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Abstract. Structures of the S-matrix associated with the collision process from 2
clusters to 3 clusters are studied. This S-matrix is shown to have a continuous kernel
except for 2-dimensional spheres on which 2-body subsystems have zero velocity.
On these spheres, the S-matrix has, in general, singularities whose existence arises
from the zero eigenvalues and the zero resonances of the 2-body subsystems.

1. Introduction

1.1 Collision Process in the Three-Body Problem. We consider collision processes of
quantum mechanical three particles labelled by 1,2, 3. Suppose in the initial state
the two of them form a bound state, denoted by (1,2), and the third particle collides
with this pair. Then it follows from the asymptotic completeness of the wave
operators (see e.g. Enss [4], Sigal-Soffer [20] or Graf [7]) that there occurs one of
the following five phenomena:

(a) (1,2)+ (3),

(b) (1,2)*+ (3),,

(c) (1,2)' +(3),

(d) (1,3)+ (2),

(e) (

(1,2) +(3) =

(a) is an elastic process. In (b), the energy of the pair changes. In (c), the energy of
the pair does not change, but this pair takes a different state (which happens when
the eigenvalue is degenerate), (d) is a rearrangement process. Finally in (e), all of the
three particles move freely after the collision. The first four cases are treated in
essentially the same way as in the 2-body problem. In this paper, we study properties
of the S-matrix associated with the case (e).

1.2 S-matrix. In R3 we consider three particles with mass mf and position xl. We
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choose a pair (ij) and denote it by α. Let

1 1 1 1 1 1
— = — + —, - = — +
mα Wf mj nΛ mk mt + w,-

be the reduced masses and

be the relative coordinates. Let

Then in L2(JQ the Schrόdinger operator is given by

H = /ί0 + £Fα(xα), H0=-ΔX,-ΔX, (1.1)
α

If the pair potentials decay faster than Ix 7 !" 1 as |xα ^ oo, the wave operators are
known to exist:

W± = s-\imeitHe-itHo, (1.2)
r-» ± oo

^± - s-lim έ?/ίflέ?-ί'H*Jα, (1.3)
ί-> + 00

where

Hα = H0 + Kβ> (7./)(x«,xβ) = «.(x")/(xβ), (1.4)

uα being a normalized eigenfunction of /ι" = — Δx, + Vα(xα) with eigenvalue £" < 0.
The scattering operator S0α is defined by

(1.5)

To introduce the S-matrix, we use unitary operators

^0:L
2(R6)^L2((0,oo);L2(S5))

and

^:L2(R3)^L2((£Λ,α));L2(S2))

defined by

= C0(λ) ί e - /V3ί «/(x)dx,
R6 (1.6)

32-1/2Λ,

, ω) = Cj,λ) | e-iVΓΓFω γ(x)ί/x,

1/2(A-£α)1/4. (1.7)

Let

S0ot = ̂ 0SθΛ^*. (1.8)
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Then as is well-known (see e.g. Reed-Simon [18]), S0α is decomposable, namely,
for any λ > 0, there exists a bounded operator S0α(λ)eB(L2(S2);L2(S5)) such that

for a.e. λ > 0, θeS5 and all /eL2((Eα, oo);L2(S2)). This SθΛ(λ) is called the S-matrix.
Note that this definition contains a sort of ambiguity. Two families of operators
{^oαWί}Γ=o (l = 1»2) define the same scattering operator 50α, if S0α(Λ )ι = S0α(λ)2 for
a.e. λ>Q. The study of this family of operators {SΛ(λ)}™=Q is not an easy problem.
The general result known so far is that of Amrein-Pearson-Sinha [1] and Enss-
Simon [5] asserting that S0a(λ) is a Hubert-Schmidt operator for a.e. λ > 0, if the
pair potentialsdecay faster than | xα | ~ 2. In this paper, we shall show that there is a re-
presentative {S0α(Λ,)}£L0 continuous in λ > 0 and investigate its detailed properties.

1.3. Main Results. We assume that Va is a real C°° -function such that for a constant

Cm(l + \y\Γp-m, m = 0,l,2,...., (1.9)

where d™ denotes an arbitrary derivative of mth order with respect to y, and Cm is a
constant. This assumption is stronger than actually needed. One can also allow
certain local singularities for Fα. Let

and define

M = S5\uβXβ, N = S5n(uβXβ).

Theorem 1.1. (1) Suppose p > 4 + 1/2. Then SθΛ(λ) has a continuous kernel outside N:

S0β(λ;0,ω)eC((0, oo) x M x S2).

(2) Suppose p> 5 + 1/2. Let β be any pair and decompose ΘeS5 as θ = (θβ, θβ) in
accordance with the choice of the Jacobi-coordinates. Then as |0^| ->0,

where

)x J Vβ

R3

u(^ being the eigenfunction with zero eigenvalue for hβ, and φβ the zero-resonance.
Aβ 0 is continuous with respect to all of its arguments. A „ _ 1 = 0, ifO is neither an eigen-
value nor the resonance for hβ. In this case, S0a(λ; θ,ω)is continuous at θβ = 0.

