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Abstract. We study the structure and formation of naked singularities in self-
similar gravitational collapse for an adiabatic perfect fluid. Conditions are
obtained for the singularity to be either locally or globally naked and for the
families of non-spacelike geodesies to terminate at the singularity in past. This is
shown to be a strong curvature naked singularity in a powerful sense and an
interesting relationship is pointed out between positivity of energy and occurrence
of naked singularity.

1. Introduction

Recent work on spherically symmetric gravitational collapse such as the Vaidya
null dust solutions for imploding radiations [1, 2], Tolman-Bondi dust solutions
[3,4], and self-similar collapse in general relativity [5] has shown that these
situations admit the occurrence of a naked singularity as a final outcome of
collapse. Such a scenario violates, in a certain sense, the cosmic censorship
conjecture [6, 7] which requires that singularity must not be either locally or
globally naked. When a singularity is only locally naked, non-spacelike trajec-
tories can come out of it, however, the causal influence is precluded in the
asymptotic regions of spacetimes. On the other hand, the strong form of the
conjecture demands that the singularity must be spacelike.

The cosmic censorship hypothesis in the above form lies at the foundation of
the currently well-accepted and applied theory of blackholes and it also rules out
the violation of predictability in spacetime arising due to naked singularities.
However, the attempts for a rigorous formulation and proof for the same have not
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been successful so far. In fact, it appears that even in order to arrive at a rigorous
provable formulation of censorship, a detailed analysis of known situations is
necessary where a naked singularity forms in a spacetime. Towards this end we
have analyzed recently the naked singularity in the Vaidya class of solutions for
radiation collapse in detail to show that families of non-spacelike geodesies
terminate at this singularity in the past, which turns out to be a strong curvature
singularity in a very strong sense [2].

The purpose of the present work is to analyze the structure of naked singularity
arising in self-similar gravitational collapse of matter with an adiabatic equation
of state. As opposed to the radiation collapse or dust models, this situation has the
advantage of treating matter with non-zero pressure which will be important in the
final stages of collapse. The work on this problem so far (see [5] and references
therein) has shown that at least three outgoing null geodesies leave the naked
singularity, which includes the Cauchy horizon, along which a strong curvature
condition is satisfied. We provide here a general analysis which includes all
possible families of non-spacelike geodesies which could terminate at the
singularity in the past and it is shown that the strong curvature condition is
satisfied along all such families. It turns out, in fact, that a non-zero measure set of
non-spacelike geodesies terminates in the past in the naked singularity. It is thus
seen that this is a strong curvature singularity in a very powerful sense. Conditions
are provided for the singularity forming at the origin of coordinates to be locally or
globally naked. Further, a fourth order algebraic equation is derived which
provides a sufficient condition for the existence of naked singularity in terms of
parameters in the field equations.

In Sect. 2 basic equations are set up and a fourth order equation characterizing
the existence of a naked singularity is given. Families of non-spacelike geodesies
which terminate at the naked singularity in the past are discussed in Sect. 3. The
structure of the singularity is analyzed here to show when it will be locally or
globally naked. A connection is pointed out between the well-known energy
conditions and occurrence of naked singularity and the conclusion on the strength
of the singularity also follows from analysis here. The concluding section, 4, gives a
brief discussion on possible implications.

2. Self-Similar Field Equations

A spherically symmetric spacetime in comoving coordinates is given by

ds2 = - e2v(t>r)dt2 + e2^r)dr2 + r2S2(ί, r)(dθ2 + sin2 θdφ2). (1)

Self-similarity implies that all variables of physical interest may be expressed in
terms of the similarity parameter X = t/r. Therefore, v, tp, and S are functions of X
only. The pressure and energy density in the comoving coordinates are (ua = e ~ yδϊ)

p(X) η(X)
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The field equations for a self-similar collapse of a spherically symmetric perfect
fluid are [7, 8],

2<Γ2γ. S2\
— -̂ Sφ+— =-»?, (3a)

li \ Zύ/S

-1 2ίΓ2vΛ. Λ. S2\ 2e'2ψ

x -SA-v + A-2Sv+v ""' =p, (3b)

(3c)

