(!) <0.

Proof. We do this by a Rayleigh-Ritz variational argument. Since α2 is the first
eigenvalue of the problem

— (χyΊ' + ̂ y = λy on[o,i] (2.13)
x x

with the boundary conditions y(0) finite and y(l) = 0, we have

(2.14)

J xu2dx
0
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for any nontrivial trial function u which satisfies the boundary conditions and for
which the integrals in (2.14) exist. Of course we know that u1 = JP(VLX) is the first
eigenfunction of (2.13) and will give α2 exactly if substituted into (2.14). But instead
of Jp(αx) we substitute u = Jp+ί(βx\ which is a valid trial function. We obtain after
an integration by parts and use of BesseΓs equation for Jp+1 (Eq. (2.13) with
p->p + U->/ϊ2)

\-u2dx

*2<β2- (2p + 1) ̂  - < β2 - (2p + 1), (2.15)

\xu2dx
o

the last part because 1/x > x on [0, 1).

Remark. If one uses a trial function u = Jr(jrΛx) with r>p here one obtains
JP,I <Jr,ι ~ (γ2 — P2X i e 7p,ι ~~ P2 is an increasing function for p ̂  0. The well-known
fact that7p>1 is an increasing function of p also follows from this (so that, in particular,
α < β). We shall have occasion to use this several times in what follows, which we
shall do with no particular comment.

Next we show q"(0) < 0 which is somewhat more difficult to establish.

Lemma 2.2. With notation as above, for p ̂  0,

-*—£-«). (2.16)
p+l p+2

Hence ήT(0)<0.

Proof. We use the Rayleigh-Ritz principle (2.14) again but this time with the trial
function u = Jp+1(βx)/x. This does a better job of mimicking the behavior of the
true wavefunction u^ = Jp(ax) at x = 0, but correspondingly the argument becomes
more delicate. Again it is convenient to work from the form

α 2 <° - ΐ - . (2.17)

§xu2dx
o

Working as before, but this time using only (2.8) to eliminate the derivatives J'p(x)
and JJ, + 1(x), one obtains

*2<β2- - ϊ - , (2.18)

where we have found it convenient to introduce the variable t = βx in the upper
integral. Establishing the lemma is now seen to be equivalent to showing that

}uJp+1(t)dx
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which is the same as

0 ̂  }ιι[- (p + ί ) J p + 1 ( t ) ~(p + 2)Jp+3(t) + 2(p + l)(p + 2)Jp + 2(f)/ί]dx
o

= -ίuJp+3(t)dx= -$-Jp+l(βx)Jp+3(βx)dx, (2.19)
o 0*

and this is obviously true since Jp+ x(x) and Jp+3(x) are both positive on (0, β). The
simplification between the second and third expressions in (2.19) is by use of the
Bessel function identity Jp_1(x) + Jp+1(x) = 2pJp(x)/x. Having established (2.19)
the lemma is proved.

Remark. It is perhaps worth mentioning that the restriction to p ̂  0 in Lemmas 2.1
and 2.2 can be avoided by considering in place of (2.14) the variational principle

i
Ix2p+\u')2dx

λ^~ (2.20)

\x2p+1u2dx
o

for the equation

Sγ2p+ ij/y _ Q γ2p +I*. f?91^

The boundary conditions for admissible functions in this variational principle are
u finite at x = 0 and w(l) = 0. This variational principle is good for all p > — 1 and
gives back λ± =]2

pΛ in the sense that;2

 ί is the minimum of the right-hand side over
all admissible functions. Equation (2.21) is related to BesseΓs equation (2.13) via the
change of variable y = xpu. Hence, our choices of trial functions for (2.20) should be
taken as x~p times our old trial functions. With this change effected, calculations
can be carried out paralleling all those above but covering the larger class p > — 1.

