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Abstract. We show that the 1-dimensional Schrodinger equation with a quasi-
periodic potential which is analytic on its hull admits a Floquet representation
for almost every energy E in the upper part of the spectrum. We prove that the
upper part of the spectrum is purely absolutely continuous and that, for a generic
potential, it is a Cantor set. We also show that for a small potential these results
extend to the whole spectrum.

1. Introduction

In this paper we will consider the Schrodinger equation

(*) (L)) = —y"(1) + q(wt) = Ey(t)

for a real quasi-periodic potential g(wt) with frequency vector w, and for large
energies E or small potential g. We will study the existence and non-existence of
Floquet solutions or Bloch waves, i.e. solutions of the form y(t) = e*(p,(t) + tp,(t)),
where k is a constant and py, p, are quasi-periodic functions with the frequency

vector @ or % We will also study the nature of the spectrum o(.Z), where 2 is

the closure of the operator
Z:C!(R)>L*R)

in the space L*(R) of complex square integrable functions on R.
We shall assume that ¢:T* >R, T = R/(2nZ), is analytic in a complex neigh-
bourhood [Im x| < r of T% and we shall use the norm

lql,= sup |q(x)|.
[Imx|<r

We shall also assume that w is diophantine, i.e.
[<n>|=|n|7%, neZ\O
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for some ©>d — 1, where {(n) = {(n,®) is the scalar product in R
Let & = {%’—):nel" }—half the frequency module of q — and let p = p(E) be the

rotation number of (*). p is a monotone and continuous function, and
a(£)=R\p~ (k)

(see [1]). The connected components of int (p ~ '(.#)) are the gaps. So the resolvent
set of . is the union of all gaps. A collapsed gap is a point {E} for which p(E)e.#
and p~!(p(E)) = {E}.

A real number p is said to be diophantine (with respect to ) if there exist K
and ¢ such that
{ny

y

and it is said to be rational (with respect to M) if pe M.

> K Yn|"% neZ\0,

Description of the Results. We shall formulate our result for the matrix equation
corresponding to (*).

Y A
(¥%) X(t)_<q(wt)_E O>X(t).

Theorem A. There exists a constant C = C(z,r) such that if

s 2
Eols) = <E) $=2C

—0 s<C

then the following hold for E > E(|q|,).
A.l. If p(E) is diophantine or rational, then there exists a matrix A= A(E) in
slI(2,R) and an analytic matrix valued function Y:T%— GI(2,R), also depending on

E, such that X(t) = Y(%t)e’“.

A2. If p(E) is neither diophantine nor rational, then

liminf|X(t)—X(0)|<%| XO) and tim XOI_

[t[=c0 [tj]=0 ¢

0.

Theorem A is a statement about reducibility of equation (**). Indeed, Y(%t)
solves the equation

d t 0 1
¥ (3) (e o)7(5)-1(%)10
dt 2 qwty—E O 2 2
for almost every rotation p(E) > p(E,). Linear periodic systems are always reducible

as was shown by Floquet — Floquet theory — but the situation for g—p systems is
more complicated.
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In the resolvent set it is known that (+#) is reducible (see [2]). The first positive
result in the spectrum ¢(%¥) was obtained by Dinaburg—Sinai [3] (see also [4]).
They showed the existence of a set Z, < 1E,, o0 [ na(Z) such that (x*) is reducible
and p(E) is diophantine for all Ee#,. This set, however, is not of full measure in
1E,, o [ no(Z). Moser—Péschel in [2] constructed a set #, = 1E,, o[ na(Z) for
which (#x*) is reducible and p(E) is rational for all E€cZ,. But this set was also not
as large as one could reasonably hope for.

In fact, both £, and £, are defined by certain arithmetric conditions on p(E),
and these conditions can be relaxed only by letting E, become larger — which essen-
tially amounts to require a stronger smallness condition. The principal achievement
of this paper is that the smallness condition is completely freed from any dependence
of the arithmetic properties of p(E) other than being diophantine or rational.

By Theorem Al, (*x) is reducible for a.e. rotation number pe{p(E):E > E,},
but one may ask if this also holds for a.e. E > E,. That this indeed is the case is
the content of the following corollary.

Corollary. 2p(E)p'(E) = 1 for almost every Eca(£)N]E,, o[. In particular, the set
of all E > E,, for which p(E) is neither diophantine nor rational is of measure 0.

The corollary is almost immediate. It is known that 2p(E)p’(E) =1 for a.e.
Ee{E:y(E) =0}, where y(E) is the “maximal Lyapunov exponent” of (*) (see [5]).
If now p(E) is diophantine, then y(E) = 0 by A1, and if if p(E) is neither diophantine
nor rational, then y(E) =0 by A2. Hence y(E) =0 for a.e. E in the upper part of
the spectrum.

One may reasonably ask if (*x) is reducible for all E > E,. There are of course
q for which this is the case — g = const for example — but this is not the generic
situation. In fact, if X is reducible with p(E) neither diophantine nor rational,

then lim M

ltjl»0 ¢
unbounded such solutions is the content of the next theorem.

=0 by A2, which implies that X is bounded. The existence of

Theorem B. For E > E(|q|,) the following hold.

B1. The matrix A(E)=0if{E} is a collapsed gap, and it is nilpotent # QifE is an
endpoint of a gap.

B2. For a generic set of ¢’s, in the |q|-topology, there exist E > Ey(|ql,) for
which X is unbounded and p(E) is neither diophantine nor rational.

There are several examples in the literature of non-reducible linear g—p systems,
but these examples are all non-smooth in the sense that g only is continuous on
T% To our knowledge the only smooth examples are [6] (see also [7]). These
examples sit in the bottom of the spectrum and are exponentially localized, while
the above result concerns the upper part of the spectrum, and the solutions are
clearly not localized because of A2.

Theorem C. For E > Ey(|q|,) the following hold. N

Cl. For a generic potential q, in the |q|,-topology, a(£)n1Ey(lql,), o[ is a
Cantor set.

C2. a(L)N]Ey(lql,), oo [ is purely absolutely continuous. In particular, there are
no point eigenvalues in 1Eq(|q|,), o[.
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C1 follows, as described in [2], from Theorem A. And from A it is also clear
that there is no point spectrum in ]Ey(|ql,), o[. (For previous results in this
direction, see [8,9].) In particular, if g is small there is no point spectrum at all,
in distinction to the case when g is large and point spectrum can occur [6].

It was in [3] that the existence of some absolutely continuous spectrum was
first proven. From [10] we know that the Lebesgue measure Iaac(Z)Ay’ 10)|is 0,
and from [1] we know that y~1(0) = (#). Since y=0 on o(#) by Theorem A,
and since 0,.(#) < o(Z) we have that |6(£)A40,.(ZL)| = 0. Since both ¢(#) and
6,.(#) are closed we can conclude that they are equal, if we just know that, for
any interval I,

(L)1 #B=|a(L)nI|>0.
This follows quite easily from the estimates given below, but it does not establish
C2, since there may still be some singular continuous spectrum. In order to rule
this out we shall show, following [3], that all spectral measures are absolutely
continuous with respect to the Lebesgue measure on the set 1E(|q/,), o [.

Let us also mention that some cases of the discrete Schrodinger equation has
been shown to have purely absolutely continuous spectrum [11,12].

Idea of proof. The problem is to study an equation
X'=(4,+F,)X,

where A, is constant and F, is small, |F | ~ ¢, say. This is obvious if g is small,
but it is true for any g, as was found by Dinaburg—Sinai, if E is large enough.
One wants to construct a transformation Y, such that

Y,=(A,+F))Y,—Y,(A,+ F,), (L.1)

where A, is constant and F, is much smaller than F,, in order to start up an
iteration. To do this one solves a linear equation

Y,=[A;,Y,]+F, —(4,— A4,), (1.2)

and simply defines F, by (1.1). In order for F, to be small one needs a diophantine
condition on the imaginary parts +ia; of the eigenvalues of A;:

|20, — ()| Z KNl ™%, neZ\0, (1.3)

where K; may be large but not too large. In fact, K ;&, must be small but may
be much larger than ¢;, so one can take K; ~ & ? for ¢ < 1, for example.

