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Abstract. This paper continues the study of a model for turbulent transport with
an exact renormalization theory which has recently been proposed and developed
by the authors. Three important topics are analyzed with complete mathematical
rigor for this model: (1) Renormalized higher order statistics of a passively advected
scalar such as the pair distance distribution and the fractal dimension of interfaces,
(2) the effect of non-Gaussian turbulent velocity statistics on renormalization
theory, (3) the "sweeping" effect of additional large scale mean velocities. A special
emphasis is placed on renormalization theory in the vicinity of the value of the
analogue of the Kolmogorov-spectrum in the model. In the authors' earlier paper,
it was established that the Kolmogorov value is at a phase transition boundary in
the exact renormalization theory. It is found here that the qualitative model, despite
its simplicity contains, in the vicinity of the Kolmogorov value, a remarkable
amount of the qualitative behavior of turbulent transport which has been uncovered
in recent experiments and proposed in phenomenological theories. In particular,
the Richardson 4/3-law for pair dispersion and interfaces with fractal dimension
defect of 2/3 occur in the model rigorously as limits when the Kolmogorov spectrum
is approached as a limit from one side of the phase transition boundary; alternative
corrections to the Richardson law with the same form as those proposed
heuristically in the recent literature and interfaces with fractal dimension defect 1/3,
occur in the model when the Kolmogorov spectrum is approached from the other
side of the phase transition. It is very interesting that fractal dimension defects of
roughly the value either 1/3 or 2/3 for level sets and interfaces of passive scalars
have been ubiquitous in recent turbulence experiments. As regards non-Gaussian
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velocity statistics, a principle of "statistical universality" is established rigorously in
the model so that the renormalization theory for eddy diffusivity coincides with the
one presented in earlier work in the case of Gaussian velocity statistics. Finally, the
authors show that the "sweeping effect" can significantly alter the renormalization
theory in the model for suitable infrared divergent velocity statistics with steady
or nearly steady velocity fields. However, it is proved here that the renormalization
theory in the model in the vicinity of the Kolmogorov spectrum is Galilean
invariant and insensitive to this sweeping effect of large scales.

I. Introduction

This paper concerns the long-time behavior of passively advected scalar quantities,
such as heat or mass, evolving in a turbulent, incompressible velocity field. Passive
scalar transport arises in a variety of physical situations, such as cloud dynamics,
dispersion of pollutants in oceans and lakes and flow in porous media. The macro-
scopic description of the enhancement of dissipation rates in turbulent transport is
a complex problem, due to the large fluctuations in the scalar fields caused by the
turbulent flow. These problems are very difficult because the velocity involves a
continuous range of excited space and/or time scales. An extremely important
practical problem of this sort involves the computation of eddy diffusivities in fully
developed turbulence. The goal of such theory is to assess the effects of the
continuum of energetic smaller scales on the large scales through effective equations
without resolving these effects explicitly. However, when non-dimensionalized on
dissipation length scales, turbulent velocity fields exhibit strong infrared divergences
exactly at the large scales where a theory of eddy diflfusivity is needed (see [7]). Thus,
these problems have been attacked through a wide variety of renormalized per-
turbation theories which mimic ideas from field theory and/or the renormalization
group (R-N-G) from critical phenomena involving partial summation of divergent
perturbation series ([10, 13, 15, 16, 19, 24-26]).

In developing theories for eddy diffusivity, the natural initial data involve only
long wavelengths, i.e., the initial data has the form T0(δx) with δ«l. The first goal
of an eddy diffusivity theory is to determine a nonlinear rescaling function p(δ) so
that the ensemble average of solutions of the advection-diffusion equation

satisfies an effective equation involving eddy diffusivity, i.e. enhanced dissipation.
The issue of interest is then to characterize this effective evolution equation. The
rescaling function, p(δ) is uniquely determined by the requirement that the above
limit is nontrivial, i.e. neither identically zero nor merely T0(x\ and serves to
determine the critical time scale of important activity in the transport-diffusion
process. The function p(δ) = δ corresponds to the usual diffusive scaling. The
behavior of the transport-diffusion process is superdiffusive provided p(δ) = δθ with
θ < 1 since this corresponds to shorter time scales of nontrivial activity than the
usual diffusive scalings while the behavior is super-ballistic if θ<\ since this
corresponds to motion which is faster than purely advective motion.
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Motivated by these important practical problems involving theories of eddy
diffusivity, the authors recently introduced a model problem for renormalization of
eddy diffusivity in turbulent transport involving simple shear flows with Gaussian
statistics (see [1]). Furthermore, this model has an exactly solvable but remarkably
complex renormalization theory for eddy diffusivity. The second-order statistics in
these models involve two parameters, ε and z with z ^ 0, where ε measures the
strength of the infrared divergence and z measures the decorrelation time of
long-wave portions of the statistical velocity spectrum (see [1] and (1.4)—(1.11)
below). The rigorous renormalization theory for the exactly solvable model involves
five phase regions in the ε, z plane - the exponent of ρ(δ) serves as an order
parameter describing the "phase transitions" to different anomalous scalings with
different eddy diffusivity theories for the ensemble average. Such transitions are
described by the "phase diagram" presented in Fig. 1. This phase diagram involves
five regions with different anomalous scaling exponents with crossovers between
diffusive, super-diffusive, and super-ballistic scaling regimes with corresponding
remarkable changes in the nature of the effective equations for the eddy diffusivity
theory. It is very interesting that the analogue of the Kolmogorov spectrum in the
simple model occurs at the point ε = 8/3, z = 2/3 and these values correspond to a
boundary point with "phase transition" between two different regions of renormal-
ization (see Fig. 1 and page 409 of [1]). In other related work ([2, 3]), the authors
are using this simplified model with a rigorous exact renormalization theory to
provide an unambiguous comparison of a variety of R-N-G methods and re-
normalized perturbation theories for predicting eddy diffusivity. In a completely
different direction, the authors have recently used the predictions of the model to
understand renormalization theory for general isotropic turbulent transport-
diffusion in Rd in the two phase regions analogous to those in Fig. 1 surrounding
the Kolmogorov spectrum ([5, 6]).

This article has as main goals to pursue the study of model simple shear flows
introduced in [1], focussing on three important topics: (i) Higher order statistics
involving the relative diffusion of pairs of particles, described by the pair-distance
distribution, and the closely related question of the evolution of interfaces in
turbulent flows; (ii) the issue of statistical universality, i.e. exploring the dependence
of the effective equations on the statistics of non-Gaussian random velocities;
(iii) the "sweeping effect," arising from dispersion in a random flow with a uniform
average velocity.

The phase-diagrams for the scaling laws and effective equations developed in
[1] and in the present paper show remarkable crossovers in the neighborhood of
the Kolmogorov-Obukhov regime (ε = 8/3, z = 2/3). In this paper, we establish with
complete rigor that the model flows reproduce several features associated with
higher-order statistics of the passive scalar that have been observed (Lovejoy [27],
Meneveau and Sreenivasan [31]), or are believed to occur in intermittency
corrections to fully developed turbulence (Hentschel and Procaccia [17]). Our
results include the evolution equation for the pair-distance distribution function,
with explicit values for the corresponding relative diffusion coefficient, as well as
calculation of the fractal dimensions of interfaces evolving in the flow. In particular,
in the crossover between regions II and III, or \V and III* (see the phase diagrams
below), we recover the analogous result for the model to Richardson's /4 / 3 law [38]
on one side of the boundaries II/III and II*/IH*, and a different pair-dispersion
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diffusivity in regions III, I I P , proportional to ί/2/3, where / denotes the interparticle
separation. This last form of the pair diffusivity has been proposed on heuristic
grounds in [17]. With regards to the fractal dimension of level sets, we show once
again a remarkable crossover phenomenon in a neighborhood of the Kolmogorov-
Obukhov values. For values of the statistical parameters ε = 8/3 and z = 2/3, we
obtain a dimensional defect H = 2 — d — 2/3 = 0.67, and this value agrees also
with the limit as the statistical parameters (defined below) (ε,z) approach the
Kolmogorov-Obukhov values from region II or \V. Remarkably, the correspond-
ing limit as (ε, z) converge to the Kolmogorov-Obukhov values from inside regions
III or I I P is H = ^ ^ 0.33, showing a discontinuity in the neighborhood of the
homogeneous turbulence regime. Physically regions III and IΠW correspond to
regimes where macroscopically, time-decorrelation effects are negligible (Taylor's
hypothesis). It is striking that the numerical values H = § and H = | are in very good
agreement with recent high Reynolds number experiments [27], see also [12], and
with values measured by Meneveau and Sreenivasan [31] in turbulent jets. Further-
more, with standard approximations from combustion theory involving turbulent
diffusion flames [41], pp. 69-80), the evolution of such level sets coincides with the
evolution of an interface defining the flame sheet. Thus, our results for the model
give a rigorous estimate of the fractal dimension of interfaces such as diffusion flame
fronts, evolving in the simple shear flows of the model. For these reasons, we often
use the terminology, level set or interface interchangeably in Sect. 5.

To what extent are the renormalized eddy-diffusivity equations for passive
transport by a random velocity field with a given power-energy spectrum dependent
on the higher-order velocity statistics? This issue of statistical universality is very
important from the view-point of turbulence modeling where explicit expressions
for the sub-grid eddy-diffusivity are needed. In this paper, we show that the
renormalization problem for random simple shear flows can be analyzed for a
variety of non-Gaussian velocity statistics by means of appropriate central limit
theorems, and that the corresponding renormalized equations agree with the ones
for Gaussian flows. This universality of the eddy diffusivity for passive transport at
high Reynolds numbers is shown again with full rigor for the models. The
applicability of central limit theorems suggests that the results of this article also
extend to isotropic 3D random flows. Some aspects of this extension for regions II
and III are developed in [5] and [6] by the authors.

The study initiated in [1] is also extended to comprise velocities with a nonzero
mean flow. This is also a simplified model problem for important practical issues,
since most flows have a "mean wind." The consideration of a passively advected
scalar in a coordinate system which moves with the mean flow leads to a
Doppler-shifted velocity field with additional time-decorrelations. This "sweeping
effect" arising from the mean velocity plays a role in the long-time/large-distance
dynamics in some statistical regimes, but not in others. We show here how the
phase-diagram for the models in the (ε, z)-plane, is modified by the presence of the
mean "wind," and obtain a new phase-diagram which is useful to assess the sweeping
effect in general random velocity fields.

As in our previous work [1], we consider transport by a simple shear flow,
described by the equation

d , , \ Γd2T(x,y,t) d2T(x,yj)~\ , ,
- + uδ{y,t)'V )T(x,y,t) = D\ — + — (1.1)
ot ) |_ ox dy J
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with initial condition

T(x,y9t = 0)=To(δx9δy), (1.2)

where T0(x,y) is an initial profile and δ is a small parameter representing the ratio
η/L between the dissipation and integral length scales [1]. (Here, we have changed
the notation slightly from our earlier paper [1].) In (1.1) the velocity field uδ(y, t) is
given by

I is
l_wJ

where uδ(y, t) is a stationary random process and I is a constant vector
l_wJ

representing the average flow. We assume throughout this paper that the
power-energy spectrum of uδ(y, t) has the form

<ώ(fc, ω)ύ(k\ ω')> = Eδ(k9 ω)δ(k + k')δ(ω + ω') (1.4)

with

Eδ(Kω)=ϋ2ψ0(^)ψo0(k)\k\1-ε— L__._L-. (1.5)
\<ϊ/ π[l + ω2/α2 |λ;|2 z] a\k\z

In this formula, φo(k) and ^(fc) are smooth, nonnegative, even functions (i.e.,
Φi(k) = φi{ — k)9 Ϊ = 0, oo), representing infrared and ultraviolet cutoffs. These
functions are assumed to satisfy

(Ό for

1 for

and

1 f θ Γ W - k \ (1.7)
0 for |fc|^fc4

Such cutoffs are given naturally in turbulence theory by the integral scale and the
dissipation scale respectively (see [1]). As in [1], the last condition in (1.7) can be
replaced by rapid decay of φ^ik) for \k\ » 1. It follows that for δkx ^ \k\ ^ /c2, the

+ 00

energy spectrum Eδ(k) = J Eδ(k, ω)dω oc U2 \ k \1"ε is a power-law in k. The Fourier
— 00

transform of Eδ(k, ω) with respect to ω, denoted by Eδ(k, t) satisfies

- β | k | " ί (1.8)

and indicates the rate of decorrelation in time of the random mode ύ(k9 τ). To
understand the roles of the parameters ε and z, we observe that, from (1.8), the
exponent ε controls the spatial correlations in the velocity field at fixed time, since

ε (1.9)
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so that, formally,

-const. x | x - x ' Γ 2 + ε . (1.10)

In particular, large values of ε correspond to long-range correlations in the velocity
field. Concerning the exponent z (z> 0), we see from (1.8) that the decorrelation in
time of ύ(k, t) for each k is governed by the fc-dependent turnover time

ϊ (1.11)τa(k) .
a\k\~

This turnover time is longer for small values of fc, thereby incorporating the feature
that long-wavelength components oscillate more slowly than high-/c modes. In fact,
in the limiting case z = 0, all modes have identical turnover times, while z > 0
corresponds to statistics for which modes with |fc| « 1 have much larger turnover
times than high modes. We have used the simple structural form of the function
ω/\k\Σ in (1.8) for simplicity in exposition; in fact, in regions II and II, any more
general function Ψ(ω/\k\z) can be used and yields the same renormalization theory,
provided that Ψ is integrable and nonzero in a neighborhood of the origin. A
Doppler-shifted random function uδ(y, t) = uδ(y + wt, t), which corresponds to
dispersion in a moving coordinate system, has a spectrum Eδ(k, ω) given by

= cos (wkt)Eδ(k,ή. (1.12)

This gives rise to the fc-dependent "sweeping" time

( U 3 )

which dominates the turnover time if z > 1, i.e. τ^(fc)« τa(k) for \k\ « 1, but is much
larger than the turnover time if z > 1.