With the boundary behaviors out of the way, we turn back to considering the
differential equation (2.5). To properly analyze this equation we need to have certain
concavity/convexity results concerning the coefficient function Jp+1(αx)/Jp(αx) at
hand. These results are in the following two lemmas.

Lemma 2.3. Jp+1(x)/Jp(x) is strictly convex on [0,α)/or p ̂  — 1/2.

Proof. Letting y = Jp+1(x)/Jp(x) and using (2.7) and (2.8) again one readily finds

•WV = Jp(*)2 + JP+i W2 - (2p + l)Jp(x)Jp+1(x)/x = 0(x), (2.22)

and in a similar fashion,

[x0(x)]' = (2p + 1) Jp(x)Jp+ι(x)/x. (2.23)

Since x0(x) = 0 at x = 0 if p > - 1/2 and - 2/π if p = - 1/2 and Jp(x)Jp + 1(x) > 0 in
(0, α) it follows that 0(x) > 0 in (0, α]. Moreover, from (2.22) we find

Jp(x)2y" = θ'(x) + 2 ̂ ^ 0(x) - ̂  0(χ) = s(x). (2.24)
JP(x) x

Then from

/Ό~ j^ n r /v\ ίi* _L 1\
-θ(x), (2.25)

x2
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yet another calculation, using (2.7), (2.8), and (2.23), yields

[x3s(x)]' = 2x2θ(x)2 ~^ + x - > 0 in (0, α). (2.26)
L Jp(χ) JP(χ)2]

Since x3s(x) = 0 at x = 0, this implies that s(x) > 0 in (0, α) and therefore, by (2.24),
y" > 0 there and the proof is complete.

Lemma 2.4. Jp + 1(x)/xJp(x) is strictly increasing on [0,α)/0r p ̂  — 1/2.

Proof. This follows easily from Lemma 2.3. Letting r(x) = Jp+1(x)/xJp(x) we have
r(x) = y(x)/x and hence

) = 5y^s*Mx2 x2

Now h' = xy" > 0 on (0, α) by Lemma 2.3, and since /ι(0) = 0 it is clear from this that
h > 0 on (0, α), hence r'(x) > 0 there and we are done.

We can now prove our main result which completes our new derivation of
properties (1) and (2) from the Introduction.

Theorem 2.5. With notation and hypotheses as above, for xe[0, 1] O ^ g r g l and
q' ^ 0, and hence w is an increasing function there while B is decreasing.

Proof. We begin by proving that q ̂  1. Suppose not. Then we can find points x1 , x2

with 0 < x1 < x2 < 1 satisfying q(Xi) = 1 = q(x2) and ^(xj ^ 0, q'(x2) ^ 0 and then
using Eq. (2.5) we would have

(2.28)

a contradiction. The intermediate inequality here comes from Lemma 2.4. A similar
consideration for q = 0 using the fact that (2p + l)/x2 is decreasing shows that q ̂  0
must also hold. Finally, to prove that q' ^ 0 on (0, 1] note that if not we could find
three points X 1,x 2,x 3 such that 0 < x1 < x2 < x3 < 1 and satisfying q(x1) = q(x2) =
tf(*3)> q'(xi)<Q> 4'(X2)>Q> and ^'(x3)<0. Writing x2 = λx^ +(1 — I)x3, where
Λe(0, 1) and using the convexity of 1/x, (α2 - j52)x, and Jp+ι(x)/Jp(x) (from Lemma
2.3) we then have (q here will denote the common value of q at the 3 x/s)

0 < qf(x2) = F(x2,q) < λF(xί9 q) + (l- λ)F(x3,q) = λq'(x,) + (1 - λ)q'(x3) < 0,
(2.29)

a contradiction. Here we have used the strict convexity of F(x, q) in x for fixed q
where F(x,q) denotes the right-hand side of the differential equation (2.5), i.e.
F(x, q) = (α2 - /?2)x + (1 - q)[q + (2p + l)]/x + 2<*qJp+ί(oιx)/Jp(aιx). The conclusions
concerning w and B now follow from Eqs. (1.2) and (2.2) since w is known to be
positive on (0, 1].