If this holds, then one gets a solution of (1.1) with Y, close to the identity and
A, close to A,. And then one can repeat the same procedure for 4, + F, if just

|20, — ()| = K; ' n|™%, neZA\0,

for some K, ~|F,|™°. This is the approach taken by Dinaburg—Sinai in [3].

One crucial point here is that one tries to construct the transformation Y, as
being close to the identity. It is this requirement which imposes the condition (1.3),
or at least a part of it, on ;. In [2], Moser—Poschel studied the case where (1.3)
is satisfied (for a reasonable K ) for all neZ*\0 except for one. They found that
one could still transform A, + F; to A, + F, with F, small, if one permits a
transformation Y, which is close, not to the identity, but to an exponential function
eB. (Of course, Y, will not be a solution of the linear equation (1.2) in this case,
and A, will not be close to 4,.)
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So using this idea one can relax the condition on «, in such a way that one
requires that the inequality in (1.3) holds for all integer vectors neZ*\0 except
possibly one. Of course, even this weaker condition is not always fulfilled, but it
is a well known fact that it suffices to require such an inequality for [n| < N,

1
where N, can be taken to be ~log<—>, since F; is analytic and its Fourier

coefficients decay exponentially. &
Hence, we must require that

|20, —<ny| 2 K;'[n|"%, 0<|n|<N,, except possibly one. (1.4)
Now, (1.4) is always fulfilled because if
|20, —<n)| < K7 n|™* and |20y —<m)| <K '|m|™,
with |n|,|m| < N, it follows that

@N)TTSK7N(Inl 75+ m| ) S 2K

. 1 L .
But since K; ~¢; 7 and N, ~log<—> this is impossible for ¢; small enough.
&
So this permits us to always solve (1.1). Repeating this procedure gives
eventually a product Y =[] Y; such that

Y =(A, +F,)Y — YA,

with A constant. But since Y; is close to an exponential e”, the convergence of
this product is unsure unless B; =0 for all j sufficiently large. This is indeed the
case if the rotation number p is diophantine or rational, and this is the whole
proof of Al. Moreover, even if the product does not always converge uniformly
on T¢ it does converge uniformly on compact intervals in R and, hence, gives
a representation of the solution. This provides the information for proving A2. So
the result in A2, we like to stress this, is obtained by a perturbation method which
is not absolutely convergent.

The other results will follow by the same approach but will require a more
detailed description of a, and its dependence on parameters.

Bjt

Outline of the Paper. In Sect. 2 we prove a basic small divisor lemma and in Sect. 3
an inductive lemma — these are standard in every KAM-approach. The set-up is
chosen with the only aim of getting as simple and uniform estimates as possible.
This has of course a price and the smallness condition obtained is therefore not
to be taken very seriously. In Sect. 4 we prove Al and A2 as easy consequences
of the inductive lemma.

In Sect. 5 we prove Bl. This requires a substantial amount of work, but Bl,
or rather its “only if ” part, is essential also for the proof of B2. The Cantor structure
of the spectrum follows from A in the way described in [2], and we only explain
this without giving any details. B2 is proven in Sect. 6, and the generic condition
is that “all gaps are there.” More precisely, we show that on any interval
Ac]E,, o[ in which there is a dense set of gaps, there exist solutions as in B2.
The absolute continuity of the upper part of the spectrum is proven in Sects. 7 and
8 following Dinaburg-Sinai.

For the rotation number of (%), or of the matrix solution X (¢) of (*x), and its
properties we refer to [ 1]. However, in the proof we must consider rotation numbers



452 L. H. Eliasson

of other matrices than X(t), so we describe this concept and some elementary
properties in an Appendix.

2. The Small Divisor Lemma

Let 4, be the space of all analytic functions F:T¢— gl(2, C) for which
|F|,= sup |F(x)| < oo.

Imx|<r

| |, is a norm making 4, into a Banach space. Let 2 | ) 4,.

r>0
If F depends on a parameter AcA R, we say that F is C*>in 4 if 1 - F,€%,
is C2. This is almost equivalent to the requirement that A — F,(x)egl(2,C) is C?
for each x. Clearly the first condition implies the second, and the second implies
that A— F,e4, is C? for each's <r. We say that F is piecewise C* in A on some
set A =R if there exist a finite set {4} in A such that F is C* on 4\ {4;} and such

that the right and left limits of 0"F,v=0,1,2,0 = a%, exist at all points 4;, whenever

such a limit makes sense.
For Fed, we define

6(F) = {neZ:F(n) #0},
where F(n) is the n'® Fourier coefficient of F.

Lemma 1. Let A= A(A)esl(2,C) have eigenvalues +e(4), and assume that
|A(A) — AJ| <3 for some A= A(A). Let FeZ, and assume

li<n) £2e(A)| Z K™ |n|]"", neé(F).
Then there exists a unique Y €% such that
{awT =[AY]+F
6(Y) = 6(F),

where 0,,= {V,w). Y satisfies the estimate
2

(r—s)*

Moreover, if F, Ac 4, are C* or pw. C? in A, then Y e, also, and

KZ K2 2
|aYu§c[0_1PJaFL+<Gi;5;)|aAuFu]

2 5 2
0°F
o “+<v-9&

2 3
-+Qrf9h)|aﬂﬂFL}

for all s <r. The constant ¢ only depends on .

|Yy=c |Fl,, s<r.

2
lazYIéC[ ) (10*A||F|, +|0A]|0F1,)
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Proof. We write A = DTD* with

=5 L)
0 —e

where D is an Hermitian matrix. The condition | A(4) — J | < 3 gives a bound for
p, and that is the only reason for this condition.
Now, putting Z = D*YD we get

6,Z—[T,Z]=D*FD =G.

(o) o)
w oz c d
then we get the equations

0w+ 2ew=c

O u=a+pw

0,z2=d—pw

0,0 —2ev=>b—pu-z).

If

These equations can be solved in Fourier series, and this proves the existence of
Z and also its uniqueness under the condition 4(Z) = é(G).
The estimates are standard and we get
2

K
IleécWIGln s<r,
r—s

where the constant only depends on 7. (This estimate is far from optimal.) This
gives the estimate of Y, since |[D| < 1.

Suppose now that F and A are C? in a neighbourhood of A. It is clear from
the construction that Y is also C? near % if e(1) # 0. And the same holds if F and
A are C? only in a one-sided neighbourhood of A.

If now e(4)=0 and 4 and F are C! at 4, then

0,(YC,A+e)—Y(-, 1)) —[(A(A+¢€), Y(,A+¢e)— Y(-,2)]
=F(,A4+¢e)—F(,A)+[A(, A +e)— A(-,4), Y(A)].

Using the estimates of the solution of this equation we get that Y is differentiable
at A. The other cases are treated in the same way, and this shows that if F and 4
are C? or pw. C?in A then Y e 4, also. Now, differentiating the equation for Y gives

0,(0Y)—[4,0Y]=0F +[04, Y],
0,(02Y) — [A,0%Y] = 0°F + [0%A, Y]+ 2[0A4,0Y],

from which we easily deduce the estimates. W

3. The Inductive Lemma

Let Aesl(2,R). Since tr A =0, its two eigenvalues coincide up to a sign, and since
A is real they are either both real or both purely imaginary. Hence, the imaginary
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part$ of the eigenvalues are = + ix. Of course, a is defined only up to a sign, but
we shall require that

A=aMJM™?, J=<0 1),
-1 0

for some real matrix M with det M > 0. This defines « uniquely, and we shall call
it the rotation number of A (it is the rotation number of ¢ — ¢4, see Appendix.) If
A = A(4) is continuous in A, then a(4) is also continuous in 4, and if 4 = A(4) is
pw. C? on A, then «(1) is pw. continuous on A and pw. C? on A\a~ 1(0).

. .\ i
Let {r;} be a decreasing sequence of positive numbers such that r;—r;,; =27/ El
for each j. Let ;. =¢; "%, where 0 <0 <1, and let

2 1
N;= i log < —)
Ti—Fisq &j
for each j. It follows that

40 1 4
g < logl — J(2 + 206) <N 4
’—<r1(1+a> g(sl>( ‘”) ="

for all j, if just ¢, is small enough.
For example, it suffices that

£ é cr(1(4t/a)+ 1)

for some all constant ¢ that only depends on 7 and o. All constants in this paper
will be denoted by c. They will only depend on ¢ and 7, unless explicitly stated

. . 1 . .
otherwise. ¢ is a fixed small number, for example ¢ < H will satisfy all our needs.