In the course of the proof, we shall see that S0a(λ) is a B(L2(S2); L2(S5))- valued
continuous function o f Λ > O i f p > 5 + 1/2. The zero-resonance φβ is the solution
of the equation hβφβ = 0 which behaves like φβ ̂  C/\xβ\ as \xβ\ -> oo, C Φ 0. From
our proof given below, one can see that if the pair potentials decay sufficiently
rapidly, S0(X(λ; θ, ώ) is smooth on M x S2, but the zero eigenvalue and the zero-
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resonance are known to exist even if the potential is compactly supported. (See
e.g. [3].) For the S-matrix from 2 to 3 cluster scattering, it is therefore the zero-
eigenfunctions and the zero-resonances of subsystems that determines its singu-
larities.

As for the coefficients C(^\(λ\ θβ, ω) and Cβ2(λ', θβ, ω), we have

Theorem 1.2. Up to a multiplicative constant depending only on λ and £α, C(j[(λ\ θβ, ω)
and Cβ2(λ; θβ,ω) coincide with the scattering amplitudes for two cluster scattering.

More precisely, C(^\(λ\θβ,ω) and Cβ2(λ;θβ,ω) are the scattering amplitudes for
2-cluster scattering in which, after the collision, the pair β becomes the bound state
with zero energy or the zero-resonance, respectively. One should note that the
notion of 2-cluster scattering associated with the zero-resonance is somewhat
ambiguous since, as far as the author knows, this notion has not yet been introduced
in mathematical literature. We shall explain the situation in Sect. 5.

1.4. Methods. To prove Theorem 1.1 we use the method employed by [11] whose
key idea is to localize the S-matrix in the phase space. To control the resolvent of
//, we utilize the estimate of Skibsted [21] established recently on propagation
properties in the phase space of e~ίtH. The singularities of S0a(λ) arise from the low-
energy asymptotics of 2-body subsystems studied by Jensen and Kato [13]. To
prove Theorem 1.2, in particular the assertion for the zero-resonance, we study
spatially asymptotic properties of generalized eigenfunctions of H. This point of
view is continued in our forthcoming paper [10] to derive all scattering amplitudes
with initial state of 2-clusters.

7.5. Remarks. Amrein, Pearson and Sinha [1] showed that, for the N-body problem,
the total cross-section with 2-cluster initial state is finite for almost all energy and
derived its asymptotic properties in an averaged sense under the assumption that
the potentials decay faster than |xα |~2. See also Enss-Simon [5]. Amrein and Sinha
[2] also showed that, for the three body problem, the total cross-section is finite for
all λ > 0 under the assumption that each 2-body sybsystem has neither the zero
eigenvalue nor the zero-resonance. Ito and Tamura [12] studied the semi-classical
asymptotics for the total cross-section in distributional sense. All of these works
treats the case of the initial state of 2-clusters, while Yafaev [22] studied the structure
of the S-matrix, in a two Hubert space setting, which contains the collision process
from 3-clusters to 3-clusters.

1.6. Plan of the Paper. In Sect. 2, we prepare the basic estimates for the resolvent
of H and also the low-energy asymptotic expansion of the 2-body problem. Section
3 is devoted to deriving a localization formula of the S-matrix. Theorems 1.1 and 1.2
are proved in Sects. 4 and 5, respectively.

The notation used in this paper is almost standard. For xeR" we put <x> =
(1 + |x|2)1/2. For Banach spaces Xί and X2, Bp^,^) denotes the totality of bounded
operators from X1 to X2. C. . . is used to denote various constants. L2's denotes the
space of measurable functions such that

R"
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2. Preliminaries

2.1. Functional Calculus. We start with a simple functional calculus. In Subsects.
2-1 and 2-2, we assume that p>0,p being defined in the assumption (1.9). We
consider a pseudo-differential operator (Ps.D.Op.) P with symbol p(x, ξ) having the
following properties:

, forany m,n^0. (2.1)

There exists a closed cone Γa X\uΛXΛ such that

suppxp(x,ξ) c Γ for all ξ. (2.2)

Lemma 2.1. Let P be a Ps.D.Op. with symbol p(x,ξ) satisfying (2.1) and (2.2). Let
φWeC^R1). Then for any N^l, there exist φl9...9φNeC^(R1) and p^x, £),...,
pN(x, ξ) satisfying (2.1) and (2.2) such that suppφm c suppφ(m = 1, . . . , N), and

p(x,Dx)φ(H) = p(x,Dx)φ(H0) + £ < x > -""pm(x, Dx)φm(H 0) + Rn,

< x ypN/2RN < x ypN/2εB(L2(X); L2(X)).

This lemma is proved in the same way as in Theorem 2.1 of [9], From the very
proof, one can see that <x>~pmpm(x, £) consists of a polynomial of derivatives of
p(x, ξ\ | ξ |2 and Kα and also that φm consists of derivatives of φ.

2.2. Resolvent Estimates. Let R(z) = (H - z)~ 1 and A be the set of thresholds of H,
which is known to be a countable closed set and /in(0, oo) = 0 ([6]). Then by the
well-known result of Mourre [15] and Perry-Simon [17], we have

*R(λ ± ίO)<x>-seB(L2(*);L2(*)), (2.3)

if 5 > 1/2, λeσe(H) — /I, σe(H) denoting the essential spectrum of H .
Another important estimate needed in this paper is that of Skibsted. We consider

a Ps.D.Op. P_ with symbol p_(x, ξ) satisfying (2.1) and (2.2) and also the following:

There exists a constant μ_ such that — 1 < μ_ < 1 and

p-(x,0 = 0 if * ξ>μ.9 (2.4)

where £ = χ/\χ\9ξ = ξ/\ξ\. Then we have

Theorem 2.2. Let P_ be a Ps.D.Op. with symbol p-(x,ξ) satisfying (2.1), (2.2) and
(2.4). Then

ifs > - 1/2, t > 1, λeσe(H) - A.