Zί/ / ZrO \

Γa6.i,=0=>p-^ = -(>/+P)v, f/=-(j7+p) φ+— , (3d)

where (•) denotes differentiation with respect to the similarity parameter X.
Integrating Eq. (3d) and eliminating S from (3 a) and (3b) we get,

-2

, (4b)

V(X) = Xe2vl(η + p)e2ψ - 2] = Xe2v\H - 2] , (4c)

C\2 /C\

^2 =0. (4d)
ύ /

The quantities 7 and H here are defined by V(X) = e2*-X2e2v and H=(η+p)e2v.
While integrating Eq. (3d) we have assumed that collapsing fluid is obeying an
adiabatic equation of state p(X) = aη(X\ where a is constant with the range
O^β gl, Eqs. (4c) and (4d) are valid in general. Also, α and y are constants of
integration and could be set equal to unity by a suitable scale transformation. By
putting y=Xβ, U2 = e~2v+2φ/X2 = (l/l-Ve~2ψ) = n~2βy~2S~\ b = l+a, and
/?=(! —a/1 +a\ and using (4a) and (4b), Eqs. (4c) and (4d) can be expressed as

(5)

where (') denotes differentiation with respect to y. The quantities U and H are scale
invariants, i.e. invariant under a transformation of the type ί->cί, r ^dr and hence
are of physical interest. In fact, U represents the velocity of the fluid relative to
X = const hypersurfaces [9] while H is related to energy. Solutions of the above
equations which allow U(X) = U(y) = 1 for some real positive value of y = y0 = Xβ

Q

are of special interest to us. It will be seen that this corresponds to a situation of the
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spacetime containing a naked singularity at the origin of coordinates where non-
spacelike geodesies terminate in the past. It should be noted that the point Xp at
which U2 = a is a sonic point where the fluid velocity to the similarity lines
(X = const) is equal to the speed of sound. Therefore, in all solutions of the field
equations which allow the existence of the sonic point, there would also exist at
least one point at which 17 = 1. Actually solutions of the field equations which
allow 17 = 1 at some real value of X are an initial value problem as the field
equations do not have U = 1 as a singular point of the differential equations. Our
aim therefore here is only to determine what the values of different parameters
could be for solutions that allow 17 = 1 for some real positive value of X.
Hence we analyze now the solutions of above differential equations near
the point y = y0 = X^ with the condition such that U(yQ) = (η0)~2βyQ2SQ4

= (η0XQ)-^SQ4=\, where S0 = %o) and η0 = η(y0). We write

So + So Σ Sn(y-y0)". (7)
«=1 κ = l

By requiring that the above satisfy the differential equation for η and S we get the
values of coefficients Sn and ηn in terms of the initial values of η0 and η± to obtain,

Eliminating S0 and SΊ from the above equations and writing z = bη^2y0 we get
after some simplification,

z4 + n(m - 2)z3 + 2(3 - ά)z2 + 2bnmz + 4b(l - a) = 0, (11)

( —/ ^where n=\2η0

2 jb) and m = (β(l—a)ηi/η$)

 1). The above is a fourth order
algebraic equation and can have at the most four real roots depending upon the
values of the parameters ^0?^ι

It should be noted here that the issue of global existence of solution to the self-
similar field equations with the equation of state discussed here and with physical
initial data has not been addressed so far on a mathematical level. However, there
are good reasons to believe that such global solutions exist as indicated by the
numerical and qualitative analysis of [5], where the issue of sonic point was treated
carefully. This could be the motivation for studying the local behavior of such
solutions in the vicinity of the naked singularity. Of course, this local behavior,
and in particular the orbits of non-spacelike geodesies which leave the singularity,
does not depend on the global question (i.e. whether a particular self-similar
solution can or cannot be matched to reasonable initial data).
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3. Causal Structure near the Naked Singularity

Tangents to the outgoing non-spacelike geodesies are given by (see the Appendix)

^S2 ' ~r2S2sm2θ'

C(X±e2*Q)(l+BCk)
K = ^2 ' (12b)

where

S2(i+BCk)2

ta i
s w

dt X±e2ψQ

The function Q is chosen positive throughout and + signs represent outgoing or
ingoing solutions. From the above equations we get

dr~ \±Xe2vQ
(14)