Let now A4;(4)esl(2,R) and F (-, 1)e 4, be real and pw. C? in 1e A. We assume
that tr {(F,> =0, where { > denotes the mean value over T¢ and we also assume

[4,() — 1,(A)J| <2, somel, (),
10" (A1 ()] < e, v=1,2,
|avF1|r1<819 V=0,1,2,

0
where, we recall, 0 = IR Then we have the following lemma.

Lemma 2. There exists a constant C = C(z,0) such that if ¢, < CH*"* 1 then, for
all j = 1, there exist Fi €8, Y, and Aj+lesl(2, R), all real and pw. C? in 1 and
with tr{F;, > =0, verifying

<Y}+1<)2_C>’%> = (Aj + Fj(x))YHl(g) - Yj+1<)—2€>(Aj+1 + Fj+ 1(x))'

Let a; be the rotation number of A; and let Aj(m) be a finite union of intervals
such that

{A:12a;(1) = <m| < &7} < A j(m) < {1:]20;(A) — {m)| <2¢7}
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for 0 <|m| = N; (see remark below). Let also

A;(0) = A\UA(m),

andletr;—r,,  =3r;if A¢A;0)and r;—r;, = 2"'%1 if Ae A;(0). Then we have the
following estimates:

av< Y, (. 4) —exp {im(i; A,M)})

<31/2 v=0,1,2, AeA;m); (3.1);,,

rj+1

|(7vFj+1|rj“<8j+l, v=0,1,2; (3.2)1.+1
oA, AH—-1- m AU.)) <eB, v=0,1,2, leA;m); (33),,
J 2a(4) ’ J J I
IavAj+1' < 81_+v:9 V= 1,2
T : 1p7—T (3'4)j+1
[A4;+1(A)] <32|a;01(DING+1 I o (D2 N

Remark 1. The crucial point in the proof is that the sets A ;(m), 0 <|m| < N; are
disjoint. In fact, for each A there are infinitely many bad numbers m in ., but

there is at most one in the ball [n| < N;. So there is at most one bad number which
must be taken care of at each step of the iteration.

Remark 2. The components of A;(m) may be closed, open on half open. For the
proof of the lemma we don’t need to specify them more than by the two inclusions
above. For the proof of Theorem A this is all that is needed, but for the proof of
Theorem B and C it will be convenient to specify them somewhat more.

Proof of Lemma 2. So we assume that 4; and F; satisfy (3.2-4);, and we prove
the existence of Y;,,, F;,, and A, , with the required properties. We must
handle the two cases A€ A ;(0) and ¢ A ;(0) separately. But first we shall make sure
that A, satisfies (3.4),. The fact that (3. 3)1 makes no sense will be of no importance.

Clearly the first estimate of (3.4), is fulfilled by assumption, and the second is
trivial unless |4, = 8. But this lmphes that (/1 | > 6, since |A,(4) — llJ | <2, and
hence |a,| > I/I | — 2. Now this gives immediately |A4;| < 2|a,].

Case 1. Suppose A€ A ;(0). Then
|2(Xj(ﬂ,)——<n>|g£‘;, O<ln|§Nj.

Moreover, by (3.3), and (3.4),, k <j, we have |4;(1) — 7 ;J| <3 for I =0 or Il

(Thls also holds for 4,, by assumption.) In order to see this we observe that if
-1

Ae ﬂ A(0), then |A;(A)—1,J| <2+ + - -+¢}% <3. On the other hand, if

de ﬂ A (0)" Ay (m), m # 0, then

k+1

A
2/3 k
| <262 + 27| —
ok

|4;(D] <&+ + & +‘<1—§2m—>>A

Ay

<2} + ¢J32N; < 34Nieg, (3.5
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by (3.4),‘, because Ae A, (m) implies that |20, | = N, *— 27 2 1N, %, if m # 0. (Notice
this lower bound on o, which we have on A,(m) when m #0.)
We let now G(x) be the truncated Fourier series

z Fj(n)ei<n,x>,

0<in[<N;
and we define Y as the solution of
0,Y—[A;,Y]=G, 6&(Y)cd(G),
which exists uniquely by Lemma 1. Then we define
Y 1(0)=1+Y(2x)
A =A;+F;0) X )
F, =+ Y) '[F;Y = YF;(0)+ (F;— G — F;(0))].

These matrices are pw C? in AeA;(0) and tr 4 j+1=_0. Moreover, they satisfy the
equation, so

trdF,, > =<trF,, > =rY; (4 + F)Y, > —rY; 10,7

= —tr(Q(—=1)*YHo, YD = =) (- l)kk :_ 1 tr (3,(Y** 1)) =0.
So we only need to consider the estimates.
Estimates. We have
|0°Gly<ce;NS*Y, s=r;,, + i —2";+ L

Then by Lemma 1 and (3.4); we get
|6VY| <cs}—(2+3v)oN;(1+(v+1)3)+1, V=0,1,2

and this gives (3.1);, ;.
In order to prove (3.2);,, we first observe that

|0°(F;— G — F,0)],,,, <cel T2N;*

rj+1

and that
[+ Y) ! < 2.

This gives immediately

142 +1 4t+1,2-20
|Fjutly,,, <cle} T2ONGTH+ NFTiei ™).

If we differentiate the expression for F;, , we get
OF . = —(+Y) '0YF,, +(I+Y) 'a(F,Y — YF,(0)— (F;,— G — F;(0)))

J
from which we get

1+2 +1 Tt+1,2-5
[OF; 4l,,,, <cle; T2 N3TH+ N7 el 7).
And by a second differentiation,
2 1+20p7t+1 10t+1,.2-8¢
[0°Fj1l,,,, <cle; "2Ni* ' + Nj & %).

(In all these estimates ¢ is a constant that only depends on ¢ and 7.)
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The estimates (3.3),,, are trivial, as well as the first estimate of (3.4),, ;.
The second estimate of (3.4);, ; is non-trivial only if | 4;, ;(4)| = 8 which implies

J
that e () A,(0), ie.

k=1
|4, () — 1T <2 4227 <.

5 14l

Hence || > 5. But then |, ;(4)| = |7, —5>5 Hence

5

A @)y, 5 s
Tl

24 1(2)

This proves the second estimate of (3.4),, , in case 1.

<2+

Case 2. Suppose now AeA;(m), m # 0, and let
Z(x) = exp {<m’ x) A,.(x)}.

20,(J)
Then
where
20
(Notice that G; is defined on T?, even if Z is defined only on (2T)%)

{m)

The rotation number of B; is f; = a; — R and it satisfies
12B;—<n)| 2 (5SN;) 7" =2 225, 0<|n|<5N;.
Moreover, by (3.4); we have
A

| B;| < 2¢] 3 <1.

o
J
Let now G be the truncated Fourier series

G;(n)ei .
0<[n|<5N;

(This truncation is not the same as in case 1.) Then we let Y be the unique solution of
0,Y—=[B;,Y]=G, 6&(Y)cd(G),
and we define
Y, ()= Z(2Ax)(1 + Y(2x))
A; ., =B;+G;0) A A
Fi, =+ Y)"'[G;Y — YG;(0) + (G;— G — G;(0))].

Asin Case 1 all requirements are fulfilled and we only need to consider the estimates.
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Estimates. Notice that

Z(x) = cos <<méx>>1 + sin (-———<méx>>é—j.

&;j

From (3.4); we get
(1+2v)t,—(2+v)
[0*Z],, < cNf ey 2TV

since r;, , = 37;. (Here we have used that on A ;(m) we have a lower bound on «;,
which gives us upper bounds on the derivatives da; and 9%a;, since

P d(det Aj).>

! 20

The same estimate holds for Z 1.
This implies that

IaijIrJ < CN;(I +v)t8} —(4+v)o‘
Moreover, by (3.4); we get

|0"B;| <cN77e;™ v=1,2.
Since

Fi—Tj+1

2

s

18°Gl, < cNT Y &°Gyl,,, s=r,,, +

we get by Lemma 1,

I(?VYI <cN}6+5v)t+18}—(6+3v)a’

which gives (3.1);,,.
In order to prove (3.2);, ,, we first observe that
|5"(G,—G—G,(0))| <CN§3+2v)r+18}+(10—4—v)u,

ryj+1 J

and that
I+Y) Y <2

This implies that
|0"F,

(8+5v)t+1,2-(10+3v)o (3+2v)t+1,.1+(10—-4—-v)o
,+1|,j+1<C(Nj r + Nj g ),

which gives (3.2);,,.
(3.3);., is obvious from the estimate of 0°G; above.
In order to prove (3.4),,, we observe that

ﬁ<1,

A <2655

J

so the second estimate is trivial. The only thing that is left is the estimate of "4, ;.
We have

%A, | <18°G,l,, +0"B;].
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Moreover, we can sharpen the above estimate for 0*B;:
|0B)| < ¢ NT*|0A;| < ;N7 (6], + 04,4, 1) <csNPel,

where k <j is such that A¢A,(0) and AeA,0), k <I<j. And in the same way it
follows that

|92B;| < cN*e, 2.