Remark. Our use of convexity in this argument is essentially the same as in our
paper [2]. These arguments were inspired by more general arguments of this type
that were used by Korevaar [8, 9] for partial differential equations.
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It is wdl to reflect on what we have gained with this new approach to properties
(1) and (2). We have supplied proofs that do not use product representations and
elaborate properties of zeros of Bessel functions. It turns out that it is possible to
extend these new proofs to prove similar properties of other special functions such
as Legendre or hypergeometric that arise when considering similar problems to the
PPW conjecture in spaces of constant curvature. In these other situations, a product
representation approach is not available. One has to make do, as was done above,
with the differential equation, Rayleigh-Ritz eigenvalue estimates, and some special
properties such as raising and lowering operations (like (2.7) and (2.8) for Bessel
functions).

Finally, we note that this new approach still proves more than the bare
essentials, q > 0 on (0,1) tells us that w' > 0 there since w > 0. Also since
q = χwr/w < 1 we have

xw' — w
(w/x)' = — = w(? - l)/x2 < 0, (2.30)

X2

and hence also

w" - [<?(w/x)]' = q'Wx) + q(w/x)' < 0, (2.31)

where use has been made of q' 5Ξ 0 as well as (2.30). That is, we have again proved
that w/x and w' are individually decreasing. In our other proof attention was focused
on the function A(x) = w'/w = q/x and we proved that 0 < A < 1/x and A' < — 1/x2.
Of these inequalities only A' < — 1/x2 does not seem to come out of our new proof.
So in that sense our new approach is slightly weaker than our old. It might be noted
in this regard that A' < — 1/x2 and ,4(1) = 0 imply A(x) > 1/x — 1 or, in terms of q,
q> 1 —x, and, in particular, this implies q'(\] ^ — 1, a strengthening of Lemma 2.1
above (see our last paragraph in Sect. 4 below for an even stronger result due to
L. Lorch). However, one might still seek a proof along similar lines to the one given
here that did not also prove the individual inequalities (2.30) and (2.31).

3. Other Proofs that w is Increasing

As mentioned previously the fact that w' > 0 can be proved in a variety of relatively
simple ways. These were not presented in [3,4] because we were already using the
product representation approach for proving property (2) and therefore we chose
to give a uniform presentation of both properties from that viewpoint. Here we give
two alternative proofs.

For the function A(x) = w'(x)/w(x) (mentioned at the end of the last section) we
can compute

X2

(another Riccati equation). From this it follows that whenever A = 0
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Also it is easy to find that A(x) behaves like 1/x for x near zero and that A(l) = 0
and A (I) < 0. From these and the fact that (2p + l)/x2 - (β2 - α2) is decreasing it
is clear that A cannot reach 0 before x = l . Thus A(x)>Q for xe(0, 1) and
w'(x) = A(x)w(x) > 0 there follows. This argument could also be given in terms of
q, working from Eq. (2.5), and indeed this is the argument given above.

Our second proof is also somewhat reminiscent of earlier proofs. We have

Jp+l(βx) J>x) Jp(«x)Jp+l(βx)

Calling the Wronskian in the numerator N(x) one can compute that

[XΛΓ(X)]' =

Since xJp(ax)Jp+1(βx)>0 for xe(0, 1) and the expression in square brackets is
decreasing there this shows that either xΛΓ(x) is increasing across the entire interval
or is first increasing and then decreasing. (Which of the two possibilities occur
depends of course on where (2p + l)/x2 — (β2 — α2) changes sign. We will see in what
follows that this happens within (0, 1).) Now it is easily computed that xAΓ(x) takes
the value 0 at x = 0 if p > - 1/2 (or 2^/2/π if p = - 1/2) and also that N(ί) = 0 so
that it must happen that xN(x) first increases and then decreases and that xN(x) > 0
for xe(0, 1). This leads immediately to A(x) > 0 and w'(x) > 0 for xe(0, 1) as before.