This theorem is essentially due to Skibsted [21]. However, we should add some
explanations. Let / be a compact interval contained in σe(H) — A, and φeC^(I).
Then what Skibsted showed is that for 0 < 5 < s'9 the operator P.φ(H)e~itH(xy~s'
has the decay rate (1 + t)~s when t -> oo ([21], Theorem 4.4). By repeating his argu-
ments one can see that for s ̂  0, 0 < μ' < μ, the operator < x ysP _ φ(H )e ~ ίtH < x > ~ s ~ μ

has the decay rate (1 + t) ~μ> when t -> oo. Passing to the Laplace transform, we have

(2.5)
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for s ̂  0, μ > 1. We then interpolate (2.3) and (2.5) to obtain

for 5 > — 1/2, t > 1. The theorem then follows from Lemma 2.1 and (2.6). One can
also see in (2.3) and Theorem 2.2 the operator norms are uniformly bounded in λ,
if λ varies over a compact set in σe(H) — Λ.

2.3. Zero-Resonances. We review the result of Jensen-Kato on the low-energy
asymptotic expansion of 2-body Schrodinger operators. Let H2 = — Δ + V(x) in R3.
Suppose that V(x) is a bounded real function and

V(x) = 0(\x\~p\ |x|-*oo, p>2. (2.7)

By the zero-resonance we mean a solution φ of the equation — Δφ + Vφ = 0 in R3

which behaves like φ ̂  C/|x|, C ^0, |x|-»oo. Let P0 be the projection onto the
eigenspace of H2 with zero eigenvalue. Let B_2,B_1 be defined by

B-2=-Pθ9 (2.8)

B-! = — z'Λ^GFPo + z< , φ>φ, (2.9)

where G is an integral operator with kernel |x — y\2/(24π). Then by [13], if p > 5
and 5 > 5/2, we have the following asymptotic expansion of R2(z) = (H2 — z ) ~ 1 .

K2(z) = ̂  + ̂ 1 + 0(1), as z->0, (2.10)
z *fi

in B(L2'S; L2'"s). P0 is known to be finite dimensional. If B_2 = £_ l = 0. We have
a better result:

as z^O, (2.11)

in B(L2'S;L2'~S),5 > 3/2, p > 3. The expansions (2.10) and (2.11) depend largely on
the space dimension, and one can also obtain the complete asymptotic expansion.
See [16].

We end this section by studying some properties of eigenfunctions of H2 with
zero eigenvalue.

Lemma 2.3. Suppose p > 3 + 1/2. Let u be an eigenfunction ofH2 with zero eigenvalue.
Then

(1) j e-ix'ξV(x)u(x)dx= -i j χ-ξV(x)u(x)dx + O(\ξ\2\as \ξ\-+Q.
R3 R3

(2) M(x) = O( |xΓ 2 )αs |x |->oo.

Proof. (1) We have only to show

f V(x)u(x)dx = Q. (2.12)
R3

Let v=Vu = Δu. By passing to the Fourier transform, v(ξ)= — \ξ\2ύ(ξ). Since
is continuous. This shows that as \ξ\ ->0,ώ(ξ)^ -v(0)\ξ\~2. Since

weL2(R3),z;(0) must vanish, which proves (2.12).
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(2) u satisfies the integral equation

"M = ~ -/- f — ̂ — : V(y)u (y)dy.

We put ω(x, y) = --- . Then using (2.12), we have
\x-y\ |x|

u(x) = — J w(x,y)V(y)tι(y)dy.
4πR3

We put r = |x|,x = x/r. If \y\ < r/2, we have

Λ , "I

-1 ,-2

Therefore,

ί lw(

The integral over the region {3;; \y\ ̂  r/2} is split into two parts:

J \w(x,y)V(y)u(y)\dyζ j* |x — j>Γ1|J/(jOM(j;)|d.y + r~l J I
| y |>r/2 b l>r/2 \y\>r/2

Using the decay assumption on the potential,

r-1 J \V(y)u(y)\dy^Cr-2 f (1 + lyl)1^!^)!^ g Cr~2,
| y |>r/2 |y |>r/2

and

f l χ ~"^Γ 11 V(y)u(y)\dy ^ Cr"1 J 1^(^)11!
\y\ > 2r \y\ > 2r

Finally

ί x-yΓM^Myίldj'gCr-' J |
r/2<\y\<2r r/2 < \y\ < 2r

r / 2 < b | < 2 r

which completes the proof. D

3. Localization of SQ(X

In this section, we derive a formula of localization of S0α in the phase space. To
localize the direction of propagation of particles, we take a real-valued function
^(#)eC°°(S5). To localize the energy, we take a compact interval / c=(0, oo) and a
real-valued function ^0(ί)eC^((0, oo)) such that ψ0(t)= I on /. Let χ(x, ξ) be a
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smooth function satisfying (2.1) and

*(*,£)=!, (3-1)

if\ξ\2esuppι//0and\£'ξ\ > 1 — εforsomeO<ε < 1 and sufficiently large |x|. Letting

p(x,ξ) = χ(x,ξ)ψ0(\ξ\2)ψ(ξ/\ξ\), (3.2)

we consider a Ps.D.Op. P with symbol p(x, ξ):P = p(x,Dx), and define

G = HP- PH0, (3.3)