In order to conclude, we must show that cN3"%, ] <e¢;,’{ for v=1,2. We have

shown in (3.5) that | 4;(4)] < 34Née;. On the other hand
N < [Kmy| S |[<m) — 205 + 2|o;| < 2¢f + 2| A;| < TONy gy, (3.6)
hence,
e7* < 70674, (3.7

This gives the required estimate and finishes the proof of Lemma 2in Case2. H

4. Floquet Solutions — Theorem A

We now come to the conclusions of Lemma 2. The conclusions will depend on A.
Each 4 belongs to a unique set N A;(m;),0 < |m;| < N;, which may be void. (Formula
(3.6) give a necessary condition for this set to be non-void.) It is clear that for all 1

rj_’ro ;0
|Fjl,;—0
A;— A pointwise

as j— oo.
Suppose now 4 is such that m; =0 for all j sufficiently large. Only for such 1
can we conclude that

[1Y,-Y
2
in | |, 7o > 0. For 4 not of this type the convergence is unsure and, in fact, often
untrue. However, we clearly have | Y;(0) — I| <¢;/ for all j, so [1Y;(0)is convergent.
But more is true. For each 4 the product || Y,-(%t) converges uniformly on

compact intervals in R. In order to see this we only need to note that
1)
Yy (Et) -1

Z;(wt) =exp {<;"J‘>Ajt} = oS (@t)l + sin<<L2j>t)ﬁ.
o

J %

<’ +|Zj(0r) 1|,

where

If m; =0 then we are done for all ¢, and if m; # 0 then |2a; — {m; | < 2], which
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implies that |A;] < 32|a;| N3, by (3.4);. Let now j; <j, < --- be all indices j for which
m; # 0. Then

[Km,, DI<TON%er. k21

Jic e

(formula (3.6)). Hence, for ¢ with ¢Nj &} small, we get by (3.5),

(@) =TI <[<m;,, >t)* + Mm

Jie+1

<tN: &7 + 2t34N" &7 <TOtN* &7

Jk K Ji K Ji 7K’

1z,

Jr+1 Je+1

@.1)

which shows that the product converges uniformly for ¢ bounded.
If now X, is a solution of

X1(6)= (A + F (w01)X(1)

then, by Lemma 2, we have a representation
X,(0)= Y(%t)e‘“,

Moreover, if X; has a rotation number j(4), then we conclude from this repre-
sentation that

0

ﬁ(l)=% S (m>+old), AenAm,),

i=1
where a(4) = lim «;(4). (See the Appendix.)
In order to prove Al we need a lemma. Let

1 J J
Pip1 =054+ Z (my», Ae m Aymy),
2421 k=1

the point with this definition is that the sequence {p;} converges uniformly in A.

Lemma 3. a) |p;,, — p;| <cej* for all j. In particular, the sequence {p;} converges
uniformly to the limit p.
0

b) If 1eﬂAj(mj) and p(4) is diophantine or rational, then m;=0 for all j
1
sufficiently large.

Proof. For a) it suffices to show that
{m)
ajﬂ(l)—(aj(/l) _T>

for A€ A;(m), which follows from (3.3);,, by an explicit computation.
For b) suppose

126(2) —<ny|Z K~ '[n|™%, |n|Z N,

for some N, K, as s> 0. Suppose that there exist j, arbitrarily large such that
m;, # 0. Hence,

120, (4) — <my, > | < 2¢5, .
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Then
‘2;3(1) — zk<m,>{ <2150 — P W) + 120, (2) — mj, D] < e,

On the other hand
Jk

1P = ECm> 2 KN, + -+ N,) "2 eK TN,

because N, 3 <cN, by (3.6). Now this implies that

Ji+1
2s

for finitely many k:s which is clearly impossible. B

Proof of Al —large energy. Let Ey(s) be defined as in the theorem, with
C(z,r) = C(z,0)r'*7)* D for ¢ = 35 say, where C is the constant of Lemma 2. Let
|q|, be arbitrary, and let E > Ey(|q|,). Let X be a solution of (). The equation
(**) gets transformed to

X1(0) = [4,(/E) + F (o1, /E)] X, (),
where A,(\/E) = \/EJ and

_qx) (-1 -1
Fl(x’ﬁ)_z\/i<+1 +1>

through the change of variables X; = Y !X, where

"(us i)

X, has rotation number ﬁ(\/f) = p(E) and

F
<af ) 1
so it follows from Lemma 2 that the solution X of (*x) has a representation
7<9t>e“‘, where
2
?(&) = Y1Y<9t>.
2 2

Moreover, it follows from Lemma 3 that the product Y = [ | Y; converges uniformly
in a complex neighbourhood of T¢, if p(E) is rational or diophantine. W

<g; =C(r, o) @+ y=0,1,2,

Proof of Al — small potential. Let E, and C be as above. Suppose |q|, < C(r,1)
and let Ee]—1, +1[. Now (*#) can be written

X1(0)=(A,(E) + F(ot, E)) X (t),
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0 1 0 O
A‘=(-E 0)’ F‘(x)=<q(x) 0>'

X, has rotation number p(E) = p(E) and
[4,(E)| <2

a v
(&) 4@
()"

OE

Now Al follows again from Lemma 2-3.
If E< —1, then we are in the resolvent set (if |gq|, < 1) and then Al also
holds. MW

Proof of A2. Suppose that §(4) is neither diophantine nor rational, and let
AenAj(m;). If m;=0 for j large enough, then X has a representation as in Al, so
X must be g-p. In this case A2 holds of course.

So suppose there exists an infinite sequence 1 <j; <j, < --- such that m; #0.

where

<&, v=1,2,

<g, =C(t,o)r@i9+ 1y =0,1,2.

r

Then lim 4;(4) = 0, by (3.5), so we only need to consider the product [ | Y,(%) t).

Let now t =t + -+ + 1, k 2 2 with || < 4=, for all . Choose

4n
tk =
and t, _, so that
t_it¢t b some
k-1 k= n s n,
<mjk— 1>

etc. Then we get Z; (wt) =1 (by construction) and, for all j,, [ > 1,
1Z, (wt)—1|=]Z, (wT))—1I|<TOT,N"¢°

Ji+1 Ji+t J170

as in (4.1), where
Tl=
t1+"‘+tk lgk

Since
| T} S4n(N, + - + N%,) < 4aN>,
and since Yj+1<§t) - I’ <% for all j # jy, it follows that

‘n Yj<%)t) - I{ <ceg*.

This gives the first part of A2.
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Let now
1 1
<t< , k=2
[<m;, > I<m;, . .>
Then
3;/2 J#h
Y <8t>—1 <c N?'t—lsz_l j=j» 1Z2k+2
jit1 -1 . .
2 (T +14;1[Km>17%) j=ji, 15k
(1+[tA;]) J=Jk+1-
(The first estimate is (3.2), the second one is (4.1), and the last two are trivial)
Therefore
k+1 k
w my,» <m;, >
(20| =T 22 |2 ) <[22
l:[ " <2 1;[ Jz 1> jx 1> < .Ik !
and since
my) | 25 A gonae
<mj1—1> l<mj,_1>| Ji-17J1-1

by (3.5), the product “converges” to 0 as k— oo. Since the last term is bounded
by 2|<{m;,>||t|, this proves A2. B

5. Coexistence of Quasi-Periodic Solutions—Theorem B1 and C1
For the proof we shall need two lemmas. For later use we shall give a complex
version of the first one even if we in this section only need the real version.