The values of the parameters ε and z corresponding to homogeneous turbulence
are, according to the Kolmogorov-Obukhov theory [22, 32],

ε = f, z = l (1.14)

and the corresponding spectrum is given by

Eδ(k,ω)= U*φo(%m(k)\kΓ«* ^ H " (1-15)
\δj π(l +ω2/az\krά)

By considering variable parameters ε and z we can study rigorously, in the context
of these models, the renormalization problem for passive turbulent transport for
Kolmogorov-Obukhov turbulence, as well as for regimes corresponding to
intermittency corrections to the A;~5/3 law. Other statistical regimes corresponding
to different (ε,z) are interesting from the point of view of renormalization theory for
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flows in porous media [10, 11, 15, 21]. Here, we consider the renormalization

problem for all values of ε, z in the ranges — oo < ε < 4, 0 < z < o o .

We study the fundamental problem of finding a suitable scaling function p = p(δ)

corresponding to the macroscopic evolution of the solution of the initial-value

problem (1.1)—(1.2). This is done here by considering the scalar

δ p(δf δ p(δ)r p(δ)2
(1.16)

which satisfies

δTs(x',y',f) δ / / _wf_ f \δTδ(x',y',Q

dt' p2 \ δ p(δfp(δ)2) dx'

_Jd2Tδ(x',y',t') d2Tδ(x',y',t')Ί

L dx'2 + δy'2 J ._
and

δy'2

Tδ(x\y',0)=T0(x',y').

(1.17)

(1.18)

ε

V

z = 2

\ \ "

\ Π

I \

\

\

= 2-z

ΠI

in

>v δ = 4-2z

• M / V
\ Kolmogorov Spectrum. ^

\ ε=S z = 2
\ 3 ' 3

ε =2

\

ε = 4

Fig. 1. The phase-diagram represents the five renormalization regimes for the case of vanishing
transverse mean flow (w = 0) according to the valves of the parameters ε and z. The parameter ε
measures the strength of the infrared spectrum of the velocity, corresponding to long wavelength
modes, while z measures the rate of decorrelation in time of long wavelength modes (cf. (1.8),
(1.9), (1.10)). The values e = 8/3, z = 2/3 correspond to the Kolmogorov-Obukhov theory of
homogeneous turbulence; they correspond to a point lying on the boundary between regions II
and III of the phase-diagrams
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ΠΓ

ε=4

Fig. 2. The phase-diagram for w^O, incorporating the "sweeping effect" caused by a constant
mean flow with non-vanishing transverse component (w φ 0). Notice that the diagram has four
different regions and differs from the one of Fig. 1 only for z ̂  1. In particular, the diagram remains
unchanged in the vicinity of the Kolmogorov-Obukhov values

Here, x\y\t' denote macroscopic space-time coordinates and an appropriate
Galilean transformation to a frame evolving with the mean flow is made in (1.16),
(1.17). The choice of the scaling function p = p(δ) must be such that the averaged
scalar (Tδ(x\y\φ satisfies

\im(Tδ(x\y',t')) = T(x\y\t'\ (1.19)

where f(x\ / , t') evolves according to an effective equation of motion. The correct
scaling function p(δ) as well as the effective equation will depend, in general, on the
statistical parameters ε and z, as shown in [1] for the special case of Gaussian fields
with w — 0. This deceivingly simple equation reveals a rich variety of different
renormalization regimes as ε,z vary. The regimes, or phases in the (ε,z) plane,
corresponding to different scaling functions and effective equations for the case
w = 0, in (1.3), are shown in the phase-diagram of Fig. 1. These results are identical
to those of [1] for Gaussian flows. In contrast, the phase-diagram for w Φ 0, which
is quite different, is shown in Fig. 2. In both cases, the Kolmogorov-Obukhov regime
corresponds to a point on the boundary between two regions (II and III, if vv = 0 or
IIW and I I P , if w Φ 0). The consequences of this fact, which were outlined above, are
studied in detail in Sects. IV and V hereafter. The differences between the diagrams
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for w = 0 and w Φ 0 are significant only for z > 1, which corresponds to the region
in which the "sweeping time" τ̂ (fc) is much shorter than the turnover time τa(k) for
\k\ « 1. In particular, the sweeping effect caused by w Φ 0 is negligible for ε,z in a
neighborhood of the Kolmogorov regime. The chart in Table 1 describes the forms
of the scaling functions ρ(δ) and the explicit form of the effective diffusivity of the
effective equation of motion for T(x\ y\ t') (we drop the primes for simplicity). In
regions I and Iw, which correspond to mean-field behavior, the effective equation is

dt δx2 δy2

where D* is a renormalized effective diffusivity. Effective diffusivities for the
remaining regions, which correspond to superdiffusive scalings with p(δ)« δ, II-V
and IIW-IVW are given in Table 1. Notice that the diffusivities can be local and
time-independent (II, II* IV*), local and time-dependent (III, III* IV and
boundaries II/III and IIVV/IIIW) or nonlocal (V). In the latter case, the nonlocal eddy
diffusivity is the one studied in our previous paper [1]. Comparison of the diagrams
for w = 0 and w Φ 0 shows, among other things, that the presence of a mean-flow
extends the region of validity of mean-field theory and suppresses the nonlocal
superdiffusive region V.

Table 1. Summary of the scaling functions p(δ) and the effective diffusivities for all regions of both
phase-diagrams, and for the boundaries II/III and IIW/IΠW. Regions I and I w correspond to Fick's
law of diffusion, so that p{δ) = δ. In all other regimes the motion is superdiffusive, with ρ(δ)«<5,
as (5->0

Region Scaling function Effective diffusivity (D*)

1,1* p(δ) = δ D + 2U2

Ί
u2+

r

x

II, I I W p(δ) = δ{A-E~z)/2 — j φo(k)\k\ι-ε-zdk
a _oo

111,111* p(δ) = δι~/ε/4 — f (Ao
2 _

IV p(δ) = δz/iε + 2z~2)

Ϊlt'" '{'-Lw:}
-2 •*

^ — oo

V p(δ) = δί/{1 +ε/2) Nonlocal (see [1] and Sect. Ill)
U2 +0°

Boundaries p(δ) — δ{ ε z)l — j ψo\
a -oo
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Table 2. This table shows the explicit formulas for the pair-distance diffusivities for the models.
With the exception of regions I, Iw, IV and V, the pair-diffusivities depend on the initial vertical
separation of pairs of particles, and can be both time-dependent or time-independent, according
to the region of interest. The Holder exponent of the macroscopic front, F(y, ί), as well as the fractal
dimension of the front d = 2 — H are given in each case

Region Pair-distance diffusivity (£)*(/, ή) H d

I, I* IV 2D*
V nonlocal

2U2 + 0°
II, I Γ J \k\ι'E-z{\-coskl2)xj/0{k)dk

a _oo

+ 00

III, III* U2t J \ k \ * ' " ( I - c o s kl2)ψ0(k)dk

2ΰa Λ +

I V W J W'^'il - cos kl2)φ0(k)dk
W 2 -oo

2U2a+co

Boundaries — j \k\l~\\ - cos kl2)e-a^ztφ0(k)dk

0
0
ε + z -

2

ε - 2

2

ε —z

2

ε + z -

2

2

2
2
6 - ε

2

6 - ε

2

4 + z

2

6 - ε

— z

— ε

— z

Table 2 contains the results concerning the pair-distance diffusivity for relative
diffusion, as well as the Holder exponents and fractal dimensions of interfaces. The
models reveal a rich structure, in which different pair-diffusivities emerge in each
phase. In some regions (I, Iw, IV, V), pairs of particles evolve independently in the
macroscopic time-scale, and hence the pair-diffusivity for the pair-distance distri-
bution is equal to twice the value of the (single-particle) effective diffusivity. On the
other hand, the pair-diffusivity in regions II, I P , III, I I P , IVW, and the boundaries
between II and III, and I P and I I P depend on the initial vertical separation l2 and
on time in some cases (III; I I P and boundaries) but is time-independent in others
(II, IP). Table 2 also indicates the fractal dimension of advected fronts, d = 2 — H.
In regions I and P the fronts are ^-correlated on the macroscopic scales, and thus
d = 2. The same is true for regions IV and V, with the difference that the fractal
dimension is, in these cases scale-dependent, with an intermediate fractal dimension
1 < dint < 2 developing on time-scales which are large but yet smaller than the
macroscopic time scale p{δ)~2. These results, which are not directly relevant to
homogeneous turbulence will be described in a separate work. Regions II, I P , III,
I I P , IV* and the boundaries II/III, I P / I I P have fractal dimensions d satisfying
1 < d < 2, as shown in Table 2. An important conclusion that can be drawn from
this analysis is that although scaling exponents vary continuously across phase-
boundaries (in general), the quantities associated with higher order statistics
(pair-distance distribution, fractal dimension of fronts) exhibit typically discontinuities
across phase boundaries. We believe that this phenomenon may explain the
consistent appearance of certain dimensional defects in experimental data [31].
[Note that for purposes of comparison the analogue of our line element in 3D
models is a surface and the formula relating H to d should be d = 3 — H instead of
d = 2 - H.]
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II. The Phase Diagram with the Sweeping Effect: Gaussian Statistics

This section concerns the derivation of the different renormalization regimes for the
advection-diffusion equation with random Gaussian velocity

dT(x9y9t) dT(x,yj)
+ (v + uδ{y, ή) + w+ (v + uδ{y, ή ) + w

ot ox ay

d2T(x9y9t) δ2T(x,y,

<9j;2

with initial data

Γ(x,;M = 0)=T0(ax,δ3θ. (2.2)

We shall focus primarily on the implications of having a nonzero transverse
component of the mean flow, w Φ 0. The case w = 0 was treated previously in [1].
For non-zero mean fields we consider Eq. (2.1) in a moving coordinate system,
setting

x = x' + tv, y = y' 4- ίvp,

T'(x\ / , t) = T(x' + ϋt9 y' + wt91). (2.3)

The scalar T satisfies the evolution equation

, (2.4)

with initial condition T'(x\ y\ 0) = T0(δx\ δy'). As discussed in the Introduction, the
renormalization problem consists, on the one hand, in determining a time-scaling
function p(δ) such that the average scalar

has a non-trivial limit as δ-+09 and, on the other hand, in characterizing the
evolution of the limiting function

T(x'9 y\ t) = lim < T'(x'/δ, y'/δ, t/p(δ)2) >. (2.6)

One of the main conclusions of our theory is that the scaling properties and effective
evolution equations for f can vary substantially, according to the statistical
correlations of the fluctuating field uδ{y, t). To bring this into the foreground, we
first study Gaussian velocity fields uδ(y, t) with mean zero and power-energy
spectrum

where

1

π 1 -fs2
(2.8)
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Accordingly, let W(dk9dω) denote a two-dimensional, real white-noise Gaussian
measure in R2, satisfying

j§ W(dk, dώ) is Gaussian for all Borel sets A in R2,
A

(W(dk,dω))=0,

and

< W(dk, dω)W(dk\ dωf) > = δ(k + k')δ(ω + ω')dkdω. (2.9)

We define uδ(y, t) (in this section) as

| ^ ^ ( ^ ) J / V , < t o ) . (2.10)

The long-time, large-distance problem for (2.1-2.2) can then be studied as the
statistical parameters ε and z are varied. Due to the presence of the shift y -»/ + wί,
(i.e. the fact that uδ(y' + wί, t) appears in (2.4)) the situation is different than in the
case of a purely fluctuating velocity, previously studied in [1]. In the present case,
the solution of the renormalization problem is summarized in the second phase-
diagram in the Introduction. What follows is a derivation of the scaling functions
and effective evolution equations corresponding to each of the four nontrivial
renormalization regimes in the diagram.

ILL Normal Diffusion: Region Iw. If the parameters ε,z satisfy z > 0,ε + 2min(l,z) —
min(2,z)<2, we shall see that the renormalization of (2.1), (2.2) reduces to a
problem in homogenization theory for operators with random coefficients, a
question that was extensively studied by Papanicolaou and Varadhan [37] and
others [7, 23, 33, 36]. Choosing the time-scaling function ρ(δ) so that

δ, (2.11)

which corresponds to Fick's law (x2 ~ t), the equation satisfied by the scalar

Tδ(x',y',t)=T'(^, ζ, ^) (2.12)

is (dropping the primes):

(dTδ(x,y,ή 1 (y _ . ί t\dTt{x,y,t)

δt δ °\δ δ2 δ2 dx

-Ad2Tδ(x,y,t) d2Tδ(x,y,t)Ί (2.13)

dx2 δy2 J

Tδ(x,y,0)=To(x,y)

Without loss of generality, we consider plane-wave initial data of the form

T0(x,y) = eiχ ξ+iy \ (2.14)

where ξ, η are given numbers.
The solution of Eqs. (2.13), (2.14) can be represented probabilistically using a

two-dimensional Brownian motion (/^(ί), β2(ή), (cf. for instance, McKean [30]).
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Accordingly,

Ux,y,t)

(2.15)

where £{•} denotes averaging over βι(t\β2(t). Following Bensoussan-Lions-
Papanicolaou [7] and Papanicolaou-Varadhan [35], we can show that for ε,z in
region Iw, the exponent in (2.15),

converges in distribution to a Gaussian random variable with mean zero and
variance

2% (2.17)

where D* is the longitudinal diffusivity, given by

ϋpίW* (218)

Using this result, and the representation formula (2.15), we conclude that

T(x,y,t) = Mm

_ eiξx + iηye - ξ2Dte - (η2D + (D* -

_ eiξx + iηye - (D*ξ2t + Dη2t) Q 19)

The proof of the convergence in distribution of the random variable (2.16) to a
Gaussian random variable with mean zero and variance (2.17) is given in Appendix 1.
Notice that the condition ε + 2 min (1, z) — min (2, z) < 2 is necessary and sufficient
for the convergence of the integral in (2.18) defining the effective longitudinal
diffusivity D*. Since Eq. (2.13) is linear, using (2.19), we conclude that, for general
smooth initial data T0(x, y), the function Γ(x, y, t) defined by (2.6) evolves according
to the effective diffusion equation

,t) = d2T(x,y,t) D

^ V (120)
,0)=Γ o (x,y)

II.2. Anomalous Diffusion. For ε, z outside the mean-field region /w, the behavior of
(2.1), (2.2) is super diffusive, in the sense that ρ(δ)«δ as <5->0. There are altogether
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three different regions in the (ε,z) plane in which superdiffusion occurs. In each
region, the macroscopic behavior is determined by a different balance between
spatial and temporal correlations of the fluctuating velocity. To put this in evidence,
we use the probabilistic representation for the solution of the initial value problem
(2.4) in terms of a Brownian path-space integral. The determination of the different
renormalization regimes is done by studying the scaling properties of this path space
integral in the long-time/large-distance limit as ε and z vary.