We define the trace of the Fourier transform by (&0(λ)f)(θ) = (&J)(λ, θ) and
= (&J)(λ, ω) for feL2 s, s > 1/2. Let < , > be the inner product of L2(S5)

Lemma 3.1. LetfeC%((E", oo);C°°(S2)) and 0εC™((0, oo); C°°(S5)). Tfcen

*/, ί) = - 2πi J < ̂ 0

0

+ Iim2π/
ε|0 0

Proo/ We put f=<^Γ*f,g = ̂ Γ$g. By the stationary phase method and (3.1), we
have

which implies

Wjφ(Dx)g = s-\imeitHφ(Dx)w-itHog
ί-*oo

= s-lim e

itHpe ~ itH°n
t~KX>

W^φ(Dx)g = Pg + ι] e^Ge'^gάs. (3.5)
o

On the other hand, letting Aα = - ΔXβ + £α, we have e~itH*Ja = JΛe~ith*. Therefore,

w;-W;=i f eίtHQΛe-ίth*dt. (3.6)
— oo

Since the ranges of W* and W* are orthogonal, (WQ )*W* = 0, hence.

50α = (wχrw; = (w+}*(w~Λ - w;).
This formula and (3.6) imply that

oo

(φ(Dx)S0J,g)=-i J (e"HQxe-i""f,W^φ(Dx)g)dt. (3.7)
— oo

In view of (3.5), (3.7) and the interwining property, e~ltHW^ = W* e~"H°, we have

(φ(Dx)S0J,g)=-i f

-fas f dt(Qxe-ίth*f>e
isHGe-«s+'>H'>g). (3.8)

0 - oo
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Passing to the Fourier transforms, we obtain

J dt(G*e~isHQΛe~ith*f,e~i(s+t}H°g)

-oo 0

To calculate the integral with respect to ί, we introduce a convergent factor e~ε^
and let ε -» 0. Then the above integral is equal to

2π f dλ < ̂ 0lG*e ~ <*<" ~ λ)QΛe'a(λ)f] (λ\ g(λ) >,
o

<W = ̂ -.((h. ~ λ - iOΓ1 -(hβ-λ + ίOΓ1)-
2m

Thus the second term on the right-hand side of (3.8) is equal to

- 2π j ds ] dλ < ̂ 0[G*<Γ is<H - Λ)ρα<(A)/] (A), g(λ) >.
0 0

We again insert the convergent factor e~εs and let ε->0. Then the above integral
equals

2πΠim J <# 0(λ)G*K(λ + ϊβ)ββ<(A)/, d(λ) > dA. (3.9)
ε|0 o

Since e'Λ(λ) - ^*(λ)^Λ(λ)9 (3.9) is written as

2πilim f <^oμ)G*Λμ + iε
ε|0 0

Arguing quite similarly, one can show that the first term on the right-hand side of
(3.8) is written as

- 2πί f < ̂ 0 W^*δα<^α* W/W' ^ W > dλ' Π
0

If one can give a define meaning to the operator G*R(λ + /0)βα and exchange
the order of integration in λ and lim, one obtains

(3- 10)

if λel. The justification of this procedure is the subject of the next section.

4. Proof of Theorem 1.1

4.1. Decomposition of S0at. For sufficiently small ε > 0, we set

X β = {xeX;\χi'\/\x\<ε},
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We take ψu(θ), ψN(θ)eCx(S5) such that

I θeM2\

[0 θeM2ε.

We put

(4.1)

(4.2)

We also prepare localizations in x-space. We take χM(x), χ^x)eCx'(X) homogeneous
of degree 0 for | x | > 1 and

f l if xeMε/2, | x |>l ,
) Λ Γ A » r ε /4
(0 if xeNε/4,

l if xεN2ε, | x |>l ,
Λ .r A , ,λ,(0 if xeM3ε,

where x = x/|x | . The important properties of these localizations are as follows.

Lemma 4.1. (1) supp VχM, supp VχN c X\\upXβ.
(2) supp VχMnsupp ι//M = 0, supp VχNnsupp ψN = 0, if |x| > 1.

Note that in Lemma 4. 1 (2), we extend ψM, ψN on X — {0} as homogeneous functions
of degree 0. One should also note that if ε is sufficiently small, χN(x) is split into
three parts:

if

We next localize the energy. We fix λ > 0 arbitrarily and for small ε1 > 0 we take
φ1(t)eC^(R1) such that

^)={' *"-*'<"•
[0 i f | ί - Λ | > 2 e 1 .