Lemma 4. Suppose A = A(A)esl(2,C)is pw. C? on Aand let + e(4) be the eigenvalues.
Then there exists a pw. C? matrix M= M(J) on leA\e '(0) such that
M~ YAM =(—ie)J and

IMI</2, le(d)]|det M(A)|~* < c|A(A)],
|OM| < cle|~2|0A]| 4],
|02M| < c(le| 2|0 A||A| + |e|~*|0AI*| A ).

Moreover, if A and (—ie) are both real, then M can be chosen real.

Proof. Let A= (a b ) Suppose that is bounded. Let
c —a

1
Viid)= ( 0>, Va(A) = (ie(4)) " AV, (D),

and let M =(V_,V,), where
V,

2
Vs V==
JVi+ V2 NIZE %
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Since ¢ # 0, M is invertible, and since A2 = eI, M conjugates A to (—ie)J. If we just
observe that e?= —det A, that [V,[*+|V,[>=1 and that |e| <|A|, then the
estimates of M and 02M follow readily.

Moreover,
|det M|™" = |——(le|2 + |al? + |c[?)
clel
1 (2lal*+1b 2 A
§_< lal? + [be| + c] >§const' A
le] lel e
b .
The same argument applies if |-| is bounded. On the other hand, if both ¢
c a

and (- are small, then the result follows by a perturbation argument. W

a

Let now A(A)esl(2,R) be C? in A in some open set AcR. Assume
A(A) = AJ + B(1), AeA, with

|0"B(A)| =7, v=0,1,2.

Lemma 5. There exists a constant n, such that for n <n, the following hold:
a) det A has exactly one stationary point y. This y is a minimum, |y| <2n and
—6n> <det A(y) £ 0;
b) det A has exactly two zeros ._ < A.. Moreover |1, | < 3n and
Ydy = A 1Ay =71 S EHAL — A

c) the rotation number a(A) of A(A) is monotone and strictly increasing outside

[A_,4,]. In particular
Jdet A(A) Ay 22
a(l)=< 0 A_SAZ A,

—JdetA(d) A<A;
d) dou=1—6n outside [A_,A,];
e) z(As —A)S[AN) =204, —A0), A=4_,4,.
Proof. Let f(4) = det A(4) — A%. Then it follows that
10" f(D] = 2n(|1A] + 2°n + ).

If 24+ 0f(A) =0, then A4, =1 — 27, 2y[. Hence, if there is a stationary point
it must lie in 4, . Since ddet A and has different signs at + 27, there is a stationary
point, and since |02 det 4 — 2| <2 in A, the stationary points is unique, and it is
a minimum.

Clearly — 612 < det A(y), and in order to show that it is <0, it suffices to show
that det 4 <0 somewhere in A,. But this is obvious, since

A+b
A(i)=<—la+c ja)’

and — A + ¢(A) = 0 must have a solution since |c| < #. This proves a).
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Since the stationary point is unique, there are exactly two zeros, and
22+ f())=0 implies that they lie in ]—3#,3n[. In this interval we have
3 < 0*det A < 3 which implies that

$1A—71> Sldet A(A) — det A()| <312 1%,

hence,

V3ldet AW S 14, —yI < /3ldet AW)],

and the same estimate holds for |1_ — y| too. This gives b).
For A, <A< 1 we have

i
(2= Tn)(A—7y) < ddet A(J) = [ 82 det Ads < (2 + Tn)(A—7)

and

2
det A() = [ odet Ads < %(2 + A —7)
A+

Hence
C=T0=9) oy g

V22 + G-y

On the other hand, if [1| = 1 then

O0a(4) 2

1+

da(A) = =>1-—6n.

1+

This proves d) and now c) is obvious.

A,:(“i b > i=0,1.
C; —a;

Notice that |b; — 1| <, |c¢; + 1] <n and all other entries are bounded by 47 in
norm. Then
ai+boco=0
and
2 =Tn)(A+ —y) | —bocy —bico —2a0a;] £ 2 + M)A+ — ).
The first equality follows from the fact that det A =0 at 1., and the second follows
from the estimate of d det A given in the proof of d).
If ay = by, =0, then

Q=T =) | @+ ~)

(I+mn) (1—n)
which gives the result using b). And the same holds if a, = ¢, =0.
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1
So assume ay, by, c, are all #0, and let b, = xa, and ¢, = ——a,, where we
X
assume, for simplicity, that x = 1. Then ddet A(4, ) = ayd(x), where é(x) = —xc, +
1 b .
~b, —2a,. 6 has a unique minimum at [|—%| for which § =2 — 5. This gives
X €1

lagl < 2(A, — A_).

The same estimate holds for ¢, since x = 1, and for 929 since d(x) = (1 — 3n)x. But
d(x) £(2 + 10n)x so we also have
lbol 2 4(As — A-).

This proves e¢). B
j-1
Corollary 6. If A,(A) = AJ, then do;j(A) = [] (1 — 6¢./) when a;(4) #0.
1

Proof. This clearly holds for j = 1 so we shall assume it for k <j and prove it for
j+ 1L

J
If 2e(1) A(0), then [3*(4;, , — A;)| < 2¢7" and the result follows from Lemma
5d). !

J
If e () Ai(0)n Ay(m), m #0, then

k+1
Aj+1—<1—<'">)Ak=B

20,

with
|0°B| <2623, v=0,1,2.

Moreover, || 2 N, * and C? on some interval A contained in A, (m), from which
we immediately get

oy <g B, y=1,2,
since o, = + ,/det 4;. And, by induction, we also have } < du,.
By Lemma 4 there exists a C*> matrix M(4) on A such that M~ 'A,M = a,J
and satisfying
IM|</2

|detM|™ ' <¢. °
| M| <e 2, v=1,2.

So if B=M~'BM we get

()
ooy,

|av§| < caiﬂ*(l +3v)o

and

2/3-(1+3 1/3 _
<cglRPTUFMI g3 v=0,1,2.
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Hence, with Zjﬂ =M"1'4;,, M we get

and we can apply Lemma 5. Hence

% >1-— 68;/3
Oay,
if ;. ; # 0. Multiplying by do, and using the estimate, assumed by induction, gives
the result. W
Proof of Theorem B1 — large energy. Suppose p~* <<—;—>> =[A_,4,], where j is
defined in Sect. 4. Since we have some freedom in defining the sets A;(m) we shall
choose them in such a way that there exists a decreasing sequence of intervals

A;=1]a;, b;[ o [4_,4,] such that «; is continuous on 4;,
1}
p,-(i)=oc,~(l)+5 Y, (my), AeA;
k=1
and
nyl 1,
pj(/l)_T >§Ej’ i=aj,bj.

Suppose this holds for k <j and let

_ n gl {n &7
namar ([ 2-5:249)

Then A;,, > [4_,4,] because p =S;—>on [A-,4,]and |p;— j| < ce;"* by Lemma

3. Moreover, a; varies precisely ¢] over A;, , so we can choose the sets A;(m) in
. 4

such a way that 4, ; c A;(m;) for some m;. Since |p;.; — p;| < ce;*, also the last

condition is fulfilled.

Itis now clear that () A;=[A_,4.]. Moreover,ifa; '(0)n4;=[4_, 4], then
j=1
Mo Ay

{ny

This follows since do;=dp; =% on [4,,b;] and Pi=="

The same argument applies to A7 .
We now proceed as in the proof of Corollary 6. We assume that m, #0. We
anti-diagonalize A, by a matrix M, and we let A i=M"1A4;M for j> k. Then

A=« _Sme J+B
i k 2

<ce}'* on 14,4, 1.

with
R 2/3—(1+3v)
|0"B| < ce}! Ve
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and
aak

So we can apply Lemma 5 to A ;as a function of o, and by Lemma 5e) we have
Hon(®,) — (A1) S 1 A;(W,)] < 2|0 () — (A1),
Since 1 < 0oy, < Nig, ° on Jay, b[ it follows that
e HA = IS A S el ¥y = ).
a<A,.— (1 —@>Ak>
20
0Aj, and this implies that
¢ Ay —A-IS1AAL) S el Ay — 4|

for some constant c,. This proves B1 for large energies. W

2/3-(1+3 13,
<RI < gl3 1y =0,1,2.