We begin by giving a suitable representation formula for <T'(x',/,£)>, where
T is defined in (2.4). Dropping the primes for simplicity, we have (cf. [30])

Γ(x, y,t) = E{ T0(δX(t\ δ 7(0)}, (2.21)

where X(t\ Y(t) are the coordinates of a Lagrangian particle in a reference frame
moving with the mean flow, i.e.,

X(t) = x + y/ΪDβ^t) + J uδ(y + ^2Dβ2(s) + ws9 s)ds

° (2.22)
2Dβ2(t)

For plane-wave initial data To, of the form (2.14), substitution of (2.22) in (2.21) yields

T'(x,y9t)

ίδξfus(y + J2Dβ2{s) + ws,s)ds

(2.23)

Using the fact that uδ is Gaussian, we can compute explicitly the average of T'(x, y, t)
with respect to velocity statistics. We obtain, accordingly,

<T'(χ,y,ή)

_ eiδξx + iδηy-δ2ξ2Dt

s,s)ds

iδηy-δ2ξ2Dt

• E jexp \iηδ^2Dβ2(t) - ̂  } j Ri^Wifts) - β(s')) + w{s - s'\ s - s')dsdA 1.

(2.24)

Here R(y, t) is the Eulerian velocity autocorrelation function, given by

R(y, ή = tfeiky+iwtEδ(k, ω)dkdω

= U2 J Ψl(jjψ2Jk)\k\1-'ea->'-'W'dk. (2.25)
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For notational simplicity, we set

Qδ(t) =\\ R{JΪD{β2{s) - βs{s')) + w(s - s'), s - s')ds'ds. (2.26)
0 0

x y t
After making the change of variables x->-> y-+-,t-+—9 where p = p(δ) is a yet

δ δ p2

unspecified function of <5, we obtain

(2.27)

This is the basic representation formula that will be used to compute the time-
scaling functions and the effective equations of motion in the different anomalous
renormalization regions. Outside region Iw, we anticipate that the system should

1 ~
be superdiffusive, i.e. p(δ)«δ. Therefore, since we have β2(t/p2) = -β2(t% where

iMO = Pβi\ ~i I is another Brownian motion, the contributions from eδ2/p2Dξ2t and
\P J

{tiPi) i n ^2 27) should negligible as δ -> 0, and the leading contribution should
come from the exponential

(2.28)

The differences in the asymptotic behavior of Qδ{t/p2) as p -• 0 determine the various
"phases" of the diagram for the effective equations of motion, as shown in the
following paragraphs.

11.2.A. Super diffusion with Rapid Time-Decorrelation: Region IIW

Region IV is determined by the inequalities

0<z<l, 2-z<ε<4-2z. (2.29)

We make the choice of scaling function

p(5) = 5<4-«-*>/2 (2.30)

which, on account of (2.29), satisfies δ/p(δ)^>0 as δ->0. From (2.26), we have

[ t/p2t/p2 I- η η

f J exp iky/2D(β2(s)~β2(sf))-^iwk(s~s/)-a\k\z\s-sf\dsdsf .

(2.31)

The quantity in brackets in this equation can be written, after a change of variables,
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in the form

(2 11 Γ tί/2 _ t ί Ί
—ffexp iky/ID—(β(s)-β(s')) + ίkw-~(s-sf)-a\k\z--\s-s'\ \dsds\ (2.32)
P oo L P P PA

where β(s) = -r7zβ2\ -rs I is an auxiliary Brownian motion. If we make the
t \p J

\ r /

substitution k = δk' in (2.32), this integral becomes
(2 i i Γ. , / ί1/2 ~ ~ , .,-δt , z δ z t ,~|

P oo L P P 2 P 2 J

Since - « 1, and, for any 0 < α < 1, we have
P

exp \ik'—JΪD{β{s) - β(s'))] = 1 + θ(Y—Y Y (2.34)

the integral in (2.33), is asymptotically equivalent to

\dsds'^-\\Qxp\ikfw%(s-sf)-a\kf\zδ^\s-sf\ \
P oo \_ P PA

P oo L P P

= ^ T 1 - ]—^ — L (2.35)
p A(r\ ί, δ)\_ A(k\t,δ) A

with

(2.36)
P P

From the definition of p = p(δ) in (2.30), we have

—2 = δ(ε+2z~*)/2 ^ o o as δ - 0 , (2.37)

so that,

t2 i j. Γ (5 / ~ ~ vv<5 δz Ί
— J l e x p ik'-^/2Dt(β(s) — β(s')) + ik'—-r{s — s') — a\k'\z—t\s — s'\ \dsds'
P oo L P P P J

_ 2 ί ^ i

" p ^

— (l+o(l)). (2.38)

Substituting this asymptotic expression in the integral in (2.31), (and recalling (2.34))
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we obtain

t2δ2

a 2

Therefore, since p(δ) = δ{4~ε~z)/2, we have

and hence, from the representation formula (2.27),

(

no \with

a -oo
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(2.39)

(2.40)

(2.41)

(2.42)

lim/

Clearly, our calculation for plane-wave initial data implies, more generally, that for

arbitrary smooth initial data T0(x,y)9 the function Γ(x, y, t) = lim ( T'[ - , - ,
satisfies the evolution equation

fdT(x,yj)

(2.43)

— D*
dt " dx2

J(x9y90)=To(x,y)

This concludes the analysis of region IIW.

1123. Superballistίc Diffusion Dominated by Long-Range Spatial Correlations:
Regions III™. Region IIP is determined by the inequalities

max(2,4-2z)<ε<4. (2.44)

The appropriate scaling function for this range of parameters ε and z is

p(δ) = δ1-*1*. (2.45)

With this value of p{δ\ we have

(2.46)

as δ ->0. Therefore, if we make the change of variables k = δk' in (2.31) we obtain

(2.47)
. . t \ δ

Qδ\ — I =
\P2J

2-εf2fj2 +x

J Φo(k'
OO
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with

B(k\ s,s\δ) = a\k'\z-^-\s-s'\ + iwk' -^-(s - sf) + ik'-JΪDt(β(s) - β(s')\ (2.48)
P P P

where β(s) is an auxiliary Brownian motion. Using (2.46), we conclude that
B(k\ s, s\ δ) -• 0 as δ -> 0. Hence

^ β / Λ V ί ^ l - Y ^ Γ - ^ 2 ί Ψo(hW\ι-εdkf + o(l)l. (2.49)
2 \p J \ p /|_ 2 -oo J

The choice p(δ) = δγ~εlAr in region III implies that the right-hand side of (2.49) is

/ (x y t \\

finite, so that the averaged scalar ( T'ί - , - , — I V corresponding to a plane-wave

initial data, satisfies, from (2.27),

, t) = lim ( T'l —,-,—-
5|0 \ \ ^ δ p1

= tχpliξx + iηy-t^Ξl J ψo{k)\k\'-*dk\ (2.5^ J .50)

Therefore, defining the effective diffusivity

^ ί Γ (2.51)

we conclude, from (2.50), that the evolution equation for the function T(x,y,t) for
arbitrary smooth initial data T0(x,y), is

J(x,y,0)=To(x,y)

Notice that the function p(δ) = δ1~ε/4' corresponds to the scaling relation

χ2^Tί/(ί-ε/4) (2.53)

for the displacement of advected Lagrangian particles on length scales on the order
of (5"1. In particular, since ε > 2 in region III*, (1 - ε/4)"1 > 2 and hence X2 » T2.
This apparently paradoxical, "superballistic" motion is a consequence of the fact
that the kinetic energy <|uδ(0,0)|2> diverges in region ΠIW as (5->0. Physically,
this means that in region IIIW the motion over large scales is influenced by an
increasingly large input of kinetic energy in the long-wavelength modes. This results
in an apparent average particle velocity X/T that diverges with the size of the
system. Notice that superballistic motion also exists in a portion of region Πw, for
3 — z < ε < 4 — 2z, and in particular on the boundary between I P and IΠW.

II.2.C. Superdiffusion with Rapid Time Decorrelation Arising from the Transverse
Mean Flow: Region IVW. Region IVW of the phase-diagram corresponds to values
of ε and z for which the principal time-decorrelation effect is due to the "sweeping"
of particles across the stratification by the mean velocity. This "sweeping effect" is
felt at values of z such that z > 1, since, in such regime, the /c-dependent "sweeping
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time" τ^(k) = — is much smaller than the eddy turnover time τa{k) — , for
|w||/c| a\k\z

\k\ « 1. This region is characterized by the inequalities

1 < z < ε < 2. (2.54)

As we shall demonstrate, appropriate the time-scaling function ρ(δ) in region IVW

is given by

δ1-(ε-z)/2. (2.55)

In order to justify (2.55) and compute the effective equation of motion, we study the

behavior of the quantity as δ -•(), as we did in Π.2.B. Note that, from

the choice of p(δ) in (2.55), we have δ/p(δ) = δ{ε~z)/2 -• 0. It follows, from (2.31), (2.34),2ΐ
J

(2.ί

),
ξ2δ2

(2.35), and (2.36), that Qδ(t/p2) behaves, to leading order, as

2p2
- 1 — — \dk,

with A(k,δ,t) = (a\k\zδz-iwkδ)—-. After some computation, we find that the
P

right-hand side of this equation is equal to

+ U2ξ2tχi

+ U2ξ2t x (51 + z~ε[j^0(/c)|/cΓ2~ε + zαd/c + o(l)], (2.57)

where B(k, t, δ) is given by

B(k,δ,t) = - P

(a2\k\2zδ2z-

l-e~a{

( ̂ P)] = W ) P.58)
\ P J J

The inequalities defining region IV* imply that δ2~ε^>0 and ^ 1 ~ ε + z -^0as(5->Ό.
This allows us to compute the asymptotic behavior of (2.57) to leading order. In
fact, we conclude from (2.57), (2.58) that

ί2δ2 ( t \ £2tΰ2a+co

^-Z-QA-2) = ' ± ^ ί Ψo(k)\k\-'~*+zdk. (2.59)
<Uo 2 \p2j w2 -co

Therefore, if we define the effective diffusivity

U ^ 1 - ε + z d K (2.60)
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we find from (2.27), (2.28) that the solution of the evolution equation with
plane-wave initial data eiξx + ίηy converges to

f(x9y91) = eiξ* + inye-D*ιw^t (2.61)

This implies that T(x, y, t) satisfies, for general initial data, the diffusion equation

dt I V * dx2 ' ( ]

II.2.D. Summary. In conclusion, we have obtained in the above analysis four
different renormalization regimes for the stratified Gaussian models with non-
vanishing transverse mean velocity. We make some further remarks:

(i) The "sweeping effect," or advection of Lagrangian particles transversely to the
stratification, produces dominant time decorrelation effects only if z > 1. In fact, if
τa(k) = (a\k\z)~1 and τw(k) = (\w\(k))~1 denote respectively the eddy turnover time
and the "sweeping" time at wavenumber /c, we have (for |fc| « 1)

τ a ( k ) « τ * ( k ) if z < l (2.63)

and

τa(k)»τw(k\ if z > l . (2.64)

(ii) The range of validity of mean-field theory is extended by having a nonzero
transverse mean flow. In particular, the superdiffusive region V, corresponding to
a non-local effective Green function, which exists for w = 0, is not present if w Φ 0.
(iii) The sweeping effect gives rise to a new superdiffusive region, IVW, with an
effective equation of diffusion type. The corresponding effective diffusivity, / ) , % , is
independent of D.
(iv) The phase diagram for z < 1 coincides with the one for w φ 0, since (2.63) holds,
(v) The scaling exponents in the various regions form a continuous function in the
(ε, z) plane, with the exception of the half-line ε = 2, z > 2, separating regions I w and

III W , along which the exponent jumps from 1 to 1/2 = 1 —

(vi) The scaling behavior and the form of the effective equation for T(x, y, t) at the
boundary between the renormalization regions I I w and IΠ W , given by (0 < z < 1,
ε + 2z = 4) is of special interest for applications to turbulence theory. It is studied
separately in Sect. IV.
(vii) The remaining portion of the ε, z plane, namely ε > 4, ε > 0, constitutes a trivial
statistical regime from the point of view of the renormalization problem, in the sense
that the system cannot be described by any effective equation on a macroscopic
time scale. This is easily seen by observing that for ε ^ 4, the scaling function for
region I I P , p(δ) = δ1 ~ε/4, does not tend to zero as δ -•().

III. Statistical Universality: Renormalization for Non-Gaussian Fields

The assumption made about the Gaussian nature of the fluctuating velocity uδ(y, t\
albeit convenient for calculations, is quite restrictive, and it is interesting to consider
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the renormalization problem for non-Gaussian statistics as well. For instance, it
has been argued by some authors [14,40} that the effective Green function or eddy-
diffusivity, for passive turbulent transport should depend, when super-diffusion
occurs, only on the scaling properties of the energy spectrum and the wavenumber-
dependent turnover time (through ε and z), but not on the higher-order statistics
of u. Our models provide a framework for studying rigorously this hypothesis.
Another reason for considering non-Gaussian statistics in the context of stratified
models, is the possibility of calculating rigorously the effective equations of motion
for some discrete layered models studied previously by Matheron and de Marsily
[28], and Bouchaud et al. [10,11].

In this section, we show that the phase diagrams of Figs. 1 and 2 are valid for
a wide class of non-Gaussian velocity statistics with power-energy spectrum

( k\ π~1\k\1~ε~z

-δJΦJk) M

ω 2 N, (3.1)

where φo('\φao() are the standard cutoff functions described in the Introduction.
The solution of the renormalization problem given in [1] for w = 0 and in Sect. II
for w φ 0, relied on the explicit representation formula of the scalar < Γ(x, y9 ί)> in
(2.24), which is valid only for Gaussian fields uδ(y, t). Here, we develop an alternative
approach, which is more general and does not rely on (2.24). Instead, we show
that the renormalization problem reduces, after making a suitable change of scale,
to the application of a central limit theorem for sums of weakly dependent random
variables. Interestingly, despite the non-Fickian superdiffusive scaling functions
ρ(δ) outside regions I and Iw, we obtain effective equations of motion with effective
probability distribution functions for Lagrangian particle displacements which are
either purely Gaussian (Regions I, I*, II, II*, III, IV, IV*), or mixtures of Gaussians,
(Region V) with an explicitly given, universal distribution of variances. This charac-
terization is remarkable, given the variety of pdf's which are scale-invariant and
consistent with a given scaling function p(δ).