4.2. Continuity of the Kernel of§M(λ). With χM, φM,φι as above, we put

Let P be a Ps.D.Op. with symbol p(χ, ξ) and G = HP- PH0. We look at the formula
in Lemma 3.1. It is rather easy to see that if p > 3, J^"0(/l)P*βαJ^*(/l) has a continuous
kernel. In fact letting

/= Σ Ky(x>α(xα)ίyl^ω *«, (4.4)
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one can see that the above operator has an integral kernel

C0(λ)CΛ(λ) f e-'^ *(P*/)(x)ώc. (4.5)

Since uα decays exponentially, we have

|/| ^ Q<x'>-*<xα>-<> for any k> 1, (4.6)

which shows that (4.5) is continuous with respect to λ > 0, θεS5 and ωeS2 iίp > 3.
For notational convenience, for a Ps.D.Op. A, we write v4 = 0«x>m), if its

symbol φ, ξ) satisfies |δ^φ, £)| ̂  Qπ<x>m~ fc for all fc, n. Now, since G = [H0, P] +
ΣβVβP, by virtue of our localization χM(x) and Lemma 4.1, we have

where P_ verifies the assumptions in Theorem 2.2. For small ε > 0, consider

Then by Theorem 2.2 and (4.6), if p > 4 + 1/2, the right-hand side is in L^R6), hence

C0(λ)CΛ(λ) J *-^ *G*Λμ + iO)fdx (4.7)
R6

is continuous with respect to Λ>0, θeS5 and ωeS2, which in turn implies that
3?Q(λ)G*R(λ + ityQΛ3?ϊ(λ) has a continuous kernel (4.7).

We note that, since P* - G*R(λ + iO) - (H0 - X)P*R(λ + iO), the kernel of SM(λ)
is given by

- 2πiCΛ(λ)^0(λ)(H0 - λ)P*R(λ + iO)/. (4.8)

4J. Singularities of the Kernel ofSN(λ).

4-3-1. Localization. To calculate the kernel of SN(λ), we again make use of Lemma
3.1. However, in this case, we must be careful in choosing p(x, ξ). First we note
that on the support of <M|ξ|2)ιM{/|{|), |^|/|ξ| < 2ε,||£|2 - λ\ <2ε,. We take

l ) such that

0 \t-λ\>2ε2.

Then by an appropriate choice of ε's, we have

β

With χβ(x) introduced in (4.3), we define

Pfe ξ) = Σ^W^dί/^idίl^N^/lίD (4.10)

For a suitable choice of ε's, suppVχ^ and supp^d^l2)^!^2) are disjoint. Let P
be a Ps.D.Op. with symbol p(x, ξ) defined by (4.10) and G = HP- PH0. Then, since
G = [H0, P] + ΣβVβP9 we have

G* = <xy~lP- + 6>«x>
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where P _ satisfies the assumption of Theorem 2.2, and k can be chosen large enough.

4-3-2. Continuous Parts. We apply Lemma 3.1. Then by the same reasoning as in
4-2, we see that the operators &<>(λ)P*Q<Fl(λ) and ^0(λ)(xy~lP_R(λ + /0)βα^*μ)
have continuous kernels if p > 4 + 1/2.

We next study \\m^v(λ)P*ΣβVβR(λ + iκ)Qa3f*(λ). Let Aβ be the'Ps.D.Op. with
symbol κi°

(4.H)
Then P = ΣβAβ, and if β / y, 4*Fy = 0«x>~p). Therefore, as has been proved in
4-2, if p > 4 + 1/2 and β ̂  y, 3f0(λ)A*VγR(λ 4- ityQ^(λ) has a continuous kernel.

4-3-3. Singular Parts. It remains to consider \im^Q(λ)A*VβR(λ + iκ)QΛ3f*(λ). In
κjO

this case we must be careful in taking the limit, since A* Vβ does not decay in xβ.
Letting ΨN(ξ) = ψMξ\2)ψN(ξ/m we have

A*=ΨN(Dx)ψβ(DXβ)χβ(x),

where ί/^φ^) denotes the Ps.D.Op. with symbol ψβ(\ξβ\
2). Noting that ψβ(DXβ)χβ(x)

commutes with Vβ9 we consider ψβ(DXβ)χβ(x)R(λ + iκ)QΛ^*(λ).

Lemma 4.2. Lei fbe defined by (4.4\ z = λ + iκ and g = (Hβ - z)ψβ(DXβ)χβ(x)R(z)f.
Then geL2'sfor any s < p — 3/2 uniformly in K ̂  0.

Proof. Letting u = R(z)f, we have

g = Ψβ(DXβ

It easily follows from (4.6) that ̂  eL2's, Vs < p - 3/2 and 02eL2's, Vs < p - 1/2. We
take φeC^CR1) such that for small ε3 > 0,

(0 |ί-
Then as is well-known,

(1 - φ(H))R(λ + iκ)eB(L2's;L2's)

for any 5 > 1/2 uniformly in K ̂  0. Therefore

for any s < p — 1/2 uniformly in K ̂  0. Lemma 2.1 implies that

i»c) + 0«x> ->- W + iic).

Now, on the support of the symbol of Φβ(DXβ)lH0,Xβ]φ(H0\\\ξβ\
2 - λ\ ̂ 2ε2,

1 1 ξ | 2 — λ I ̂  2ε 1 and | x^ | / 1 x | ̂  2ε. If ε x and ε2 are chosen small enough, ξ is localized
near the A^-plane, which shows that <x>^^(Dx/J)[Jί/0, χβ~\φ(HQ) satisfies the assump-
tions of Theorem 2.2. Then we have #3eL2's for any s<p — 3/2 uniformly in
κ^0. D

Using Lemma 4.2, letting Rβ(z) = (Hβ — z)~ 1, we have

iκ)f= Rβ(λ + iφ,



S-Matrices for Three Body Schrόdinger Operators 253

whence

&0(λ)A*VβR(λ + iκ)f= ^0(λ)ΨN(Dx)VβRβ(λ + ίκ)g. (4.12)