Since <2¢?® we have a j-independent bound for

Proof of B1 — small potential. We have

0 1
AN = ,
w=(" 1)
with [1| < 1.

In this case Corollary 6 still holds with 20a; instead of dx;, and the proof is
J

the same with the only exception that if le ﬂ A,(0), we cannot apply Lemma 5d).
But then !

[0"(A;41 — Ay)| <26}
and

10°f| <2e23(|A] + v+ 1),
where f(4) = det 4;,(4) — 4. Hence,
1+0f 1 1—623

> =

= > 1(1—631/3),
2 /detd;,, 2. /146677 2

a“jn

which is what is needed.

The proof of Bl now works in the same way as before. The only additional
thing we have to say is that if ] — 1, 4, [ is in the lowest gap then | A(4,)| = 1 — 2&3/3.
But this is obvious since in that case |4;(4,) — 4;(4.)| < 2¢2/3 for all j. This proves
B1 for small potentials. W

Proof of C1. In order to prove the Cantor structure of the spectrum we consider
. n .
the set G, of all potentials g with |g|, < co such that either p~* <§2—>,q> is a gap,

or is contained in ]— 0, E¢(|ql,) + 6[. G, is clearly open. But it is also dense. In
fact, any collapsed gap in ]JE,, oo[ can be opened by an arbitrarily small perturba-
tion, as is described in [2].
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Hence G, is open and dense, so NG, is generic, and if we let é go to 0 we
obtain that, generically in ]E,, oo[, “all gaps are there.” This implies that the
spectrum is Cantor because p has no other intervals of constancy than the gaps
(see [1]). W

6. Unbounded Solutions — Theorem B2

Let ienAj(m)and let 1 £j; <j,,... be all indices j for whichm; #0. Lett=¢, + ---
+t, k=2, with || < 5nN7,. Choose

and

4n
ly_1+t,=n , somen,

<mjk-1>

etc. Then we get, as in the first part of the proof of A2, that is

(o]
Y,+x<5t>_1

less than &;/% if j # j, and less than ce?/* if j=jj, [ # k. But for j = j, we get

Ji-1

w A

he(50)-5
w A;

Y| =t)|——% )

(1:[ J<2 )) ajk )

Hence, it suffices to construct a Aen A;(m;), m;, # 0, such that the sequence
Aik(’q‘)
%;,(4)

is unbounded, and this we will do now.
Let A; be an open interval. Choose n; such that

a/4 |k
<ce;”, .

Jke
This implies that
Afk

i

gca‘l’/“(l +

<1 <n
p 1( 21>>=[#1J'1]C41’ By <Ag.

Then |a;(4,)] —»0and | 4;(4;)| = |4(4,)| = 6 > 0. Choose now k, so large so 8¢,/* < &

and such that
1)
fou (A1) < (g)

o
|4y, (A1) 2 6 g
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Since o, and A, are continuous near 4, (this can clearly be achieved), it follows that

0
o, (A)] < <4—l)

o
[y, (A)| 2 6 ~21

for all 4 in some interval [A,,v,] < A,. Let now j, be the largest index j = k, such
that «; is continuous on [4,,v,]. (Such a j must exist unless lima; =0 on [4;,v,].
But this would imply that p is constant on [4;,v,] which is impossible since 4,
is the right endpoint of a gap.) Then

1/4 1
loj, — o, | <cegl®, |A;, — Ay, | <28

oy (2)] < (g)

)
|4;,(A)| 2 6 ~3

on [4,,v,]. Hence,

on [44,v,], and, by the choice of j,, there exists an m;,,0 <|m; | < N;, with
120;,(4) — {my, D] < 265,

for some 41 in this interval.

But this implies that A; (m;,)n]4;,v,[ contains a non-void open interval 4,.
Now we can repeat this construction with a gap [u,,4,] in 4,, and find a j, such
that

0
Iajz(l)l < 2_2‘

)
|4;,(A)) 2 0 3

on some interval [4,,v,], and such that there exists an m
|205,(4) — {my D <5,

0<|m,| <N, with

J2°

for some 4 in this interval.
In this way we construct a decreasing sequence of intervals

A,>A,> -
which contains a point AenA;(m;,) such that
= =2'—1
0
2

& (A)

This proves B2. H
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7. Solutions for Complex Energies E + ig
We shall only consider the case with E large, and then we indicate what modifications

are required in order to treat also small E when the potential is small.
The equation (**) gets transformed to

X'\(t)=(A,(\/E +ig) + F,(wt, \/E + ig)) X ,(t),

where A,(\/E + ig) = \/E +igJ and

Fl(x,./E+ig)=ﬂ(—1 _1>

2 E+1g +1 +1

through the change of variables X; = Y ' X, where

1 1
Y, = .
' (—,/E+ig ./'E+ig>

We have
|4, —JE+igJ| <2
|0A,| <& ™ v=1,2
lql,,

[0"Fl,, <—=<¢ v=0,1,2,
VE

if E is large enough, where 0 = 2 =/JE 3
oA 0g
Let N;and ¢;be asin Lemma 2. Let \/Ee () Aj(m;), E> E,, such that a(ﬁ) #0.
jz1

This implies that all m;, except finitely many, are 0, so we let 1 £j; <--- <j, be
all the indices for which m; # 0 — if no such indices exist we let n = 0. We shall let
k be the smallest integer = j, such that

a2 nT61 .
e N1, j=k.

Lemma 7. There exists a constant C = C(t, 0) such that if ¢, < Cr{**?* 1D then, for
all j =2 1, there exist F;,,Y;, €%, tr{F;,;> =0, and A;, esl(2,C) such that

A ELE N =+ F o Y (S ) = Y (S )4, ,
<Yj+1<2>, 2> (A]+F](x))Y]+1<2) Yj+1<2>(A]+l +Fj+l(x))'

Moreover, F;,y,Y;11,Aj1, are C? for |A| < &g, ,, real when A =0, and their first
derivatives with respect to A are purely imaginary at 1 =0.

Let e;(\/E + ig) be a continuous choice of the eigenvalue of A; which we determine
by the condition that Im ej(\/E) = ocj(\/E) — this determination is unique if o; # 0.

Fqo.
Letrj—rjy =3rjif mj#0and rj—r;., =2"51 if mj=0. Then we have the
following estimates.
10" (Y4 — mp ety <el2 v=0,1,2; (7.1)44

10°F sy <&e1s v=0,12 (7.2)j41
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2e;
{|6“Aj“| <&, v=1,2
[Aj+11<32lej,[Nj,, if |e,+1|_4N1‘+tl
This lemma has one different aspect from Lemma 2. In Lemma 2 the whole

construction depends sensitively on the parameter 1 = \/E Changing A implies
that the sequence N A;(m;) and, hence, all the estimates change. In Lemma 7 the

<&, v=0,1,2 (7.3)j41

(7441

sequence N A;(m;) does not change when we vary 4= 9 over a small interval
E

oflengthej , | . In order to see this, we only have to check certain properties of e;.
So suppose we have constructed Y;, F;, A;. We shall verify that

IRee;(\/E +ig) I\/.] (7.5);
and that, for [1] <¢j, |,
e;(/E+ig —l 48‘;, O<|m|<N;, if m=0
(7.6);

e;(\/E+ig)— ’>

Then we can proceed as in the proof of Lemma 2 in order to construct the (j + 1)™®
step.
To prove (7.5), we observe that e, (\/E +ig)=i,/E +ig= — —\/:+ i/E+0%)),
2 /JE

s0 (7.5); holds, and we then proceed by induction.
Let [ be the largest integer <j for which m; #0. Clearly | < k and by (7.3)

Aj=<l—i<;n'>>A,+B

€

<2° if m;#0.

with |0"B| <2¢7/?, v=0, 1. Let M be a matrix such that
M~ A M =(—ie)d, |M|<./2
|det M|~' <cN;, |0M|<cN¥e °,

and M being real when g =0 — such a matrix exists by Lemma 4. Then
MAM™! = —i(e,—i<"2">>J +B

with |9"B]| <2372, vy=0,1. (m>
If now B(O) 0, then B is small compared with (e,—l ! > by (7.5),, and

2
. _<elﬂ< 1>>
2

<&l We

then it is an easy perturbation result to show that
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can therefore assume that B = B(0) is independent of g, and then the result follows

~ b
by an explicit computation. In fact, if z=¢, — 1< 2'> and B= <a >, then
c —a

det A4, = (iz +E—_—b>2 - <a2 + <b b C>2>.
2 2
But if (4 + iv)* = (x + iy)* — d* then clearly v* > y?, and this shows that Ree; >
Ree; 20 or Ree;<Ree; 0.
Finally, if there is no such integer | as assumed above, then 4 j(\/f)~\/l/5.l
and ozj(\/E) ~ \/E and (7.5); is an easy perturbation result. W

To prove (7.6); we observe that if [4] > sj , then j>k and m; =0, and we are

done by (7.5);. So we can assume that | 1] <.