4. Additional Facts from the Product Representation Perspective

In this section we cannot resist coming back to proofs using product representations
even though we have avoided them thus far. In many problems involving Bessel
functions, product representations together with properties of their zeros provide
the most convenient and compact approach. It is when one wants to extend results
obtained in this way to other related functions that this approach must usually be
abandoned.

For example, our Lemmas 2.3 and 2.4 above are almost trivial from the product
representation viewpoint. For Lemma 2.3 it is enough to compute

00 312 4- x2

[J,+ 1(x)/J,(x)Γ = 4x Σ '** >Q for X6(0jpl). (4.1)
* = ι Up,* —* )

Here 'p k denotes the kih positive zero of Jp(x). This computation is begun by noting
that Jp +! (x)/Jp(x) = p/x — [In | Jp(x) \ ]7. Similarly, Lemma 2.4 is a direct consequence
of

Up+ι(x)/xJp(x)Ί = 4x Σ 1

 2 2 > 0 for X6(0,7p>1). (4.2)
fc=lUp,fc~X )

The inequalities for A(x) that we derived in [3,4] were substantially more
difficult since the series obtained contained terms involving jptk's and also jp+lfk's.
The inequalities that allowed our proofs to work were comparison results for ratios
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of these zetos. Specifically these are

4±M<4* for k = 2,3,4,.... (4.3)
Jp+1,1 Jp,l

Since writing [3,4] it has been brought to our attention by Martin E. Muldoon
that such inequalities had been known for some time. In particular, the fact that
jp,k/jp,\ (and evenjp j k//p j lfor k> I) is decreasing with pfor p > — 1 had been shown
by L. Lorch [10,11]. His simple proof [11] of this is to compute [lnO'ptk//p>1)]' using
the integral representation [14, p. 508, Eq. (3)]

^ = 2jptk j K0(2jptksinh t)e~2*dt, (4.4)
dp o

where X0 represents the standard modified Bessel function of order 0 (which is
known to be decreasing on [0, oo)). Yet another route to (4.3) is provided by recent
results of Gori, Laforgia, and Muldoon [6], who prove that jv,k/jβjk is decreasing
in k for v > μ ̂  1/2. Related material on Bessel function zeros is to be found in [5]
(which extends the results in [11]) and [7], to mention only two further articles
from a large literature.

Finally, we mention that our result in Lemma 2.2 has also already been proved
in a more general form. In [7], it is shown that;p>1/(p + 1) is an increasing function
of p for p > - 1 (Theorem 2, p. 197). And with regard to Lemma 2.1 (see also the
remark following it) we note that the stronger result that jp ί — (p 4- l)(p + 5) is
positive and increasing for p > — 1 has recently been proved by Lorch (private
communication, 1991). In particular, this implies thaty'p>1 + 2p + 7 <7p+lt l for all
p > — 1. We presented our proofs of Lemmas 2.1 and 2.2 above because they are
simple, they give exactly the results needed for our proof of the PPW conjecture,
and they point the way to extending our approach here to other related problems.

5. Concluding Remarks

The methods developed here permit generalization of our proof of the Payne-
Pόlya-Weinberger conjecture to the case of λ2/λ1 for the (Dirichlet) eigenvalues of
the Laplacian on a domain contained in a hemisphere of 5". In addition, one can use
these same methods to obtain an isoperimetric result for the first nonzero Neumann
eigenvalue of the Laplacian on a domain contained in a hemisphere of Sn. These
results will be presented in subsequent papers on these topics, entitled "Sharp Upper
Bound to the First Nonzero Neumann Eigenvalue for Bounded Domains in Spaces
of Constant Curvature" and "Sharp Bound for the Ratio of the First Two Dirichlet
Eigenvalues of a Domain in a Hemisphere of SV
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