The point ί = 0, r = 0 is a singular point of the above differential equation. The
nature of the limiting value of similarity parameter X = t/r plays an important role
in the analysis of non-spacelike curves that terminate at the singularity and reveals
the exact nature of the singularity. Using (14) and lΉospitaΓs rule we get

= Q. (15)

Thus we see that either

V(X0) = e2*(Xo) - xyv(XQ) = 0 (16)

or Q(X0) = Q which implies

L2V(X0)=-S2(X0). (17)

0) = Q does not have any real roots then geodesies clearly do not terminate
at the singularity with a definite tangent, i.e. the singularity is either a focus or
center. In case ̂ (X0) = 0 does have real roots then the singularity could either be a
node or a col. In fact, it follows from the geodesic equations (12b, c) that straight
lines in the (ί,r) plane given by X = t/r = X0, where X0 is either any root of
V(X0) = 0 or any double root of β(X0) = 0, represent in the (ί,r) plane rectilinear
radial and non-radial null geodesies, respectively. Therefore, if V(X) = G has at
least one real positive root or Q(X0) has a double root, then the singularity is
naked. As we see from Eq. (15) the singularity could be naked even if V(X0) = 0
does not have real positive root. This is the situation when V(X) < 0 and a double
positive root of Q(X) = 0 exists. Existence of the positive real roots of &r(X) = Q is
therefore a necessary and sufficient condition that the singularity would be naked
and at least one single null geodesic in the (ί,r) plane would escape from the
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singularity. However, even in such a case other non-spacelike geodesies may or
may not terminate at the singularity. If only a single null geodesic escapes, it
amounts to a single wavefront being emitted from the singularity and hence the
singularity would appear to be naked only instantaneously to a distant observer. If
the naked singularity is to be seen for a finite period of time, a family of integral
curves (geodesies) must escape from the singularity.

At this juncture it would be relevant to note the case of the naked singularity
arising due to gravitational collapse of null dust in the Vaidya spacetimes [2],
which is a special case of general self-similar spacetimes treated here. The origin of
the coordinates there is a naked singularity which is a node and entire families of
non-spacelike geodesies escape, exposing the singularity to a distant observer for
an infinite time. In order to find whether a family of null or timelike geodesies
would terminate at the singularity (t = 0, r=0) in the present case, one must analyze
the structure of this singularity. In Eq. (15) we have shown that the singularity
could become a node only if ^(X) = 0 has a real root X0 which gives a direction
tangent to the integral curves at the singularity. It is, of course, possible that
X = X0 may not be realized along the integral curves, but a single null geodesic
X = X0 is escaping out as stated above. To examine this issue we consider the
equation of geodesies r = r(X) in the (r,X) plane. We will restrict to positive sign
solutions which represent outgoing geodesies (see the Appendix). Using Eqs. (12b)
and (12c) we obtain

dX = V(X)Q(X)
dr r(\+Xe2vQ)' l }

Integration of above yields the equation of non-spacelike geodesies (integral
curves) which can be written as

Here D is a constant that labels different integral curves. We have already
established the fact that if the singularity is to be naked &(X) = 0 must have at least
one real positive root X0. Hence we first consider the case when V(X) = 0 has one
simple real positive root. Using Eq. (4c) we write near the singularity V(X)
= (X-X0)X0e

2v(X°\H(X0)-2) and use the fact that β is positive to integrate (19)
near the singularity. This gives

X»r»-\ (20)

where H0 = H(X0). When H0>2 it is seen that an infinity of integral curves will
meet the singularity in the past with tangent X = X0, different curves being
characterized by different values of the constant D. Hence the singularity (0, X0) in
the (r, X) plane is a node [10] and it corresponds to r = 0, t = 0 being a node in the
(ί, r) plane. It follows that this singularity is at least locally naked from which an
infinity of non-spacelike curves is ejected. In case H0<2 the singularity (0,X0) in
the (r, X) plane is a col and therefore the behavior of geodesies in (ί, r) plane

2
depends on the value of -——. This is because r(X - X0)

2/{2 ~*o) = D in the (r, X)
2 — H0

plane and DrHol(2 " Ho) = (ί - X0r)(2/2 ~ Ho) in the (ί, r) plane. If #0 > 0 the singularity
would be a node in (r, ί) plane. However, if H0 < 0 the singularity in the (r, ί) plane is
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a col where integral curves move away from the singularity and never terminate
there. It should also be noted that in case H0 = ao or H0 = 0 the curves do not
terminate at the singularity. Therefore, we could deduce that the integral curves
would terminate at the singularity, which would be a node in the (ί,r) plane
as long as

oo > HQ = H(X0) = (η + p)e2* > 0 . (21)

It is seen that (21) will be satisfied provided the weak energy condition [1 1] holds
and further that the energy density as measured by any timelike observer is
positive in the collapsing region near the singularity.