Now
A//E +ig) = A;(/E) + iB, A + By(1)A?
with B, real. Let [ be the largest integer <j such that m; # 0. Then, by (7.3),
|B,| L c(NFg, o), v=1,2,

and hence

al_ | bR
det 4,(/E + ig) = 02(\/E) + iah + b(1)2? f)[ 2“ ]
'WE (/B

with a real. Since | A;(\/E)| < ce/ N, it follows that
la| <cNY, |bl<cNite 2.
If now a; is small, |o;| < zN;* say, then m;=0 and

|det A,(/E + ig) <iN; 7,

which implies (7.6);. So let’s suppose that 1N <o S g Nj.
If now j <k, then

A 1
—|Scep,  NINJ < ¢
o; 2

and

2

1
T 4t - 20 20 3t p761
" <ce? NiNje ScglN;*N,; <2e

J
since & NS < 1. 2
On the other hand, if j > k, then |—

®;

akl?

&;

is still less than €. Moreover,

¢
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which implies that

O‘
j.

e)(/E + ig) — io;(\/E) —

This proves the result since m; =0 and a is real
Finally, if there is no such integer | as assumed above, then A (f )~ f J
and a,(\/_ ) ~ \/E and (7.6); is an easy perturbation result. W

We shall deduce some estimates from Lemma 7, for [A| < ¢f, ;. Let Y = [] Y, ;.

Then jz1
N n#0

Y|, < In R 1.7

[Ylo C{l n=0 (7.7)
—20 n#O

16Y|0<c{ 02 - (7.8)

Al .
—I1'if j =j,. Hence
j

|Ylo < c"|Aj,| 14,1 (ej ] -+ le;, D"

In order to see this, observe that |Y;, |, <c

<c Jl

T g0 T 7 T
(Nh Jjt N.In 181n l)sz N
Ji

which follows just as (3.5) follows from Lemma 2. Now LY Nj, by (7.4) which

J
gives the result. Also [0Y;,|o < N7 ? for j =j, which 1m£)hes

|6Y‘0<C(Nr 1/2 + Nt (N121t J—la+ +N2t 4 )
<cN}e °<e;

Of course, if n =0, then these estimates are obvious.
Let now A =1lim 4;. Then it follows from Lemma 7 that

{IA(\/E+ ig)| < ce5 N3, n#0 79)
|A(E +ig) — JE +igJ| < 2¢}? n=0,

and
|6A(\/m)|<c{ N :’_ég (7.10)
For n=1 we get from (7.10) that
|A(J/E +ig) — A(/E)| < cej, " N¥| 4],
and from (7.9) that

|det A(\/E + ig) — det A(\/E)| < ceg N* &, N2 | A| <&;°| Al.

For n=0 we get in the same way an estimate by c\/f |A]. Hence,

“eA 0
|e(\/E+ig)—e(\/f>1§c{V\/‘|%' S (7.11)
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For || <¢f,, min{l, Ia(\/E) |2} it follows immediately from (7.9) and (7.11) that

e N°®
Jn" " Jn n¢0
‘i‘(. E +ig)| < ¢ /) (7.12)
e
1 n=0.

Let now M be a matrix such that

1 0
M-1AM=e<O _1>, IM| <2

Al|0A
[detM| 1<c¢ —”—
ell e

A
_’, laMléc
e

1
The existence of M follows from Lemma 4, since we can conjugate J to i< 0 )
by a fixed non-singular matrix. 0 -1

For || <eg,  min{l,|a(,/E)|*} we have

(&5 N}
_Jn Jn n ?50
E
|det M| ' <¢ (/)
1 n=0
g2 N3*
Jn Jn
———F—— n#0
E 4
jo(det M)~ S ¢ '“1(\[)' (7.13)
— n=0.
E
This follows immediately from (7.10-12).
Let now X = Ye*'M. For |A| <&l , min{1,|a( /E)*} we have
N 0
[ X(0)] §ct{1jn nfo
B (7.14)

|aX(t)|<c{8'7(‘3;“““(\/5”‘2) n#0
=%t 1

n=0,

where the constant ¢, depends on ¢.
This follows if we can estimate e?*. If n # 0 then | 4| < 1 and |d(e*)| < e4*l|¢||0A],
and we are done. If n=0, then

e"'=M"[exp<et O)
0 —et/ |y

and, since |e —i\/E| < 1, we get [e'| < e?l. And |de™'| < c(|¢] + 1)el.
Remark. In the case of small potentials, the equation (xx) is
X'1(1) = (A,(E +ig) + Fy(ot, E + ig)) X, (1),
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where

o 1 (0 0
A1=<—<E+ig) 0)’ Fl(x’E“g)‘(q(x) 0)'

For |E| <1 we have

|4,]<2
[0"Ay|<e[™, | v=1,2,

IavFllr1<|q|r1<81, V=0,1,2

if |q|,, is small enough. Here 0 = %, where 1 =g.

Now everything goes true in essentially the same way. Of course, the argument
in no longer ,/E + ig, but simply E + ig. Equation (7.6) remains true, while (7.5)
takes the form
[Ree;(E +ig)| = ;lgl.

The modification of the proof is very small and concerns only the case when
n =0 - all other cases being the same.

The estimates (7.7—-8) remains true, as well as (7.9), with an obvious modification
for the case n=0. (7.10-11) remains true. For (7.12) the only difference is that

when n =0, the estimate is not 1 but . Also the estimates (7.13—14) are the

|o(E
same when n # 0 while they are different if n = 0. If n = 0 then |det M|~ ! < ¢|(E)| "},
|0(det M)~ | < cla(E)| 73, | X ()| < c,, and [0X ()] < c(1 + |(E)| ~2).

8. Absolutely Continuous Spectrum

Let ¢eC?(R) be real, and define
E+d

H(E) = py(E) = lim 51{13) - _I Im{$, (L —(s+ig)" ' ¢)ds.

It’s a general fact for all self adjoint operators & that u is right continuous and
increasing, and that it has a discontinuity at E, if and only if E, is an eigenvalue
of . Moreover.

+

Im{¢,(L —(E+ig) '¢>= _f mdﬂ(s), g>0

and
lim Im (6, (2 — (E+ig) "' &> = r(E) = (&),
gNo0 dE

the pointwise derivative of y, for a.e. E€R. (See [13,14].) Moreover, r is locally
integrable by the Fatou lemma.

Since Z is a Sturm-Liouville operator with C* coefficients, any eigenfunction
of # is C* and, hence, an eigenfunction of % (see [12]). By Theorem A no such
eigenfunctions exist for E > E,, so u(E) must be continuous on JE,, oo[. (In particular,
we can let o be 0 in the formulas above.) In this section we shall show that u is
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absolutely continuous on ]E,, co[. We shall only do the details for large E — for
a small potential the proof is essentially the same.
The resolvent of & has a representation

» y-(5)9(s) y+6)0)
(2~ (E+ig) ' 6(0) = . t)f oy R AU g T
W(ny,y.)=det<y,+ y,‘)(O),
Yo V-

for any pair of Weyl solutions y . (¢), i.e. solutions such that
© 0
[ly+@Pdt< + o0, | |y_(91*dt< + c0.
0 - ©

We shall express the resolvent in terms of the Floquet solutions constructed in
Sect. 7.