The solution of the renormalization problem hinges on the applicability of
limit theorems for sums of dependent random variables. For this reason it is
natural to assume certain "mixing" or "weak dependence" statistical hypotheses
on the fields uδ(y, t). Such assumptions are however unnecessary in the mean-field
regions I and Iw, which can be handled by one-dimensional, random homogeniza-
tion methods (cf. Sect. II, Appendix 1, and [1]). These methods require no assump-
tions on uδ(y9 t) other than statistical homogeneity and a power-energy spectrum
of the form (3.1). On the other hand, in the renormalization theory for the super-
diffusive regions, mixing assumptions appear to be necessary in order to obtain
the same effective equations as in the Gaussian statistics. Here, we do not seek to
determine the most general set of assumptions under which the long-time/large
distance limit coincides with the one for the Gaussian case. Instead, we focus our
attention on two models of random velocity fields, which are natural from the
point of view of the theory of disordered systems, and which have some physical
significance. They can be associated with complex flows arising from random
distributions of momentum sources in a stratified porous medium [28] or with
flow in a turbulent shear layer [1].



160 M. Avellaneda and A. Majda

To describe such models, we introduce non-dimensional elementary functions,
or "blobs," denoted by φδ(y, t\ δ > 0, and given by

φδ(y91) = — Hy/Eδ{k9 ω)/U2 eίkx+iωtdkdω. (3.2)
2π

Note that, by PlanchereΓs identity, we have

y, t))2dydt = =- \\Eδ(k, ω)dkdω. (3.3)

Moreover, φδ is integrable and satisfies

O9 (3.4)

as a consequence of the vanishing of the Fourier transform of φδ(y, t) in a neigh-
ίk\

borhood of /c = 0, due to the infrared cutoff ^ 0 ( - I in (3.1). To define the first
\<V

model, we consider a stationary, ergodic point process (p{n\τ{n)) in the plane R2,
such that for all open sets Ω in R2, we have

\\mδ2 CΆϊά{n\{δp{n\δτ{n))eΩ} = | β | , (3.5)

where | | denotes Lebesgue measure. We consider also a sequence of independent,
identically distributed random variables {Un}n^l9 with zero mean and variance
U2. A stationary random field uδ(y91) can be defined by setting

uδ(y9t) = ΣUnΦ*{y + piH\t + τM). (3.6)
n

We shall refer to this random velocity field as Model A. The second class of models
is defined as follows: the point process (p{n\ τ(n)) is assumed to be a Poisson point
process with unit intensity, thus also satisfying (3.4); (see: for instance, Feller [13]).
For this second model, we assume that the Un are identically constant, i.e. Un=U
for all n. This will be referred to as Model B. From the definitions of both models,
and the identities (3.3), (3.4), (3.5), it is easy to verify that

(3.7)

and that the Eulerian velocity autocorrelation function is given by,

(3.8)

As models of random velocity fields, Models A and B represent, in a sense, two
extremes. In Model A, the components of the fields corresponding to different
"sites" (p(n\ τ(n)) are uncorrelated for any given realization of the point process
(p(n\ τn). On the other hand, in Model B, the Poisson statistics guarantee indepen-
dence of the components of the velocity field arising from points (p(n\ τ(n)) in disjoint
regions of the plane. In the theory of disordered systems, Model A is sometimes
referred to as having substitutional disorder, and Model B as having translational
disorder [26].

Before proceeding to the analysis of the renormalization problem for Models A



Mathematical Models with Exact Renormalization for Turbulent Transport, II 161

and B, we mention the well known special case of Model A, given by

so that φ(y) is a square pulse of width 1 and height 1 centered at 0,p(w) = n, for
n = 0, + 1, ± 2,..., and the Un are independent random variables with

Frob{Un=±D}=±. (3.10)

This model corresponds to a time-independent velocity with energy spectrum

and hence to ε = l,z = oo. It was introduced by Matheron and De Marsily [28].
Physically, the resulting velocity field consists of an infinite array of adjacent
horizontal layers with random velocities with values ± U. This model has been
discussed extensively [1,3,10,11,13,15]. Fields analogous to Model B were con-
sidered in two and three dimensional models by Koch and Brady [21], Avellaneda
and Majda [4], Avellaneda, Torquato and Kim [43] and others [15], to model
Darcy velocities in random porous media. In [1], we proposed the Gaussian fields
with spectra (3.1) with ε = 8/3 and z = 2/3 as simple models to study eddy diffusivity
in hydrodynamic turbulence. We proceed to the analysis of these models, discussing
first the case w = 0 (III.l) and then w Φ 0 (III.2). As mentioned earlier, the arguments
of Sect. II. 1 and Appendix 1 for the renormalization in the mean-field region I*
(which apply to the case w = 0 as well) require no assumptions on the higher-order
statistics and hence are valid without modifications for arbitrary non-Gaussian
velocities with spectra of the form (3.1).

III.L Superdiffusίon with Zero Mean Flow (vv = 0). Our starting point is the re-
presentation formula for solutions corresponding to plane-wave initial data, (2.23).

x y t
Making the change of variables x->-, y->-, t-*— and setting w = 0 in that
formula, we obtain o d p

Jxy t\\ Γ ^ . δ%2nΊ
I —,—,—^ I ) = e x p ιςx + my -ξ Dt

\δδ'p2)/ μL p2 J

(3.12)

Anticipating superdiffusive behavior, i.e., δ/p->0 as δ-*0, we obtain, to leading
order in δ,

(3.13)
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Henceforth, we focus our attention on the random variables
t/p2

δ J uδ(y/2Dβ2(s),s)ds9 (3.14)
o

and compute their asymptotic probability distribution as δ -> 0.

11 I.I. A. Region II: Central Limit Theorem with Fast-time Decorr elation. Recall
that in region II the scaling function is p(δ) = δ{Ar~ε~z)l2. As a first step, we show that
the Brownian motion appearing in (3.14) is irrelevant, in the sense that the random
variables

t/p2

δ J uδ(0,s)ds (3.15)
o

have the same asymptotic probability distribution as the ones in (3.14). In fact,
we have

t/p2 t/p2

δ J uδ(y/2Dβ2(s),s)ds-δ J uδ(09s)ds
0 0

na

Γ 1 1

• J f 2 ( l -
Loo

2ϋ2t2δ4~ε

ί

.00

(3.16)
Since 1 — e~ ( Z ) | f c | 2 < 5 2 ί ( s~ s ) ) / p 2 converges to zero as <5->0 for all k,s,s' and, moreover,
the integral

Ί l \

s' I J f c l 1 " ^
P \oo

2ϋ2t
Cί^(/)|/rε-^/ + (l)] (3.17)

(3.18)

is uniformly bounded as δ -• 0, we conclude that

t/p2 t/p2

δ J uδ{y/Wβ2{s),s)-δ f uδ(0,s)ds

tends to zero as <S->0, and hence (3.14) and (3.15) have the same asymptotic
distribution.

The second step is to show that (3.15) satisfies an appropriate Central Limit
Theorem. For this, define the "spectral measure"

\ΣUne
+ikp{n) + iωτ(rι) )dkdω, (3.19)
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and note that the field, uδ(0, s) satisfies

M1

2τr
π1/2all2\ 1 + -

Therefore, if we define a new field Vδ(s) by

l /2

163

(3.20)

1/2
(3.21)

and the intermediate time-scale θ(δ) by

we have
/p

f u4(0,s)ds =
i/2

(3.22)

(3.23)
o yj v(p) o

Notice that θ(δ) -+ oo as δ -» 0, and that the covariance of the right-hand side,

ί
/θ(δ) o

(3.24)

remains uniformly bounded as ^ ^ 0 , due to our choice of p(δ) (cf. Sect. II. 1.A and

Eq. (3.17)). It is known that, under these circumstances, ^ ^ J Vδ(s)ds is asymp-
/θ(δ) o

totically Gaussian, provided Vδ(s) satisfies suitable statistical mixing conditions.
To show asymptotic normality, we use a central limit theorem for velocities having
"blob structure," proved in Appendix 2. A possible alternative approach, (not
pursued here) would have consisted in verifying that the fields Vδ(s) satisfy a specific
set of standard mixing assumptions such as those in Ibragimov [18], Billingsley
[8], Kesten and Papanicolaou [19] or others [9,20].

Observe from (3.21) that the velocity field Vδ(s) has the form

where

vδ(s) =

2π J

α 1 / 2 π 1 / 2 ω

α\kγ

1/2

(3.25)

(3.26)

Using (3.25), we apply Proposition B.3, in Appendix 2, noting that the elementary
"blobs" Gδ(y,s) satisfy

$JGδ(y,s)dyds = O (3.27)

for each δ > 0, so that

/ 1 θ<δ) \
(3.28)

1 »(δ)

f Vδ(s)ds)=0,
θ(δ) 0
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and, moreover,

(
fθ(δ) °

= 21im J dy
δ[O -oo
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J Gs(y,s)ds

(3.29)

1 VV°)

From Proposition B.3, we conclude that J Vδ(s)ds converges in distribution
jW) o

to a Gaussian random variable with mean zero and variance

2U2

(3.30)

Using (3.13), we see that the effective equation corresponding to region II for
Models A and B is

dT(x,y,ή_ δ2T(x,y,ή

dt " dx2 '
(3.31)

and in the Gaussian case.

III.l.B. Region III. Recall that the scaling function for region III is p(δ) = δ1 ε / 4.
As in the preceding paragraph, the renormalization problem reduces to determining
the asymptotic distribution for the random variables

tip2

δ J Uδ(^2Dβ2(s\s)ds (3.32)
o

as <5->0. Again, since δ»ρ(δ\ the contribution from the Brownian motion is
negligible, and (3.32) is asymptotically equivalent to

tip2

δ J uδ(09s)ds. (3.33)

More precisely, we have

t/P2 tip2

δ J uδ(y/2DβMs)ds-δ J uδ(0,s)ds

oo

(3.34)

a quantity converging to zero as <5-»0, by the Dominated Convergence Theorem.
Having reduced the problem to (3.33), we introduce the auxiliary "blob" function

eik>+iω°dkdω. (3.35)

( ι +

V a2\k\2
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Using the function Gδ(y,s\ we can rewrite the integral (3.33) in the form

tip2

δ J uδ(0,s)ds = δ(1+z)/2ΣUnGδ(δpin\δzτ^). (3.36)
o n

The blobs Gδ{y, s) satisfy

$$Gδ(y,s)dyds = 0 (3.37)

for each δ -> 0 and

limfί\Gδ(y,s) - G0(y,s)\2dyds = 0, (3.38)
(5|0

where

t )l/1/2(k)\k\{1~ε~z)/2

^U 7 τ e dkdω. (3.39)2π W v

This function satisfies, by PlanchereΓs identity,

*dk. (3.40)

We can thus apply Proposition B.2, in Appendix 2 to conclude that for Models A
tip2

and B, the random variables δ J uδ(0, s)ds converge in distribution as δ -> 0, to a
o

centered Gaussian with variance

ϊ72ί2f^o(fc)|fcΓ"β^. (3.41)

By the usual argument, this iftiplies that the effective equation for region III for
Models A and B is

dT(x,y,t)_ d>T(x,y,t)

~ " l ( ) dx2 ( 2 )dt
with

(3.43)

This result agrees with the characterization of region III for Gaussian statistics
obtained in [1].

111. l.C. Region IV. We follow the general procedure of the above two paragraphs,
tip2

with p(δ) = δz/iε + 2z 2). As before, δ J uδ(sj2Dβ2(s\s)ds is asymptotically equiva-
2 o

lent to δ J uδ(0,s)ds as δ-^0. The latter integral can be expressed as a sum of
o

"blobs," evaluated at the points {(δpin\ δzτin))}, n ̂  0, multiplied by the "amplitudes"
{Un}, n ^ 0. In fact, let Gδ(y, s) be defined as

. ^^Voo^^l/cr1--^2

Gδ(y,s) = —f f — ^ 7 2 χ i / 2 (—. )eiωs+ikydkdω, (3.44)
CO \ \ ICO

+ a2\k\2z
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where g is an "intermediate" scaling function, given by

g = g(δ) = δ2«2z+ε-2\ (3.45)

Notice that limg(δ) = 0 in region IV. With these definitions, it is easy to check that
(5|0

t/p2

δ f «,((>,s)ds = (gm1 +^2Σ UnGδ((g(δ))p(n\(g(δ))zτ^ (3.46)
o

It can also be verified that $$Gδ(y,s)dyds = 0 and that Gδ(y,s) converges strongly
in L2(R2) to G0(y,s) as (5->0, where

•0(y, s) = — \ f q — )eik>+iωsdkdω. (3.47)
2π J J

 VJ. ω2 V/2V iωt '
a ' π

a2\k\2*

From Plancherel's Identity, we obtain

, I * ! 1 " ' " *

απ 1 +
a\k\ 2z

]eiωtsds dkdω

oo

(3.48)

tip2

Applying Proposition B.2 in Appendix 2, we conclude that δ J 1 (̂0, s)ds converges
o

in distribution to a normal random variable with mean zero and variance

2U2 / l e \
( ) 1 + i ε - 2 ) / z j l ^ l 1 - 6 - 1 \ )dk. (3.49)

|/c|z /
Differentiating this expression with respect to ί, we conclude that the effective
equation in region IV for Models A, B is

where the effective diffusivity is given by

/ P-2\ ϋ2+co ( \ - e \

D*γ(ή= 2 + ̂ ^ W + ( ε " 2 ) / ^ f l ^ - - ' f l - i - ^ - — U (3.51)
V z ) a V 1*1 /

f
a -

III.l.D. Region V. The time-scaling function in region V, from [1], is given by
p(δ) = δί/(1+ε/2\ Unlike in the other superdiffusive regions, Brownian motion is
not irrelevant in region V. In fact, the fluctuations in the Lagrangian velocity
caused by sampling the field with a Brownian motion dominate the fluctuations
arising from statistical time-decorrelation. This can be understood by comparison
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of the turnover time τa(k) = (a\k\z)~1 and the diffusion time τD(k) = (D\k\2)~1. In
fact, if z > 2, we have τD(k)«τa(k) for \k\ « 1. As before, we consider the random

tip2

variables δ } uδ(j2Dβ2{s\s)ds as (5->0. We introduce the auxiliary "blob"

functions °

1/2

(3.52)

where β(s) = -τ-β2( -^s ) is distributed like a Brownian motion on the interval
t 1 \P2 J