The results could be summarized as below: If in a self-similar spacetime a single
null radial geodesic escapes the singularity, then an entire family of non-spacelike
geodesies would also escape (in the sense of the singularity being locally naked)
provided the positivity of energy density is satisfied in the above sense. Such a
singularity is a node at the origin. It also follows that no families of non-spacelike
geodesies would escape the singularity, even though a single null trajectory might,
if the weak energy condition is violated.

In order to examine when such a locally naked singularity will be globally
naked, so that it is exposed to a distant observer for a finite period of time, we
consider the case when Jφf) = 0 has two real simple positive roots X0 and Xί.
Suppose X0>Xί9 then we have from (19),

where

The function f(X) does not change sign between the interval X0 and X1 and has
the same sign at X0 and X^. Therefore, all the integral curves would terminate at
the singularity at one of the roots ̂  = ̂ 0 or X = Xι The same trajectories will
reach the infinity r = oo at the other value of the root. Thus the singularity would
be globally naked and an infinity of curves would escape from the singularity to
reach any distant observer. The region between X = X0, X = X{ is therefore an
open nodal region.

The conclusions are the same if ^(X) = 0 has more than two simple roots. In
fact, if ^(X) = 0 has n simple positive roots X = X0, ...,Xnί the directions X = Xn

would be alternatively nodes and cols in the (r, X) plane. Another interesting point
that emerges from the above consideration is the possibility of occurrence of closed
nodal regions. Consider three singular points in the (r, X) plane, namely Pπ_ 13 Pπ,
and Pn+l9 such that Pn is a node and integral curves meet the singularity in the (ί, r)
plane with tangent X = X°, Pn_1 is col and in the (ί,r) plane there is col with
separators at the origin, and Pn + 1 is a col and in the (ί, r) plane X = X%+ ί is tangent
to the integral curves at the singularity. Therefore, the region between X = X° and
X = X%+1 in the (ί,r) plane could be a closed nodal region where curves emerge
with integral curves forming a closed loop. The region between X = X% and
X = X^-ι in the (ί,r) plane is an open nodal region where the integral curves
emerge from the singularity and escape to infinity. We should, however, note that
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dt/dr does not vanish for outgoing curves as seen from Eq. (14), and hence in self-
similar spacetimes a closed nodal region could not exist.

As noted above, the existence of real positive roots for V(X) — 0 provides a
sufficient condition for the occurrence of naked singularity at the origin. It is
relevant to ask when this will be realized in terms of the parameters in self-similar
field equations. The fourth order equation given at the end of Sect. 2 characterizes
this in the sense that the parameters n and m (i.e. ηθ9ηι) must be such that (1 1) has
real positive roots.

We have thus shown that a wide range of self-similar spacetimes allow the
formation of a singularity in gravitational collapse which could be both locally and
globally naked. However, it is possible that this singularity is just a mathematical
pathology through which the spacetime admits an extension. To avoid this
possibility, the curvature growth must be examined along non-spacelike geodesies
terminating at the naked singularity. Using (12b) and (12c) it is derived that for the
case V(X0) = Q,

ATT

>0; (24)

and for the case Q(X0)=0,

lim k2Ra"KaKb = H0 U% > 0 , (25)
fc-»0

where Rab is the usual Ricci tensor. It is thus seen that along all the non-spacelike
geodesies families (ingoing or outgoing) that terminate at the singularity, the
strong curvature condition [12, 13] is satisfied. Thus, this naked singularity is not
an artificial mathematical irregularity in spacetime but could be of significant
physical importance.