Note that ΨN(^fλθ) = 1 if \θp\ is sufficiently small. Recall that &0(λ) is the Fourier

transformation followed by the restriction to the sphere of radius ^fλ. Thus integrat-
ing VβRβ(λ + iκ)g with respect to xβ first and to xβ later and letting rβ(z) =
(-4,/ϊ + 70 - z)~ *, we see that (4.12) is equal to

CoOl) f e-^^VβΓβWΘ^2 + iκMdx'9 (4.13)
R3

& = 6(xβ'9λ9θp9ω) = f e-i<π* χ'g(x'9xp)dxp. (4.14)
R3

If p > 5 + 1/2, $(•; A, fy, ω) is an L2>s(R3)-valued continuous function of A, 0^ and ω
for some s > 5/2. In fact, noting that for small ε > 0,

\g(xβ)\2ίC$(xβy*+*\g(xβ,xβ)\2dxβ,
R3

we have

J <x«>2s|<?(x«)|W^C J <x>2s+3+ε|^(x'i,x/ί)|2ί/x.
R3 R6

Since geL2's for any s<ρ — 3/2, the last integral converges for some s>5/2 if
p > 5 + 1/2.

We are now in a position to find the singularities of the kernel of SN(λ). By using
(2.10), we have

R3 R3

+ (λ\θβ\2Γ1/2 J e-i™'*'VpB-1ddxβ (4.15)
R3

as κ; -> 0. Let w^} be normalized eigenfunctions of hβ with zero eigenvalue. Then
B. 2g = ΣjA^λ; θβ, ω)u(j\xβ) with

A<f(λ, θβ, ω) = - J ^(x^; A, Θβ9 ω)u^(xβ)dxβ. (4.16)
R3

In view of Lemma 2.3 (1), as \θβ\ ->0, we see that the first term of the right-hand side
of (4. 15) behaves like

-ί(^rλ\θβ\Γ1ΣA(^θβ,co) J ̂  χβVβ(xβ)uf(xβ)dxβ + 0(l).
j R3\VP\

We have thus found the contribution of the zero-eigenvalue of hβ to the singularities.
By a similar calculation one can also find the contribution of the zero-resonances.
In particular, we have shown that Cj/](/l; θβ,ω) and Cβ2(λ; θβ,ω) are given by

; Θβ9 ω) = 2πλ-ί/2C0(λ)CΛ(λ) f g(xβι λ, Θβ9 ω)u(j\xβ)dxβ , (4.17)
R3

Cβ2(λ θf, ω) = 2πλ ~ ί/2C0(λ)Cx(λ) f fa?; λ, θβ, ω)ψβ(xβ)dx». (4. 1 8)
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We end this section by noting that as in (4.8) the kernel of SN(λ) is given by

- λ)P*R(λ + ffl)/]μ), (4.19)

P being defined by (4. 10).
By examining the Λ-dependence of all terms appearing above, one can show that

S0a(λ) is a B(L2(S2); L2(S5))-valued continuous function of λ > 0.

5. Proof of Theorem 1.2

5.1. Scattering Amplitudes for 2-Cluster Scattering. We first recall the well-known
formula for the scattering amplitudes for 2-cluster scattering. It is better to change
the notation slightly. We denote by a the triple a = {α, Eα, wα}, where ua is a normalized
eigenfunction of h* with eigenvalue Eα. We define the wave operators W* by (1.3)
with α replaced by a keeping Ha unchanged. For two triples a = {α, £α, wα}, b =
{/?, Eβ

9 uβ}, we define the scattering operator Sba by Sba = (Wb)* W~^ We introduce
the Fourier transformation 2Fa in the same way as in (1.7) and set Sba = ̂ bSba^^.
Then for any λ > max {£α, Eβ}, the S-matrix SJ/l)eB(L2(S2); L2(S2)) is defined simi-
larly to 1-2. The scattering amplitude Aba(λ) is defined by

Aba(λ) = Sba(λ)-δba. (5.1)

Let Qa = Σy^aVyJa. Then we have, formally,

Aba(λ) = - 2πi3rb(λ)J*QΛ^(λ) + 2πiP,J(λ)Q*R(λ + iO)Qa&ίW (5.2)

One can see that, if λφΛ,p> 3,£α < 0,£^ < 0, the right-hand side of (5.2) has a
continuous kernel, up to a constant, given by

J e-ί"f^Έ~βθβ'Xβuβ(xβ)f(x)dx - J e-i"/^rβθβ'x^uβ(xβ) £ Ky#μ + iO)/ώc, (5.3)
R 6 R 6 y ^ / ϊ

/being defined by (4.4). However if Eβ = 0, it is not obvious to give a definite meaning
to the right-hand side of (5.2), since uβ(xβ) does not decay sufficiently rapidly. In the
next section, we derive a representation formula for the 2-cluster scattering amplitude
when Eβ = 0, Eα < 0.

5.2. 2-Cluster Scattering Amplitudes for Zero Eigenvalue. Let uβ be a normalized
eigenfunction of hβ with zero eigenvalue. Let ^(x) be defined by (4.3). In the
following arguments, we always assume that p > 5 + 1/2, and let b = {/?,0, i^}.

Lemma 5.1. (1 - χβ(x))e~itHβJb-+Q strongly as \t\ -> oo.