(0,1). With the functions Gδ(y,s), we can write

tip2

δ J uδ(yj2Dβ2{s\s)ds = p ( 1 + z ) / 2 £ UnGδ(pp^n\pzτ(w)). (3.53)
o n

We apply Proposition B.2, Appendix 2, noting that that the functions Gδ(y, s)
defined in (3.52) satisfy the necessary requirements. In fact, we have

= 0, (3.54)

and the sequence {Gδ(y,s)} is compact in L2(R2), almost surely with respect to β(s\
0 < s < 1. This can be seen as follows: for each δ > 0, we have

tt(Gδ(y,s))2dyds

t d+.,/2

ϊίί-
an 1 +

ω2

2

dkdω.

az\k\2zj

(3.55)

Notice that in this integral p 2 ~ 2 « l as (5-»oo. Moreover, it follows from
Lemma (5.1) in [1], that, except for a set of realizations of /?(•) of Wiener measure
zero, the integrals in (3.55) are uniformly bounded for 0 ̂  δ < 1 (with a bound de-
pending on the path /?(•)). Applying Lemma (5.1) [1], together with the Dominated
Convergence Theorem we find that, with probability 1, Gδ(y9s) converges strongly
in L2(R2) to G0(y9 s), where

IM(l-ε-z)/2 /I \

eιkβ(s)ds )ei(ky+ωs)dkdω.

a2\k\2\
(3.56)
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We conclude from these facts and Proposition B.2, Appendix 2, that

/ Γ t/p2

lim(exp iξδ f u
tio \ L o

= hm( exp I-^-JH
\ L

\ Ί
) <*s

/ J
( p ^ J 4

«io \ L P o V />

= e x p ^ - ς

2 ( 2 z ) ) 1 _ e / 2 α £ ( / ? ) j , /?(•)- almost surely, (3.57)

where ocε(β) is a random variable that depends on the path /?, given by
ocε(β)= J

2

difc. (3.58)

Consequently, the Fourier transform of the effective probability distribution
function, or Green function, is given by

4 ^ J ^ (159)

where vε(α) denotes the probabi l i ty dis t r ibut ion function of the r a n d o m variable
otε(β). This result coincides with the renormal izat ion in region V with G a u s s i a n
statistics derived in [1].

1112. The Case w φ 0. The renormalization theory with w Φ 0 and non-Gaussian
statistics follows the same methods as for the case w = 0. For simplicity, we omit
detailed calculations. What follows is a brief analysis of the three different super-
diffusive regions: II*, III*, and IV*

Region IIw. The renormalization follows the same ideas as in Sect. (II. 1.A), for
region II, the starting point being the integrals

t/p2

δ J uδ(y/2Dβ2(s) + ws, s)ds. (3.60)
o

It can be shown, using the scaling function p(δ) = δ{4~ε~z)/2 that in region I F the
random variables in (3.60) are asymptotically equivalent to

t/p2

δ f uδ(0,s)ds9 (3.61)
o

i.e. the Brownian motion and the shift induced by the transverse mean field are
negligible relative to the fast time decorrelation of the velocity field. The proof
then follows exactly the one for w = 0 of III. 1. A and the effective equation of motion
coincides with the one in (3.31).

Region IIIW. As in the corresponding region for w = 0, it can be shown that
t/p2 tip2

δ } uδ(^/2Dβ2(s) + ws,s)ds and δ J uδ(0,s)ds are asymptotically equivalent. Thus,
o o
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repeating the argument of III.l we find that the scaling function and the effective
equation of motion coincides with the one for w = 0; the latter is given in (3.42).

Region IVW. This is a superdiffusive region in the phase diagram, in which the
"sweeping effect" from the transverse mean flow is important. The corresponding
calculation for Gaussian statistics, given in Sect. II.2.C, yields a time-scaling
function p(δ) = δ1~{ε~z)/2. Since z < 2 , we expect that Brownian effects will be
negligible. In fact, it can be shown that the random variables

tip1 tip2

δ J uδ(y/2Dβ2(s) + ws,s)ds and δ J uδ(ws,s)ds (3.62)
0 0

have the same asymptotic distribution. We omit this straightforward calculation.
To investigate the asymptotic distribution of the second integral in (3.62) we define
the auxiliary field Vδ(s) by

δ J ψ \ (3.63)

ΊP2 μ/2 tit)

δ J «β(ws,s)ds = - — ί Vδ(s)ds. (3.65)

P

Introducing the intermediate time-scale

we have

Notice that θ(δ)->oo for δ-+0. Thus, the right-hand side of (3.65) is a normalized
sum of dependent random variables. To show that it is asymptotically Gaussian,
we introduce the auxiliary "blob"

Gδ(y, s) = ~ JjGa(fc, ω)eiky+iωsdkdω (3.66)

2π

with Gδ(k, ω) given by

αii2ψo(ky2\kr-^^

^ F (167)

A straightforward calculation shows that the field Vδ(s) is a superposition of
randomly shifted blobs Gδ{y, s). Specifically, we have

Vδ(s) = δ2Σ UnGδ(ws + δp{n\ s + <5τ(">). (3.68)
n

Applying Proposition B.4, Appendix 2, we conclude that f Vs(s) is asymp-
/W)

totically Gaussian, with mean zero and variance

1
( :

no \JW)

Vd(s)ds
2\ Ifτ2^+a>2U2a

J ψo{k)\k\-ι-'+'dk. (3.69)
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Therefore, the effective equation of motion in region IVW is the diffusion equation

dT(x,y,t) d2f{x,y,t) ,- 7 m
= ^ j y w ϊ j (3.7U)

dt dx

with

βiv* = ̂ Γ ί lAo^PΓ 1 "-*"^. (3.71)
W 2 -oo

This result coincides with the one derived in II.2.C for Gaussian statistics.

IV. The Boundaries Between Regions II and III, or IIM and III"

It is particularly interesting to study the intermediate regime between II and III
or, equivalently, Π w and IΠW because of their relevance to the statistical theory
of turbulence. According to the Kolmogorov-Obukhov "/c" 5 / 3 law" [22,32], the
spectral parameters associated with homogeneous turbulence are ε = 8/3 and
z = 2/3, and hence correspond precisely to a point lying on the boundary between
II and III, or Π w and IΠW, i.e., to the line segment

ε + 2z = 4 , 0 < z < l . (4.1)

Notice that for values of the parameter z in the range 0 < z < 1, the time decor-
relation induced by sampling of the random field with a transversal mean velocity
(sweeping effect), is negligible compared to the Eulerian time-decorrelation effect,
and consequently, the corresponding effective equations are the same whether w
vanishes or not.

As we shall demonstrate hereafter, if (4.1) holds, the system is superdiffusive
with scaling function

δi4~ε-z)/2 (4.2)

and the effective equation of motion is

=D{tf
dt dxdt dx

where D*(t) is a time-dependent diffusivity satisfying D*(t)~*D*u(t) for ί « 1 and
D*(ί)~#π for ί » l . The scaling function is identical to the one for regions II
and II*.

With the choice of (4.2) for the scaling function, we consider the integral
t/p2

δ J ua(y/2Dβ2(s) + m9s)ds. (4.4)
oo

We wish to compute the asymptotic distribution of this quantity as δ->0. A
straightforward variance calculation (as in (3.16)—(3.17)), shows that (4.4) and

t/p2t/p2

δ ί uδ(O,s)ds (4.5)
o

have the same asymptotic probability distribution as δ JO, and hence it is sufficient
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to study (4.5). As in III.l.A, we define the auxiliary velocity

(4.6)

Comparison with the arguments in III.l.A, shows that the intermediate time scale
in (3.22), given by

tAr = tδ2z~e-* = t (4.7)
P

is independent of δ, remaining of order 1, because 2z + ε = 4. We obtain accordingly,
from (3.21), (3.22), (3.23) that

tip2

 t

δ j uδ{O,s)ds = ]vδ(s)ds. (4.8)

If the random velocity uδ(y91) corresponds to Models A or B, then the integral on
the right-hand side of (4.8) can be expressed as a sum of "blobs," i.e.,

} Vδ(s)ds = δ" +z)/2ΣUnGδ(δp^\<5 V">), (4.8)
0 n

where

λtrmpmf^\]y (4.9)

This function satisfies the assumptions of Proposition B.2, Appendix 2, namely

J° f Gs(y,s)dyds = 0 (4.10)
— oo — oo

for each δ > 0 and Gδ(y, s) converges strongly in L2(R2) to G0(y, s) given by

1 \l/il2(k\\k\a~ε~z)l2 Λ \

o(y,s)-~ff Ψo (.fc)|fc|

 Γ -_ 5 ( je^AτW'-dfato. (4.11)
271 α 1 / V ' 2 ( l + ^ ^ ) V o Jα V ( l +

\ aW
The L2-norm of G0(y, s) can be calculated by Plancherel's formula:

+ c 0 + 0 0 >lι ί i - Ή i - l 1 " ' " ' / ' « \
J J (G0(y9s))>dyds = ff ψfm

 2 f J ^ " ^ d σ d σ ' (dkdω
-oo-oo Λ , ωz \\oo /

α π ' - • - - , 2 .
\ u i /v

. +002ί / l - ^ \

= - ί ^ o ( f c ) l f c | ( 1 - — } 1 - , / | z W (4.12)

Applying Proposition B.2, Appendix 2, we conclude that (4.4) is asymptotically
Gaussian with variance

τ]2t +oo / \_p-a\k\-t\

2— f ^oWlfcl1"1"' 1 Γ7S— K (4-13)
α -αo \ α|k| z ί /
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so that the effective equation for f(x, y, t) is given by (4.3) with an effective longitudi-
nal diffusivity

D*(t) = — J φo{k)\k\ι-ε-ze-aWtdk. (4.14)
a -oo

As remarked previously, this diffusivity behaves like D*I

(ί) for small renormalized
times and like D* for large renormalized times. For ε = | and z = §, the
Kolmogorov-Obukhov values of the spectral parameters, we obtain the effective
diffusivity

D*{t) = — f φo(k)\k\-η/3e-alkl2/3tdk. (4.15)
a -oo

V. Pair-Distance Distribution and the Fractal Dimension of Interfaces

The models studied here are extremely rich and reveal in a qualitative fashion
many of the observed features of passive advection in turbulent flows, especially
when considered in the statistical regimes corresponding to regions II, III (or I P ,
IIP), and on the interfaces between these regions. In this section, we study the
following quantities of practical importance associated with higher-order statistics
for the passive scalar:

(i) the probability distribution function for the advection of pairs of particles, which
is intimately related to the correlation function

(Tδ(x,y,t)Tδ(x',y',t)y, (5.1)

(ii) the fractal dimension ofadvected line elements, or interfaces, evolving in the flow.

In Paragraph V. 1 we present the results concerning relative diffusion of pairs
of particles and their application to computing the pair-dispersion or pair-diffusivity
for Kolmogorov-Obukhov spectra, corresponding to ε = 8/3, z = 2/3, as well as
the pair-diffusivity corresponding to intermittency corrections to the Kolmogorov-
Obukhov theory. In Paragraph V.2 we discuss the results predicted by the models
for the fractal dimensions of interfaces in the turbulent simple shear flows and
apply the results to the physically relevant regimes corresponding to the neighbor-
hood of the Kolmogorov-Obukhov point in the (ε, z) phase-diagrams. A rigorous
mathematical derivation of these results concerning relative dispersion and the
fractal dimensions of interfaces is given in V.3. Finally, in V.4 we make some
remarks concerning the invariance of the effective pair-distance distribution under
the scaling group associated with the function p = p(δ).

V.L Pair-Distance Distribution. We describe in this section the predictions of the
models for relative diffusion of pairs of particles and give a rigorous derivation of
the evolution equation for the pair-distance distribution in Kolmogorov-Obukhov
turbulence (ε = 8/3, z = 2/3); as well as in the neighboring regimes of the phase-
diagrams corresponding to intermittency corrections.

We recall first the definition of the pair-distance distribution function P(lί912, t).
If the initial data T0(x,y) is interpreted as an initial density or concentration of



Mathematical Models with Exact Renormalization for Turbulent Transport, II 173

solute particles in the flow, then the joint probability density for a pair of noninter-
acting advected particles is given by

β(x, y; x', / , ί) = T(x9 y9 t)T{x\ / , t), (5.2)

where (x, y) and (xr, y') denote the positions of the two particles. The pair-distance
probability density for the system can be obtained from Q(x,y,x\y\ή by introduc-
ing the horizontal and vertical separation variables,

h = χ'-χ, ι2 = y'-y (5.3)

and integrating over the position of one of the particles, so that

+00+00

P{h,h,t)= J ί Q(x,y;x + h,y + l2,t)dxdy
— oo — oo

+ 0 0 + 0 0

= J J T(x9y9t)T(x + lί9y + l29t)dxdy. (5.4)

Accordingly, P(/1,/2,ί)^i^2 denotes the probability that two particles released
independently at t = 0, have horizontal and vertical separations in the intervals
(lulγ +dli\(l2j2 + dl2\ respectively. It is easy to show from (5.2) that P(/ l5/2,ί)
satisfies the integrodifferential equation

dP(l I t) + °° + °°

Our main result for the long-time, large-distance behavior of the pair-distance
distribution for the models is a mathematically rigorous derivation of the equation
satisfied by the averaged scalar

/ ( ^ ^ ) \ (5.6)P(/1,/2,0 l i m / p ( ^ , ^
όίo \ \δ δ p2(δ)

In this formula, the scaling function p = p(δ) is determined according to the different
statistical regimes in the two phase-diagrams presented in the Introduction.