4. Discussion

One should like to regard a naked singularity to be a serious counter-example of a
cosmic censorship hypothesis only if it is visible for a finite period of time to any
distant observer, and further when it is a strong curvature singularity in the sense
discussed here. If only a single null geodesic escaped, it would provide only an
instantaneous exposure to an observer by means of a single wave front. In order to
be observable, a non-zero measure set of non-spacelike geodesies should terminate
at the singularity in the past.

Our results here show that for a wide range of self-similar spacetimes a serious
naked singularity will form, in the above sense, in the process of gravitational
collapse of matter with non-zero pressure. This will happen when V(X)
= e2ψ—X2e2v = 0 has positive real roots and the positivity of energy is respected as
pointed out here.

An implication is that if one wants to preserve the cosmic cesorship hypothesis
for the gravitational collapse scenario under consideration, one might be
compelled to violate the energy conditions during the later stages of collapse. It is,
of course, conceivable that quantum effects may become important at such later
stages and might provide such extra input when incorporated.

As such, the present work indicates that there is a close connection between the
positivity of energy and termination of non-spacelike geodesic families at the
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naked singularity in the past. It is conceivable that for self-similar gravitational
collapse, the very existence of naked singularity is intimately related with energy
conditions in some sense. It would be worthwhile to investigate this relationship as
it would provide important insights into the phenomena of naked singularity.

Appendix

Let Ka be the tangent to geodesies with

KaKa = <%. (Al)

The constant & characterizes different classes of geodesies namely, J* = 0,
J*>0 corresponds to null, timelike, and spacelike geodesies, respectively. For the
self-similar metric given by (1) the Lagrange equations immediately give Kθ

and Kφ,

v^_ /cosjS
2 2~ r2S

where ( is the impact parameter and β is the isotropy parameter. In order to

calculate K* and Kr, note that the homothetic killing vector ξa = r— +t —
or ot

admitted by the self-similar spacetime satisfies

(Va£ \ V^> 'ΪΊfQϊ Vb o rfύ - Va£ /°_L^i27^ /Ά 1\(A ζJ frA = ZA ζa;bJί =2y& => A ςα = CH-έ^/C, (A3)

where C is an integration constant and k is the affine parameter. From the above
algebraic equation and the fact that KaKa = 38 we get after using expressions for Kθ

and Kφ,

Γ=ί». (A4)
r

Solving the above equations we get

K'= ϊ(e2*-e2vX2) ' ^

_ C(l±Xe2vQ)(l+BCk)

where

, / (Ί2—Rr2\(o2Ψ— Yl t>2v}0-2ψ-2v

, (A 7)
S2(l+BCk)2

where we have put B = jyc2 and L2 = /2/C2. The quantity Q is always taken to be
positive and the positive and negative signs represent two sheets of solutions. The
positive sign solutions describe the outgoing trajectories while negative ones
represent the ingoing solutions reaching the singularity. To show this we first
consider negative sign solutions and show that these do not connect to the point
r = 0 for positive value of X (i.e. future outgoing). From equations for dr/dk, and
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dt/dk we get
dt_ X±e2*Q

dr " r(l±Xe2vQ) '

After some rearrangements and simplification we get

dt= (X±e2*Q)(l+Xe2vQ)

dr (\±Xe2vQ)(ί+Xe2vQ)

- Br2) ± QS2

dX __ ±(e2*-X2e2*)Q
ΪΪ7Ϊ~\ lAyJ

c. Ί . , S2(C + Bk)2-X2e2^2-Br2)
Similarly, we get

jγ c2f/^ι^ni,\2/^^2ipi v^2v ι Λ \aA o (CH-χ>/cJ (je ψ( — Xe +l j
dr ~ rl

Hence for solutions with (—) sign we get from above by integrating

r = expl —J 2 τ>ι.\2s\~2w/v~2v , *\ ) ' (A^2)

From the equation for dt/dr it follows in case of negative sign solutions that for
outgoing geodesies (i.e. dt/dr, and X is positive at the singularity), S2(C + Bk)2

—X2e2v(S2—Br2) should be negative. Hence the integrand inside the above
equation is always positive, therefore the geodesies will never meet the singular
point r = 0 for an outgoing ray. Further, note that in case the curves are meeting the
singularity with negative value of X, dt/dr is negative and hence negative sign
solutions are always ingoing as far the singularity is concerned. Similarly positive
sign solutions are outgoing which terminate at the singularity with positive value
of X.
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