Proof. Since on the support of 1 —χβ,\xβ\ ^ε |x | and (x^)"1 ^C<x^>-1, we have
by virtue of Lemma 2.3 (2),

The lemma then follows from the following inequality:

11(1 -Xβ)e-itHVbf\\ = \\(l-χβ)ulbcβ)(e-ίth'f)(xβ)\\

~ίthβf)(x)\\. D
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Let ψβ(t) be as in (4.9) and ψβ(DXβ) be the Ps.D.Op with symbol ψβ(\ξβ\
2). Let P and

G be defined by

P = UXWD*Ϊ> G = HP-PHβ. (5.4)

Using Lemma 5.1, one gets

Wϊ Ψβ(Dx) = s-lim eitHPe ~ itH»Jb = PJb + i ] eίtHGJbe ~ ith*dt. (5.5)
ί->oo 0

Using (5.5), one can argue in the same way as in the proof of Lemma 3. 1 to obtain

Lemma 5.2. Letf,geC%((0, oo); C°°(S2)), and <,> denote the inner product ofL2(S2).
Then we have

(^MDXf)Sba^f, &} = - 2πi f <^b(λ)J*P*Qx<FΪ(λ)f(λ), g(λ) >dλ

+ 2πi f < ̂ b(λ)J*G*R(λ + /0)βa^*(A)/(Λ), g(λ) > dλ.
0

Let / be defined by (4.4). Then by the above lemma, Sba(λ) is seen to have a kernel,
at least formally,

Sba(λ; Θβ9 ω) = - 2πiCJίλ)&lJ(Wζ(P*f ~ ̂ R(λ + iO)/). (5.6)

Let t; - R(λ 4- /O)/. Then

F*/- G*R(λ + iQ)f=(Hβ - λ)P*υ. (5.7)

By Lemma 4.2, the right-hand side is nothing but g in the lemma with z = / + ίO.
Therefore,

Sjλ; θ^, ω) = - 2πiCΛ(λ)^b(λ)J*g. (5.8)

Since J^ = J g(x)uβ(xβ)dxβ, the right-hand side is equal to
R3

- 2πίCΛ(λ)Cb(λ) J ̂ ^^V^W^' C^) = (2π)-3/22-1/2Λ1/4. (5.9)
R6

Replacing uβ by w(^ and using (4. 1 7), we have,

Sba(λ'θβ,ω}= -i(2π}*'2λ-^C(l\(λ θβ,ω\ b = {β90,u$}. (5.10)

5.3. Generalized Eigenfunction. We put

v = R(λ + iQ)f9 (5.11)

/ being defined by (4.4). Then Hφ = λφ, namely, φ(x, A, ω) is a generalized eigenfunc-
tion of the three-body Schrδdinger operator H. The first term of the right-hand side
of (5.11) represents the incident wave, and the second term the scattered wave. In
the two-body problem, it is well-known that the scattering amplitude is obtained
through the asymptotic behavior at infinity of v. This turns out to be the case for
the three-body problem, which we shall study in our forthcoming paper. In this and
the following subsections, we consider relations between v and Cj/}, Cβ2.



256 H. Isozaki

Let P and Jb be as in 5-2, and put

w = J*P*Ό = J uβ(xβ)ψβ(DXβ)χβ(x)v(x)dxβ. (5. 1 2)
R 3

Note that this makes sense since the integral is actually performed on the set
{ | xβ | g 2ε( 1 — 4ε2) ~ * | x^ | } . Then by a simple manipulation we have

( - ΔXβ - λ)w = J*(Hβ - λ)P*v = J*g9

where # is as Lemma 4.2. Since geL2's Vs < p — 3/2, we see J*geL2tS V s < p — 3/2.
Therefore

w = (-^-λ-iOΓ1J fcV (5.13)

Here we recall the following fact for a relation between the Fourier transformation
and the resolvent of the Laplacian.

Lemma 5.3. Let R0(z) be the resolvent of - Δ in R" and /eL2'3/2. Let C(λ) =
^(n-3)πi/4π- 1/2^1/4 7^ the following strong limit exists in L2(Sn~l)for any λ > 0:

&0(λ)f = s-lim C(λ)r(n~ ^e'^R^λ + ιΌ)/)(r ).
r-» oo

For the proof, see e.g. Saito [19] or [8]. Using this lemma, one finds the Fourier
transform of J*g through the spatially asymptotic expansion of ι>, which is equal to
Sba(λ; θβ, ω) by (5.8). We have thus proven

Lemma 5.4.

(J*P*v)(rθβ) - C(λ)r~ '̂̂ C^μ; θβ, ω),

asr = \xβ -> oo in L2(S2\ and

tf}(kθβ9ω) = i(2πΓ3/2λ1/4Sba(λ θβ,ω).

5.4. Resonance Scattering. We use the terminology "resonance scattering" in a
sense slightly different from that of physical literature (see e.g. [14]). One can think
of the collision process, in which, after the collision, the pair β takes the zero-resonance
state. It is not easy to define the associated scattering amplitude by the time-dependent
method, since the zero-resonance, φβ, does not belong to L2(R3). However, the
stationaryjΏethod explained in 5-3 works equally well for this case. We define the
operator 7* by J*w = J φ β(xβ)u(x)dxβ and set

R3

w = J*P*v. (5.14)

By the same reasoning as in (5.12), this makes sense. We then have

In view of the estimate \φβ(xβ)\ ^ C<x*>~ x, we have J*geL2's(R3) Vs < 3. One can
then argue in the same way as above, using (4.18), to obtain
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Lemma 5.5.