Proposition V.I. (i) In the mean-field regions I and /w, the effective equation satisfied

by P(lί9l2>t) is

3P(h,l2,t) d2P(ll9l29t) d2P(ll9l29t)

dt dl\ dl\ '

where D* is the effective longitudinal diffusivity for the averaged passive scalar given
in (2.18);
(ii) in regions //, IIW, P(/1 ?/2,ί) satisfies the equation
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where D*(l2) is the pair-distance effective diffusivity, given by

2U2 +0°
Di(h) = ί Ψo(k)\k\ι-'-Ίl-CQskl2 ]dk. (5.9)

a -oo

(iii) In regions III and IIIW, the effective equation for P(lί,l2,t) is

ή dϊi (5 10)

where D*u(l2,t) is a space-and-time-dependent pair-diffusivity, given by
+ 00

D*u(l2,t)=ϋ2t j ψ0(k)\k\ι-'il-coskl22dk. (5.11)
— oo

(iv) The effective equation in the intermediate boundary between II and III, or IIW

and IIΓ, is

with effective diffusivity

2U2+CO

D*nt(i2,t) = J Ψom'-'e-^il - cos kl2)dk. (5.13)
a -oo

(v) In region IV of the phase-diagram for w = 0, the effective equation for P(l1,l2, t)
is the diffusion equation

mh,ι2,t)_ m^t)
δt ~ l v ( ) dl\ ' ( '

where Dfw(t) is the effective diffusivity corresponding to the single-particle renormali-
zation problem.
(vi) In region I Vw of the phase diagram with w / 0, the effective equation for P{lι,l2, t)
is

with effective diffusivity

2α(72+

r°°
:—z^~ J ^oWl^l ε 0 — coskl2)dk. (5.16)

W 2 -oo

(vii) Finally, in region V of the phase-diagram for w = 0, the equation of motion for
P(l1,l2, t) is nonlocal, as is the case for the corresponding single-particle distribution.

+00+00

If Po(h>h)= ί ί T0(x,y)T0(x + lχ,y + I2)dxdy denotes the initial pair-distance
— oo - oo

density in the macroscopic spatial variables, we have

+ 00

P(lul2,t)= f G{h-l\,t)Po{l\,li)dl\, (5.17)



Mathematical Models with Exact Renormalization for Turbulent Transport, II 175

where G(ll9ή is the Green's function for the pair-distance evolution. This function
and the fundamental solution for one particle motions in region V (cf. (3.59)) are
related by the equation

^ τ ( ^ = , ί ) . (5.18)

The aforementioned results constitute a complete description of the long-time/
large-distance properties for relative diffusion of pairs of particles in all the statistical
regimes. The pair-diffusivities depend on the initial vertical separation, /2, in some,
but not all, phases of the (ε, z) plane. Notice that in regions I, I*, IV* and V, the
pair diffusivity is independent of ί2, and is equal to twice the value of the effective
single-particle diffusivity (in the special case of region V this is translated into
Eq. (5.18) for the nonlocal pair diffusivity). These regimes correspond to motions
of the pairs of particles which are uncorrelated on the macroscopic time-scales. On
the other hand, in regions II, 11*, III, I I P and IVW, and the boundaries between
II/III and I P / I I P , the relative pair diffusivity depends on the initial y-separation,
l2. This reflects the fact that the positions of the particles remain strongly correlated
on the macroscopic space/time scales, due to long-range spatial correlations in the
turbulent velocity field. Direct inspection of the equations for the renormalized pair-
diffusivities shows that, for finite Z2, the pair diffusivities D*(l2) or D*(l29t) are
smaller than twice the value of the single-particle diffusivities, and converge to that
value as l2 -> oo, so that the correlation effects disappear as the separation, l2 tends
to infinity.

The behavior of the independent pair-diffusivities for small renormalized times
is interesting and can be determined easily by rescaling and expanding (5.9), (5.11),
(5.13), (5.16) and small Z2. This gives the following results:

(i) in regions II, I P , as well as on the boundaries between II and III, and I P and
I I P , we have

U c π / 2

+ z " 2 , Z 2«l, (5.19)

with

2^2+oo

cπ = J \k\ι-*-z(\-cosk)dk. (5.20)
a -oo

(ii) In regions III, I I P , we have

DUl2,t) = cmtlε

2-\ I2«l (5.21)

where
+ 00

cm = U2 j \k\1-\ί-cosk)dk. (5.22)
— oo

(iii) The behavior of the pair-diffusivity in region IV*, is given by

Dtv«(l2) = cιγl2-\ (5.23)
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where

2ϋ2a+co

c I V = — - - f (fcj1 -£+z(l - cos k)dk. (5.24)
- o o

These results can be applied to obtain a mathematically rigorous derivation
of the relative diffusion equation in Kolmogorov-Obukhov turbulence in the
context of the model, and to predict the consequences that result from departures
from the /c~5/3 law by intermittency corrections. In fact, applying the above results
to ε = 8/3 and z = 2/3 we obtain

/ 2 « 1 , (5.25)

with

2U2 +0°

y = f |fcΓ7/3(l-cos/φ//c. (5.26)
a -oo

This expression for pair diffusivity in the model is in complete qualitative agreement
with Richardson's 1926 /4/3 law for relative diffusion in atmospheric turbulence.
It is valid for the Kolmogorov-Obukhov values ε = 8/3, z = 2/3 as well and small
corrections in the constant γ and in the exponent ε + z — 2 are obtained, for ε, z
near ε = 8/3, z = 2/3 in regions II or Πw. However, the Kolmogorov-Obukhov
regime lies on the boundary between regions II and III, and the solution of the
renormalization problem indicates that in region III the time decorrelation effects
become negligible in the long-time large distance limit, with the velocity field be-
having as if it were time-independent. We observe that, the limit as ε -> 8/3, z -> 2/3,
with (ε,z) in region III, of the pair diffusivity D*u(tJ2) satisfies

I2«l9 (5.27)

with

+ 00

y = U2 I |/cΓ5/3(l-cosfc)ί*fc. (5.28)
— oo

The pair-diffusivity in Eq. (5.27) is consistent with the Richardson scaling X2 ~ Γ3,
but has a completely different dependence on the separation of the pair of diffusing
particles. This result in the model has the same form as the heuristically derived
intermittency corrections for pair dispersion proposed by Hentschel and Procaccia
[17]; in fact (5.19) and (5.27) exhaust all of the various possibilities which were
proposed in [17]. In our model, the difference between (5,25) and (5.27), is due to
the discontinuity in the dependence of the macroscopic equations of motion on
the large-eddy turnover times, as the statistics (ε,z) cross the boundary between
regions II and III.

We observe also that region III corresponds precisely to turbulent regimes for
which Taylor's hypothesis concerning the validity of the infinite correlation time
approximation is applicable. Thus our rigorous analysis demonstrates that infini-
tesimal corrections to the Kolmogorov-Obukhov regime (ε = 8/3, z = 2/3) can yield
very different effective equations for relative diffusion, which agree with the classical
Richardson /4/3 law for (ε, z) in region II or on the boundary 11/II I, but are completely
different in region III, which is the region of validity of the Taylor hypothesis.
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V.2. Fractal Dimension of Interfaces and Advected Line Elements. The geometry
of level sets of passive scalars or of advected line (or surface) elements in a homo-
geneous turbulent flow, can be studied very precisely in the context of our models.
This is an important issue in the study of real turbulent flows with a well-developed
inertial range, in view of the fact that measurements of geometrical objects, such
as interfaces, or level sets, have been made recently with considerable accuracy
[31]. The regions of the phase diagrams that are directly relevant for turbulent
transport are regions II and III, for w = 0, and II*, III* for w Φ 0, as well as the
boundaries separating these regions, which contain the Kolmogorov-Obukhov
regime ε = 8/3, z = 2/3. Our analysis of the neighborhood of this point leads to
rigorous numerical values for the dimensional defect 2 — d, where d is the fractal
dimension of the interface, which are in good agreement with measurements by
Lovejoy [27], Meneveau and Sreenivasan [31], and the recently obtained bounds
of Constantin [12].

To fix ideas, we consider here the motion of a "line-element" of noninteracting
Lagrangian particles, coinciding initially with the y-axis. The position of a particle
which starts in position (0,y) is given by (X(y,t), Y(y,t)% where

t

X(y9 i) = vt + l uδ(y + ws + ^2Dβ2(y, s\ s)ds + y/ΪDβ1 (y, t)9
o

and

Y(y, t) = y + wt + ^/2Dβ2(y, t). (5.29)

Here βiiy,-) and β2(y, ) are independent Brownian paths for each y, and fit(y, •),
βiiy\ •) are independent for yΦy'. The position of the particles on the line are
correlated through the random velocity field, uδ(y, ή. The joint probability distri-
bution for a collection of N particles starting at positions (0,yx),...,(0,yN) is given
by the product

T1(xuyut)T2(x2,y2it) "TN(xN,yN,tl (5.30)

where Tf(x, y, t) is the solution of the advection-diffusion equation with initial data

yi). (5.31)

The problem of tracking the position of the line element described by (X(y, t\ Y(y, ή)
relative to coarse-grained space and time scales is equivalent, in statistical regimes
where Brownian motion is irrelevant (II, III, IV, I P , I I P , IV*), to studying the
asymptotic behavior of the level sets of the equation

dTδ(x,y,t) δ Γ (y t \ldTδ(x9y9t) δ _dTδ{x9y9t)

(δ)2lV *\δ9p(δ)2)} d {{δ)f
(

dt p(δ)2lV *\δ9p(δ)2)} dx {p{δ)f dy

δ2 Γd2Tδ(x9y,t) x^t)Λ

P J ( }

with a Heaviside initial data

{° X<°o (5.33)
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Due to the anisotropy of the models, it is sufficient to consider only the fluctua-
tions of the line-element in the x-direction. To study these fluctuations in the
macroscopic space/time scales, we make the change of variables y<-+y/δ, t —• t/(p(δ))2

in (5.29), and define the function

δ p2j p(δ)2

] (* ^ U \ \ P ' ) (5.34)
0

Our main results are summarized in

Proposition V.2. In all regions of the phase diagrams except in region V, the function
Fδ(y, t) converges in distribution, for each fixed t>0,toa stationary Gaussian random
function of y,F(y,t) and for ε,z in region V, Fδ(y,t) converges in distribution to a
non-Gaussian, stationary random function F(y, i). In all cases, we have <F(j;, ί)> = 0.
The covariance of F(y, t) varies according to the values of ε, z, as follows:

(i) In regions I,IW,IV and V,F(y,t) is δ-corr elated for each t, i.e.,

< F(y, t)F(y + h, t) > = δ(h){ I F(y, t)\2}, (5.35)

where the variance (\F(y,ί)|2> is equal to 2D*t in region I, Iw and IV. Here D*
represents the effective diffusίvity for the renormalized averaged scalar. In region V,
the variance is given by

^Ί«d*M (5.36)

where dvε(oc) is the distribution function entering the definition of the effective Green
function (cf. (3.59) and [J]).
(ii) In regions II and IP the limiting random function F(y,t) has covariance

U2t+?
(F(y,t)F(y + h,ή} = f φQO(k)\k\1~ε~zcos(kh)dk. (5.37)

a - oo

(iii) In regions III and IIIW, the covariance of F(y, t) is given by

fj2t2 +oo

(F(y,t)F(y + h,t)} = J φ0(k)\k\1~εcos(kh)dk. (5.38)
•^ — oo

(iv) In the intermediate boundaries between II and III, or IIW and IIIW we have

ϋ2t+? Λ Γ i-β-β '*i"Π
<F(y,t)F(y + h,t))= J ^o(fc)|fc| 1 \cos(kh)dk. (5.39)

a -oo L a\k\zt J

(v) Finally, in region IVW, the covariance of F(y,t) is

fτ2 +oo

(F(y9t)F(y + h9t)} = -—£- J ι/'0(/c)|λ;|1~~ε + zcos(/c/z)dA;. • (5.40)
W - oo

This proposition implies that, in the regimes for which F(y, t) is not delta-
correlated, this function is a self-similar, almost surely Holder-continuous, stationary
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Gaussian process. The corresponding modulus of continuity can be readily com-
puted by noting that

<\F(yj)-F(y + Kή\2y = 2[(\F(y,ή\2>-<F(y,t)F(y + Ktm (5.41)

We observe that, for ε, z in regions II, II*, III, IIP, IV* and on the boundaries
II/III and Iir/III* we have

(5.42)
0

where Z)*(ί,/ι) is the pair-diffusivity for the pair-distance distribution. Therefore,
using the results of the previous paragraph on the behavior of D*(ί,/z) for h«\,
we obtain

<IF(y, t) — F(y + h91)|2> ^ C(t)\h\2H, (5.43)

where C(t) is a time-dependent function, and the Holder exponent H is given by

'ε + z — z

TJ

2 7

^ , in III, III* (5.44)

^—^, in IV*.

I 2
By a theorem of S. Orey [34], we identify the Holder exponent with the dimensional
defect H = 2 — d, where d is the fractal dimension of the line element in the long-
time, large distance limit, described by the graph of the function F(y, t). In this
fashion, we have achieved a completely rigorous characterization of the fractal
dimension of the typical interface or line element in the context of the special flow
fields in the model. This is summarized in Table 2 of the introduction.

We can apply these results to study the neighborhood of the Kolmogorov-
Obukhov regime. For ε = 8/3, z = 2/3 we obtain

H = l d = l, (5.45)

which also agrees with the values in an infinitesimal neighborhood of the
Kolmogorov-Obukhov regime in regions II or IIW. However, taking the limit of
H as (ε, z) approach (f, f) from regions III or IIIW, we obtain the different results

H = | , d = i (5.46)

Both sets of values were proposed by several authors [12,17,27,31] on the basis
of experiments or dimensional analysis. Our analysis of the model, from first princi-
ples, shows that discrepancies in fractal dimensions are related to the fact that the
Kolmogorov-Obukhov regime lies on the boundary between two different phases
in the (ε, z) plane.