Let E be such that \/Ee ﬂ A;(m;) with a(\/‘ ) # 0 — this holds if, for example,
p(E) is diophantine. This 1mplles that m; =0 for all j>j,. Let Y = H Y;,, and

=lim A;, with Y}, A; given by Lemma 7, and let M be a matrix as in (7.13). If
we take

(y A j)(t) = Y, X(t)= Y, Ye' M,
Ye Y-
where

1 1
Yl = < )5
~JVE+ig +./E+ig
then y, is a pair of Weyl solutions if g # 0, by (7.5). Using these solutions we can
define the limit (£ — E)~ ' ¢(t). Then we get the following results by an application
of the estimates (7.13-14).
Choose k so large so m;=0 and ej.’sz" <1 for j>k. For

|g|<az+1min{1,|a(ﬁ)|2} and tesupp ¢
we have

1
JEE N n#0
Jn” " Jn
(/B 81)

\/E n=0

(£ —(E+ig)) o) < ¢y
and

Ee; “N(1 +|a(y/E) *)lgl n#0
*| Elg| n=9,
8.2)

(£~ (E+ig) ™' —(Z-E) o) <c

where ¢, is a constant that depends on sup|¢(f)| and on supp(¢).
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From (8.1-2) it follows that dy is absolutely continuous on the set D = U Du,

121

D, = {E > Eq:|a(E)| > %}

This is so because on D, the integer j, in the formulas (8.1-2) is uniformly bounded,
so we have uniform convergence

Im{$,(Z —(E+ig))"'¢)>—r(E), g0,

and the limit function is uniformly bounded. (In order to see that this implies the
absolute continuity on D, one can apply the argument of [3], which we shall use
below in a more delicate situation.)

So the problem is the set of points E for which a(\/ﬁ) = 0. Of course this set
includes the gaps, which should be excluded, as well as the endpoints of the gaps
which we can exclude because there are only countably many such points. So we let

S={E> Eqy:a(,/E)=0}np~ '(R\Q).
We shall prove

Lemma 8. Let EcS. Then, for any 6 < y(E), there exists an open interval I = I(E, 6)
containing E such that |I| <6 and

du(l) £ 4(r(s)ds + 2|11,

where |I| denotes the Lebesgue measure.

This implies that for any interval A
du(SnA4) < 2<4j r(wdu + 21A|>
A

— an excercise — and hence the absolute continuity of du since r is locally integrable.
So we are left with the

Proof of Lemma 8. Let E,eS. This implies that JEienA,(m,) with m, #0 for
infinitely many I:s. Let k and j be two consecutive indices such that m, and m;
both are non-zero, and let k be so large so e;’sz’ <1, 1=k

Let A be a symmetric interval around \/E of diameter |A| = c,E; *?" N+t
follows from (3.7) that if k is large enough — depending on E, and ¢ — then &f «|4|.
Moreover, if k is large enough — independent of E; and ¢ — then |A| <¢]. So we
assume these inequalities.

We shall also assume that «, is continuous on A. This can be achieved by choos-
ing the sets A,(m;), | <k, appropriately, because if, by induction, «; is continuous
on A, then

lu(/Ez) —ay(\/E1)| < Njg | Al <ef.
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This implies that the sets A;(m) can be chosen so that all points in A belongs to
the same component. Hence o, ; is continuous on A.
Since [20(,‘(\/E;1 ) — {my y| < 4ef and 20,00, = 0 det A, it follows that the image
<my)
2

of diameter

of A under «, is contained in an interval around
20\ 4T\t~ O
Sg NN ”.

Hence, all \/ E€ A belongs to A,(m,), and if m # m; and {m)e2x,(4), then [m| > N .
In particular, «; is continuous on A. Finally, we get from corollary 6 that the set
of all “gaps” in A is of measure

Sdef+ Nj, 4ef,  + Nj 467, , + - Scef.
Hence, if we let

A= {ﬁeA; Ee) A,(O)},

1>k

then [A\A’| < cef. Moreover, on A’ we have that |«| >IN ; *» because otherwise
we would have that Iaj(ﬁ)l <iN;* But since |a;(\/E,)| = 3N " and since a;
varies <& 'N; %N ° <N, this is impossible.
Let now
A={E:/Eeq}, A= {(Eed: /EeA’}.

Then |A\A'| < 1| 4| so there must exist a E,eA’ such that

r(Ez)| ) S 2 [ r(s)ds.

Now for |g| = [A| we get by (8.2) that

+ o

g

m"““) =r(E; +ig) S r(E) + 1.
S (B —

On the other hand we have for |g| = | A

+ o0

g g
rnEy))+1= = du(s) = | ——————du(s
( 2) __Im(EZ——S)Z-f'gZ u()_;‘;(EZ——s)z-i-gz ﬂ()
g ~ 1 ~
= du(4) = —du(4).
9*+g° 2|gl

This implies that
dp(A) < (r(Eo) + 12191 £ 4 [ r(wdu + 21 4],
A4

By choosing k sufficiently large, we can get A arbitrarily small. This proves the
lemma. W
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Appe’ndix. On Rotation Number

Let X:R - GI(2,R) be continuous with X(0) = I. For any VeR?\0 let
. d)(t’ V) = —arg (X(t)V)s
ie.

1
(2, V) — o(t, V)= — Im<j2d2>,

where y is the curve X(t)V, t, <t <t,, in the complex plane. So ¢ is a continuous
multi-valued function. We shall fix

0=<arg(V)<2m,

so that ¢ becomes a single-valued function, continuous in R x (R*\([0, co[ x {0})).
Suppose ¢(t, V) — ¢(t, W) =n2n. This implies that X(t)V = aX(t)W for some
a>0,ie X(t)(V—aW)=0. Hence V=aW. From this it follows that
lo(t, V) — ot W)l <n (A.1)
for all V, WeR?\0.
We say that X has rotation number p = py if

tim 261 _

t—= t

for some, and hence for all, ¥eR?\0. (A.1) implies that the convergence is uniform
with respect to V.
If X has rotation number p, then

lim @6 Y) — 9lte, V) _

t— o t

>

which shows that the rotation number does not depend on the values of X over
a finite interval.

So if Y:R— GI(2,R) is continuous with Y(0) =1, then we have the following
lemma.

Lemma A.1. Suppose X(t)= Y(t) for t = T. If px exists, then py = py.
Suppose now that py and py exist. Let
Y@ V)= —arg(YQ)V), f(t,V)=—arg(Y(©)X()V).
Then
f&,V)y—f(0,V)= —Im(fldz> =— Im(j ldz)—Im(jLiz)
vZ "z y2Z
where
y=Y@)X@E)V O0Zs<t
71 =X(s)V 0<s<t.
Y2 =YXV 0=s=<t
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Hence,
& V)= f0,V)=(¢ (5, V)= ¢(0,V)) + (Y (t, X(O)V) — ¥(0, X(&)V)),

which proves the following lemma.

Lemma A2. If py and py exist, then pyx = p, + py.

Let now Aesl(2,R) with purely imaginary eigenvalues + ia. Then there exists
a real matrix M, det M >0, such that M ~'AM = «J — this defines the sign of
a — and from this we see that e has rotation number «. In fact e#’ has the same
rotation number as X(t)e*”'X(t)~ !, where X(t)= M for t > 1.

In the same way one shows that if 4 has real eigenvalues then the rotation
number of e is 0.

Consider now an equation

X'(0)= FOX(), F= <“ b )
c d

where F is continuous, and let ¢ be a solution of
— ¢'(t) = (a(t) — d(t)) cos () sin ¢(t) — (b(t) + c(t)) cos® p(t) + b(t),
with ¢(0) = ¢,. Then
ie—w =Fe % —¢ T,
dt

where T = T\(t) is triangular. Hence, we have a solution X(t) = e*“’ Y(t), where Y,
being a solution of Y’ = TY, can be taken to be triangular. From this it follows
that py exists if and only if

lim 0

t-o |

exists, and that py is precisely this limit. Moreover, if F is g-p, then this limit does
indeed exist as stated in the following lemma for whose proof we refer to [1].

Lemma A.3. Let f:T?*! - R be continuous, and let weR be rationally independent.

If
¢'(t) = f(ot + x,6(t)), ¢0)= o,
then
lim o)
t+oo

exists. Moreover, this limit is independent of ¢, and xeT".

So if F is g-p, then X has rotation number

lim ¢0 = — lim %j(a(s) — d(s)) cos ¢(s) sin P(s) — (b(s) + c(s)) cos? ¢(s) + b(s)ds
0

to>o L t— oo
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which is bounded by

Sung(la(t) —d(®)] + [(5(1) + ()] + 1b(1)]

In particular, if F, goes uniformly to 0 as n— oo, then py, -0 as well.
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