(J*P*v)(rθβ) ~ C(Λ)r- V'̂ 'C^μ; θβ, ω),

C(/ί) = (2π)5/2/Γ1/2μ-£T1/4,

as r = |X0| -> oo in L2(S2).

Comparing Lemmas 5.4 and 5.5, it seems to be natural to call Cβ2(λ;θβ9ω) the
scattering amplitude for the resonance scattering, up to a constant factor. We have
thus completed the proof of Theorem 1.2.

5.5. Total Cross Section. The total cross section σa(λ) is defined by

||2S + Σ || Sba(λ) ||2S,= || SQΛ(λ) ||2S + Σ || Sba(λ) ||2S, (5.15)

where || ||HS denotes the Hubert-Schmidt norm and the summation ranges over all
2-body channels with initial state a = (α, Ea,uΛ}. As has been mentioned in the
introduction, if p > 2, σa(λ) is known to be finite for a.e. λ > 0, but whether σa(λ) is
finite or not for all λ > 0 was still an open problem. The difficulties arise from the
collision process from 2 to 3 clusters and also from the 2 cluster scattering amplitudes
in which in the final state the pair β takes the zero energy state. As a by-product of
our results, however, we can overcome these difficulties under the assumption that
p > 5 + 1/2.

Theorem 5.6. // p > 5 + 1/2, σa(λ) < oo for all λ>0.

Acknowledgements. Most of this work was completed during the author's stay at Paris-Nord
University and Aarhus University. He is grateful to Professors J. C. Guillot and E. Balslev for their
hospitality in Paris and Aarhus and also for helpful discussions.

References

1. Amrein, W. O., Pearson, D. B., Sinha, K. B.: Bounds on the total scattering cross-section for
N-body systems. Nuovo Cim. 52 A, 115-131 (1979)

2. Amrein, W. O., Sinha, K. B.: On the three body scattering cross sections. J. Phys. A: Math.
Gen. 15, 1567-1586(1982)

3. Dolph, C. L., Macleod, J. B., Thoe, D.: The analytic continuation of the resolvent kernel and
scattering operator associated with the Schrόdinger operator. J. Math. Anal. Appl. 16, 31 1-332
(1966)

4. Enss, V.: Quantum scattering theory of two and three body systems with potentials of short
and long range. Lecture Notes in Math. vol. 1159, Berlin, Heidelberg, New York: Springer 1985

5. Enss, V., Simon, B.: Finite total cross sections in non-relativistic quantum mechanics. Commun.
Math. Phys. 76, 177-209 (1980)

6. Froese, R. G., Herbst, L: Exponential bounds and absence of positive eigenvalues of TV-body
Schrδdinger operators. Commun. Math. Phys. 87, 429-447 (1982)

7. Graf, G. M.: Asymptotic completeness for N-body short-range quantum systems: A new proof.
Commun. Math. Phys. 132, 73-101 (1990)

8. Isozaki, H.: Eikonal equations and spectral representations for long-range Schrodinger
Hamiltonians. J. Math. Kyoto Univ. 20, 243-261 (1980)

9. Isozaki, H.: Decay rates of scattering states for Schrodinger operators. J. Math. Kyoto Univ.
26, 595-603 (1986)



258 H. Isozaki

10. Isozaki, H.: Asymptotic properties of generalized eigenfunctions for three body Schrδdinger
operators, preprint (1991)

11. Isozaki, H., Kitada, H.: Scattering matrices for two-body Schrόdinger operators, Scientific
Papers of the College of Arts and Sciences. Tokyo Univ. 35, 81-107 (1985)

12. Ito, H. T., Tamura, H.: Semi-classical asymptotics for total scattering cross sections of 3-body
systems, preprint (1990)

13. Jensen, A., Kato, T.: Spectral properties of Schrόdinger operators and time decay of the wave
functions. Duke Math. J. 46, 583-611 (1979)

14. Landau, L. D., Lifshitz, E. M.: Quantum Mechanics, Non-relativistic Theory. Oxford, London,
Edinburgh, New York, Paris, Frankfurt: Pergamon Press 1965

15. Mourre, E.: Absence of singular continuous spectrum of certain self-adjoint operators. Commun.
Math. Phys. 78, 391-408 (1981)

16. Murata, M.: Asymptotic expansions in time for solutions of Schrόdinger type equations.
J. Funct. Anal. 49, 10-56 (1982)

17. Perry, P., Sigal, I. M., Simon, B.: Spectral analysis of N-body Schrόdinger operators. Ann.
Math. 114,519-567(1981)

18. Reed, M., Simon, B.: Methods of Modern Mathematical Physics, IV: Analysis of Operators.
New York, San Francisco, London: Academic Press 1978

19. Saito, Y.: Spectral representation for the Schrόdinger operator with long-range potentials.
Lecture Notes in Math. vol. 727, Berlin, Heidelberg, New York: Springer 1979

20. Sigal, I. M., Soffer, A.: The N-particle scattering problem: Asymptotic completeness for short
range quantum systems. Ann. Math. 125, 35-108 (1987)

21. Skίbsted, E.: Propagation estimates of N-body Schrόdinger operators. Commun. Math. Phys.
142, 67-98 (1991)

22. Yafaev, D.: On the multichannel scattering in two spaces. Theor. Math. Phys. 37, 867-874
(1978)

Communicated by H. Araki