V.3. Proofs of Propositions V.I and V.2. We present here the proofs of the state-
ments of the previous two paragraphs. We begin by giving a proof of Proposition V.2,
concerning the asymptotic behavior of an advected front, and then we show how
the results of Proposition V. 1 on the pair-distance distribution can be essentially
deduced from Proposition V.2.
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V.3.A. Proof of Proposition V.2. We need to show that the function

yt-+Fδ(y9t) = δ f uδU + ws + y/Wβ2(y,s)9s)ds + δβ1(ϊ—^) (5.47)
o \δ ) \δ (p(δ))2J

converges in distribution, for each t > 0, to a stationary random function F(y, t\
satisfying properties (i) through (v) in the statement of Proposition V.2. To do this,
it is sufficient to compute the asymptotic distribution of the random variables Φδ,
given by

(5.48)

where {j^,...,^} is a set of real numbers and (λl9...9λN) is an arbitrary vector,
and to show that the limiting variance satisfies

N

σ2= Σ *MFiyj,t)F(yk9t)y9 (5.49)

where the covariances (F(yp t)F(yki ί)> are determined by Proposition V.2, accord-
ing to the different values of ε, z. It is not hard to verify that the variances of
Φδ = ΣλjFδ(ypt) are uniformly bounded in δ. Therefore, in the case of Gaussian

j

velocity fields, the proof of Proposition V.2 reduces essentially to the calculation
of the limit of the variances (Φj} as (5->0. For non-Gaussian statistics satisfying
the assumptions of Models A and B, a suitable central limit theorem can be applied.
We shall consider here only the latter cases, given that the analysis of Gaussian
fields is straightforward, and can be carried out using the approach of [1].

The proof of Proposition V.2 is divided into two parts. First, we consider
regions in which the limiting process is Holder continuous, i.e. regions II, I P , III,
IΠW, IVW and the boundaries Π/IΠ and I P / I I P , and in a second step, we study
the regions for which the limiting process is (5-correlated in y, corresponding to
regions I, I* IV and V.

Step 1. We define the auxiliary vector field

U,(z,s)= Σ
7 = 1

and introduce the function

= [ Σ λjCosiyj/(*) = [ Σ λjCosiyjkiU^ikl (5.51)

where I/ΌM is the standard infrared cutoff entering the definition of Eδ(k,ω) in
(3.1). Clearly, the fields Uδ(z,s) and uδ(y,s) have a similar structure, except for the
fact that f(k) is an oscillating function of k. In particular, if uδ(y, t) satisfies the
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assumptions of Models A or B, the same is true for Uδ. The spectrum of Uδ(z, t)
is given by

Tf#,(. ^ ω\ (5.52)

where Eδ(k, ω) is the power-energy spectrum of uδ(y, t). In the regions of interest,
the effects of Brownian motion are negligible, as shown in Sect. Ill, and, similarly,
Brownian motion can be neglected in the expression for the random variables Φδ

in (5.48). Thus Φδ can be replaced by
ί / p T N ίv \ Ί t/p2

δ ί Σ λM ^ + W5,5 )\ds = δ J Vδ(ws,s)ds. (5.53)
o L/=i \δ )\ o

t/p2

Applying the arguments of Sect. Ill, to the integrals δ J Uδ(ws, s)ds, we conclude
o

that, in regions II and IIW, Φό converges to a Gaussian random variable with
mean zero and variance

2U2

a

2U2

a

2ΰ2

+ 00

ί
— 00

+ 00

- ' .

N

Σ

N

2 !

+ 00

-ε~zdk. (5.54)

It follows that the covariance of F(y, t) is given by

2U2+CO

(F(yj,t)F{yk,t)} = j Ψo{k)cos[k(yj — ykf\\k\ι~ε~zdk9 (5.55)
a -oo

which is what we wanted to show. The same argument applies in regions III, IIIW,
IVW and in the intermediate segments II/III, ΠW/IΠW. Accordingly, the asymptotic
variances of Φδ in such regions are

+ 00

- oo

N +oo

= U2t Σ λjλk J φo(k)cos[k(yj — yk)~\\k\ι~εdk^ (5.56)
j,k = 1 — oo

in regions III,

, 2U2at V

2U2at " +» . m l . , + .,.
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in region IVW, and

2U2t +0°
σ,2

nt = —
a -

2ΰ2t N

0° Γ 1 -p-oW2*!

ί (f(k))2\k\^-'\ I - 1 * \dk
co L Φ\ J

Σ ί Ψo(k)cosk(yj-yx)\k\χ-'-'\ 1 777^- \dk (5.58)

on the boundaries II/III and ΠW/IΠW. This concludes the discussion of the regimes
with Holder-continuous fronts.

Step 2. We consider next the regimes for which F(y, t) is ^-correlated, i.e. regions
I, I* IV, and V.

For velocity fields in regions I and Iw, the characteristic function of Φδ can be
written in the form

E{eiΘΦή=exp[-Dθ2( Σ / V]

(5.59)

We know from the theory of homogenization [4,7,23,33,36,37], that each factor
in (5.59),

EjexpΓiflλ^ j uδ((yj/δ) + ws + y/2Dβ2(yJ/δ,s)9s)ds"\j, (5.60)

for l^j^N, converges in probability to its homogenized limit,

e-9*λ)ιw-D*9 ( 5 6 1 )

where D* is the homogenized longitudinal diffusivity, given in (2.18). [In Appendix 1,
we derive a weaker result, concerning the behavior of the average of (5.60) with
respect to velocity statistics.] We conclude that

( £ λ) )1, (5.62)

so that Φδ converges in distribution to a Gaussian random variable with variance

2D*t X λj, as claimed.

Next, we consider velocity statistics in region IV of the phase diagram for
w Φ 0. In this regime, Brownian motion effects are negligible, so

Φδ~δ f Vδ(0,s)ds. (5.63)
o

Following the arguments of Sect. III.l.C, with f(k) instead of the infrared cutoff
^Q/2(/C), we can show that the integral in (5.63) is asymptotically Gaussian with
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mean zero and variance

Up

σ,2

v = l im
<5jO

/P2 -12

J U,(0,s)rfsJ

- o o

(5.64)
t(p2

where g(δ) = δ2/{2z+ε-2)»δ. (See Sect. III.l.C.) In fact, the variable δ ] Uδ(0, s)ds
o

can be written as a sum of blobs, satisfying the assumptions of Proposition B.2 in
Appendix 2; see also the Remark following the proof of that proposition. The

rapid oscillation of/( I as δ-+0 implies that the limit in (5.64) is given by

V δ J
2U2t + 0 0/

σfv = I I T.λi Il/cl1 ε Ί 1 \dk

coί \ Γ ] - P - \ k \ z Ί

L\y v L wz J
(5.65)

This shows that F(y, t) is a Gaussian white noise for ε, z in region IV.
In the same way, the asymptotic behavior of Fδ(y, t) for ε, z in region V can be

established by using the method of III.l.D, which consists in applying Proposition
B.2 to the random variables

δ ί Σ λjUδl — -\- ^/2Dβ2{ ~^,s \,s I Ids. (5.66)

The straightforward details of the proof are omitted. Note that F{y,t) is not
Gaussian, since the one-particle Green function, given by (3.59) is non-local. The
asymptotic variance of the integral in (5.66) can be found by an explicit calculation.
It is given by

where vε(α) is defined in Sect. Ill and [1]. We conclude that F(y, t) is a non-Gaussian,
(5-correlated random process for ε,z in region V. This concludes the proofs of
Proposition V.2. •

V.3.B. Proof of Proposition V.I. Consider an initial datum

T0(δx,δy) = ttfo(ξ,η)eiδξx + iδ»ydξdη (5.68)

representing the (unnormalized) distribution of particles at time ί = 0. If Γ(x, y, t)
denotes the corresponding solution of the advection-diffusion equation (2.1), we
have

T(x, y, t)T(x', / , t') = Π J7 fo(ξ, η)fo{ξfη')A{ξ, η, ξ\ η', χ9 y, x', / , ήδξdηdξ'dη',
(5.69)
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where

Δ(P n P W v i; v' 1/ Λ — Jδξx + iδηy + iόξ'x'+ iδη'y'+ iδ(ξ +ξ')vt + iδ(η + η')wt-δDtξ2

with

ws,

S V 2 (5.71)

0

Here j?2(
s) a n d j8'2(s) are independent Brownian motions. Averaging

A{ξ9η9ξ'9η'9x9y9x'9y'9t)

with respect to velocity statistics and using the homogeneity of Uδ(y, t) we obtain

0,y'-y,n\^ (5.12)

B(ξ,η,ξ',η',

= δη^2l

y,

π
y.

hit

i)

,e~δD ' ) 2 ' x £{e l B ( < If

0

Recalling that P(ll912, t) is the spatial convolution of T(x9y, t) with itself (cf. (5.4)),
we have

Therefore, the asymptotic behavior of ( Pi —,—,— I ) is determined by the limit
\ \δ δ p2jI

as δ -* 0 of the quantity

r. — ιξlι—ιηl2 — (2dz/pz)DtςjL v, / T? ( ~ιB{ξ,η, — ς, — η,ϋ,(l2δ),(t/p'ί))\ \ (ξ. ΊΛ\

In this formula, the exponent inside the Brownian expectation is given by

tip2

δξ j
o

t/p2

^~ ) + ws,s)ds. (5.75)
"" ίl \

- δξ' f u,[- + JWβ'Js) + ws,s)

The proof of Proposition V.I can be carried out by computing the asymptotic

distribution of the quantity B\ ξ9η, — ξ9 — ?/,0,— 9— ) as δ^O. This is done by
V δ p2j

setting p = p(δ\ where p(δ) depends on the specific region under consideration,
and applying the appropriate Central Limit Theorem in each case. Notice that in
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the superdiffusive regions, the contributions from the first two summands on the
right-hand side of (5.75) are negligible, so that

J u/
o

tip

-δξ J Uslj J

(5.76)

(cf. (5.48)), with N = 2,yί = 0,y2 = \2A\ = ζ and λ2 = — ζ. Thus, in such cases we
have

and the effective equation satisfied by P(/ 1 ?/ 2,ί) = lim( P ( — , — , - — ] ) can be

δio \ \δ δ p2JI
deduced immediately from Proposition V.2, which characterizes the asymptotic
distribution of Φδ. Finally, the evolution of the pair distance distribution in the
mean-field regimes is determined by noticing that, for ε,z in regions I and Iw, we
have

<5|o \ \δ prδ prp2) \δ p2'δ p2'p1

= T(x,y,t)T(x\y\tf) (5.78)

so that P(ll9l29t) satisfies, from (5.4)

p/7 / t\—(ΐ\T'ίP i/,\\2/,iξlι+iηl\-2D*tξ2-2Dtη2Jj:J1/. / ς 7 Q \
ryllil2iL) — J J I ^ 0 v ζ 5 ' / / l " UζuίJ. \D./y)

This concludes the proof of Proposition V.I.

V.4. Invariance of the Renormalized Equations under the Scaling Group (/i,/2,0~>

—,—,— ). In the previous sections of this paper, we have derived limit equations
δ δ pzj

for the renormalized ensemble averaged mean, T(x, y, ί), and the renormalized pair-
distance distribution function P(x, y, t). These renormalized equations are derived
under the large-scale renormalized transformation,

x y t

δ δ p{δf

so it is natural to investigate whether the effective equations for T(x,y9t) and
P(/1 ?/2,ί) are invariant under the scaling group,

δ p(δ)

It is convenient to refer to Tables 1 and 2 of the introduction for the remainder
of the discussion.
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In regions, I, P , IV, and V, the equations for T and P are automatically invariant
under the scaling group of transformations in (5.80). For the regions I, P , and IV,
this is a straightforward calculation which utilizes the specific time dependent form
for the diffusion coefficient in region IV. The scale invariance for the nonlocal
equation in region V requires a slightly more subtle argument. For any number
α > 0, the diffusion equation

df ,„ -
— = tε/2ocTxx (5.81)

is invariant under the scaling transformation appropriate for region V given by
p(λ) = λ1/(1+ε/2) so that the same is true for the corresponding Green's function,
K(x, t, α). Since the actual Green's function is region V is given by the superposition.

00

K\x,t) = J K(x,t,a)dvε(a) (5.82)
0 +

with an appropriate probability measure vε (see (1.10)—(1.12) and Sect. 4 of [1]), it
follows that Kε(x,t) is also invariant for the appropriate symmetry group from
region V. Thus, we have established the scale invariance of the renormalized theory
for regions I, P , IV, and V, and also for appropriate steady velocity fields at
z = + oo in regions I, P , and V. The scale invariance in these regions is a reflection
of the fact that the infrared cutoff ψo(\k\) does not enter into the renormalized
diffusivity in these regions.

However, the effective equations for T(x, y, t) in regions II, I P , III, I I P , IVW,
and on the boundaries II/III and IP/IIP are not invariant under the corresponding
scaling symmetry group. This peculiar fact is related to the fact (summarized in
Table 1) that the coefficient of diffusion for the renormalized equation for these
regions depends upon the infrared cutoff ψo(\k\). This apparent lack of invariance
reflects the fact that the coarse-gained motion of fronts and pairs of particles is
correlated in these regions and hence the averaged scalar T(x, y, ί), which can be
interpreted as a marginal probability distribution for the evolution of a single
particle, does not describe completely the macroscopic evolution of the system.
Nevertheless, there is a more subtle fashion in which the renormalized equations
in these regions reflect the scale invariance in (5.80). This can be seen through the
renormalized pair-distance function P(/1,/2,ί). For the pair-distance distribution
function P(/1 ?/2,ί), one can easily verify that the equation satisfied by P(ll9l2>t) is

invariant under the transformation (/i,/2Jί)~M —,—,—- I, in the limit | / 2 | « 1 ,
\δ δ p2j

obtained by substituting in the evolution equations for P(/1 ?/2,ί) the expressions
for the pair-diffusivity D*(/2,ί) for /2 « 1 given in (5.19)—(5.24). To emphasize this
point, we consider the pair diffusion equation in region II with the expansion from
(5.19) for |/2 | « 1 and obtain,

t) 28^p

dt " 2 dl\

With the scaling group appropriate for region II for (5.80), i.e., with p(λ) = λi4~ε~z)/2,
the equation in (5.81) is scale invariant. Similar calculations apply to the other
regions of renormalization. Thus, the equation for the pair distance distribution
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is scale invariant under the symmetry group in (5.80) in the regime, 1l2 \« 1 but
the equation for T7, involving the large distance limit l2 -• oo, is not scale invariant.

Appendix 1. The Mean-Field Regions I and IH

For values of the parameters (ε, z) satisfying ε + 2z < 2 + min(2, z) in the case w = 0
(region I), or ε < 2 + min(2,z)-2min(l ,z) for wΦO (region V) the appropriate
time-scaling function is

P(δ) = δ, (A.1)

corresponding to Fick's law of normal or mean-field diffusion, x2 ~ ί, and the

effective equation satisfied by the average scalar T(x,y91) = lim( TΊ - , - , — I ) is
ό|o \ \δ δ δ )I

a parabolic diffusion equation with a renormalized diffusion coefficient in the x-
direction given by

T ^ ' " 2 ^ 1 ' 1 1 1 " 1 " ^ ^ (A2)

According to the arguments in Sect. 2.1, this result follows if we establish

Proposition A.I. The random variable

At) = ηwlDpiyt) + - \uΛ — - , — ids (A.3)

converges in distribution to a Gaussian random variable with mean zero and variance
2Dη2 + 2(D* - D)ξ2. •

Proof. To prove this result, we use the homogenization techniques developed by
Papanicolaou and Varadhan [35], Kozlov [21] and others [31, 34, 4] to average
partial differential equations with random, rapidly oscillating coefficients. For
simplicity, we consider only the case y = 0 in (A.3).

Let us make the change of variables t = — in (A. 3) so that

Zδ(t) = δηy/2Dβ2l-J + δξ J uδ(ws + ,/WβMs)ds, (A.4)

where β2{-) is an auxiliary Brownian motion. Define the auxiliary function, or
corrector,

(Jky + iωt _ i\

Xs(y, t) = ff - M n l / | 2 dύδ(K ω), (A.5)
ι(ω + wk) + D\k\2

where dύδ(k,ω) is the spectral measure associated with the random field uδ(y,s).
By construction, χδ(y, t) satisfies

d d d2\
— + w — + D — I χδ(y, t) = uδ(y91) (A.6)
dt dy dy2/
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and fo(O,O) = 0. By Ito's Formula [29], we have

χδ(wt +
o dy

2Dβ2(s),s)dβ2(s)

2Dβ2(s),s)ds. (A.7)

Hence, for all ξ, η, we obtain a decomposition of Za(ί) as a sum of a stochastic
integral and a remainder:

δηy/2Dβ2

= δ I
T2)+Hl

2Ddβ2(s)

(A.8)

The proof of Proposition 1 proceeds in two steps:

Step 1. We show that Mδ(t) converges in distribution to a Gaussian random
variable with variance 2Dη2 + 2(D* - D)ξ2; and

Step 2. We show that Rδ(t) converges to zero in probability.

Proof of Step 1. The variance of the stochastic integral Mδ(t) is

t/δ2

(E{(Mδ(t))2}) = 2δ2D J {E
o

= 2δ2D

= 2Dt

dy

dy

ds

(0,0) ds

^ ( 0 , 0 )
dy

(A.9)

where we used that —- (y, s) is a stationary process with mean zero. In fact, we have
dy

dy D\k\
-dύt(k,ω), (A. 10)

so that / ^ ί ί ^ \ = 0, and moreover the variance of
\ dy I dy

is

dy ih
ikdύδ(k, ω)

|/c|2

\ω + wk\2 + D\k\
-Eδ(k9ω)dkdω



Mathematical Models with Exact Renormalization for Turbulent Transport, II 189

π
1+-

ω2

a2\k\2

(AM)

Using the formula

1 +

and PlanchereΓs identity, we conclude that, for fixed /ceR, the dω integral in (A.I 1)
is given by

1 +;° fe2
1 1

ω2 \a\k\z
dω

= _ f

D\k\2 + a\k\z

Thus,

(A. 13)

dy
...

( A 1 4 )

The singularity of the integrand for \k\ « 1 is |fc|i-«+min<2,z)-2min<i,z) for ^ / o and
|fe|i-ε-2z+min2fz f o r ^ = 0, so that the integrand is uniformly integrable as δ-+0
if and only if (ε, z) is in region Iw(w Φ 0) or region I if w = 0. Using (A.9) and (A. 14),
we obtain

δ[O

= [2Dη2 + 2(D* - (A. 15)

A standard central limit theorem for stochastic integrals [14] which was used by
us in [1], allows us to conclude from (A. 15) that the stochastic integral Mδ(t)
converges in distribution to a Gaussian random variable with mean zero variance
2Dη2t + 2(D* - D)ξ\ as desired.

Step 2. From (A.8), the remainder term Rδ(t) is given by

Γexp|~i(*w + ω)t/δ2
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(E{\Rd(ή\2})

Qdύδ(Kω)\2)\

We split the domain of integration in two parts, i.e.,

J
The first term on the right-hand side of (A. 18) satisfies

P^Π /yi(ω + \vk)t/δ2-Dk2t/δ2\

J

 W L O Z)2|fc|4 + |ω + wfc|2

2 < 5 2 , , k2

= 0(<52), as <5->0.

On the other hand, the second term in (A. 18), satisfies

J

w2|

(A. 19)

(A 20)

This final term can be made arbitrarily small by a suitable choice of k0. Therefore,
combining these two estimates, we conclude that lim<£{K^(ί)2}> = 0, as desired.

<5|0

This completes the proof of Step 2, and hence Proposition A.I is established.

Appendix 2. Auxiliary Central Limit Theorems for Models A and B

This appendix contains the statements and proofs of the central limit theorems
used in Sect. Ill, IV and V to compute the effective equations of motion for non-
Gaussian velocity statistics. The main results presented here can be described as
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central limit theorems for stochastic processes which are "functions of mixing
processes," in the sense of Ibragimov [16], cf. also Billingley [6]. the direct application
of such general theorems to Models A and B would require, in practice, the verifi-
cation of appropriate "mixing conditions" and a-priori estimates on the random
processes Vδ(s), uniformly in the small parameter δ. While it is likely that such
methods may apply to Models A and B, we prefer instead to present here self-
contained proofs of the Central Limit theorems for Models A and B, using only
elementary results in Probability Theory. We note that certain velocity fields formed
by superpositions of "Poisson blobs," different than the ones studied here, were
shown to satisfy suitable mixing conditions by Kesten and Papanicolaou [17 j -

Recall that {£/„}, {(p(n\τ(n)} which denote respectively a sequence of random
variables and a point process in R2, are said to satisfy the hypothesis of Model A if
the {£/„} are independent, identically distributed random-variables with mean zero
and variance (U2) = U2 and (p(n\τ{n)) is a stationary, ergodic point process in R2,
such that

lim -^card{(p{n\τ(n)):(p{n\τin))e(O,L1) x (0,L2)} = 1. (B.I)

Similarly, {[/„}, {{pin\τin)} satisfy the assumptions of Model B, if Un = U {Un are
constant) and {(pin\ τ(π))} is a Poisson point process with unit intensity, thus satisfying
(B.I).

Before stating and proving the principal results, we recall some useful elementary
properties of random fields formed by superposition of "blobs," or elementary wave-
lets.

+ 00+00

Lemma B.l. Let G(y,s)eL2(R2)nL1(R2) with J J G(y,s)dyds = O. Then, if
~ oo — oo

{(p{n\τ(n))}, {Un}9 satisfy the assumptions of Models A or B, the random variable

Wn)) (B.2)

is uniquely defined as an element <?/L2(< >) and satisfies
+ 00+00

<7> = 0, <Y2> = ΐ72 J I (G{y,s)γdyds. (B.3)
— oo — oo

Similarly, the expression

Σ i + t,τin) + t) (B.4)

defines uniquely a stationary, square-integrable stationary stochastic process for
— oo < t < oo satisfying (Y(t)} = 0, and

<Y(t)Y(φ = U2^G(y + us + t)G(y + t9s + tr)dyds

= U2(G*G)(t-t',t-tf). (B.5)

(Here, the symbol * denotes convolution). •

This lemma provides a precise definition to the superposition of blobs defined
in (B.2) and (B.4) for the case of functions G(y, s) having unbounded support. This
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generality is necessary in order to study random fields with long-range space/time
correlations.

Proof of Lemma B.L We shall give only the proof of the first statement concerning
Y, since the second one is proved in the same way. Let {Gk(y,s)} be a sequence of
functions with compact support satisfying

HGk(y9s)dyds = O (B.6)
R 2

and
lim $$(Gk(y,s) - G(y,s))2dyds = 0. (B.7)

k-* oo

Then {Gk(y, s)} is a Cauchy sequence in L2(R2), i.e., for all v > 0 there exists an integer
fc(v) such that

II Gk - Gw ||L2(R2) < v, for fc, k! > v. (B.8)

This implies that, for the sequence of random variables

ι = Lυn^k\P %τι ')), (B.9)
n

which are well-defined, since Gk has compact support [11], satisfies

<ιn-nι2>
UnUAGk(p{n\ τ<»> - Gk.tf»\ τ ( n )) x (Gfc(p<"'>, τ<»'>) - Gk.(p«\ τ("'}

= U21| Gk-Gk. ||2

<l/V, (B.10)

for fc,fc; > fc(v). Hence, {Yk} is a Cauchy sequence in L2(< >) (the space of square-
integrable random variables, which are measurable with respect to the σ-algebra
generated by {!/„}, (p(n),τ(π)), n^ 1). Therefore, {Yk} converges in L2(< >) as /c->0
to a random variable Y satisfying (B.3). Notice also, that Eq. (B.10) holds for Model
A because the ί/π's are independent with mean zero, and for Model B because
(pin\τ{n)) is a Poisson process with intensity 1. This concludes the proof of
Lemma B.I. •

The following proposition is used to obtain asymptotic expressions for the
renormalized particle displacements in regions III, IV, V and IΠW.

Proposition B.2. Assume that {Un}, {(pin\τ{n))} satisfy the assumptions of Model A
and B, and let {Gδ(y,s)}δ>0 be a sequence of functions in L 2(R 2)nL 1(R 2) such that
^(Gδ(y,s))dyds = Ofor each δ>0, and such that,for some G0(y,s)eL2(R2), we have

+ 00+00

lim J J (Gδ(y,s)-Go(y,s))2dyds = 0. (B.11)
<H° -oo-oo

Then, for all z > 0 the random variables

Y(δ) = δ1 +zl2ΣUnGδ(δp{n\ δzτ{n)) (B.I 2)
n

converge in distribution to a centered Gaussian random variable with mean zero and
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variance

Proof. Assume first that Gδ(y, s) = G0(y, s) for all δ > 0 and that G oeC^(R 2). This
assumption is removed subsequently by an approximation argument.

We consider first Model A. For a fixed realization of the point process (p(n\ τ(w)),
the conditional variance of Y(δ\ σ2, is given by

σ] = E{(Y(δ))2\(p*\ *<">)} = δ1 +ZΣ U2lG0(δpM, 5V">)], (B.14)
n

where the sum extends over all integers n such that (δpin\ δzτin)) lies in the support
of the function Go, (y, s). From the ergodic theorem, and (B.I), we have

δ[0

almost surely. Observe that, given a single realization of (p{n\ τ(n))w, the random
variables Xiδ) = UnG0(δp(n\ δ2τ(n)) are independent. Moreover, since Go is bounded,
and thus Zj^ «()(£/„), the sequences {Xn(δ)} satisfy the classical Lindeberg-Levy
condition [6], ensuring the validity of the central limit theorem for the sums (B.12).
Hence

\imE{eiλγ(δ)\(pin\τ(n)\n ^ 1} = e~λ2ff2/2, almost surely, (B.16)
<5 J O

where σ2 is given by (B.I 3), for λ in a countable dense set of real numbers. Therefore,
for all λ in such a set, we have

limE{eiλY{δ)} = HmE{E{eiλY{δWn\ τ(n)}}
<5|0 <5|0

This implies that E{eiλy(δ)} converges for all λ and hence that Y(δ) converges to a
centered Gaussian with variance σ2 = U2{{(G0(y, s))2dyds.

We consider next Model B, i.e. we assume that Un = C7, and that {(p(π),τ(π))} is
a Poisson process with unit intensity. The characteristic function of Y{δ) can then
be computed explicitly. In fact, we have

E{eiλyl{δ)} =exp[δ-(ί + z)tf[eiλϋδ(1 + z)/2G«y>s)- 1]]

= exp [(5"(1 + z ) ί j leiλΌ"ι + '}/2G<*>'8) - \J\dyds. (B

Using the fact that

+z)/2G0(y, s)] - 1 - iλϋδ^ +z)l2G0{y, s)= - μ2ϋ2δί+z(G0(y, s))2

and that G0(y, s) has mean zero and compact support, we obtain, substituting (B. 19)
in the preceding Eq. (B.I8) and passing to the limit,

iλY^} =εxp\
L

{ } p\ ̂ ^ t t } (B.20)
Ho L 2 J
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This concludes the proof of Proposition B.2 in the case of identical, smooth blobs
with compact support.

In the more general case, in which the functions Gδ(y, s) converge strongly to
Goiy.s) in L2(R2), we argue as follows: first, note that {Gδ} is a Cauchy sequence.
Therefore, for all v = 0 there exists δt > 0 such that for all δ > δ1 we have

and hence

EU Y{δ) - δ{1+z)/2 X UnGδi(δp{n\ δzτin))\ j ^ Ό2v2. (B.22)

This shows that it is sufficient to establish the proposition for Gδ(y, s) = G(y9 s),
+ oo

where G{yis)eL2(R2)nL\R2) and J G{y9s)dyds = O. We can further reduce the

problem by using the density of C^(R2) in the subspace of L 2(R 2)nL 1(R 2) of
functions with integral equal to zero. Accordingly, if G(v)(yis)eCQ(R2) satisfies
IIG — G(v) || L2 ( R 2 ) < v, then we have

EU Y(δ) - (5(1 + Z ) / 2 Σ UnG
iv\δp{n\ δzτ{n))\ j ^ ί/2v2, (B.23)

uniformly in the parameters. Hence, it is sufficient to show that Y(δ) is asymptotically
Gaussian when Gδ(y, s) — G0(y, 5) is an element of C^(R2). Since this was already
established, this concludes the proof of Proposition B.2. •

Remark. Using the method of proof developed here, one can show that the conclu-
sion of Proposition B.2 is valid if the assumption (B.I 1) is replaced by

)\SC forall(5>0,

where C is a fixed constant, and

lim f f(Gδ(y,s))2dyds = f f (G0();,s))2^s.
^ | 0 —oo—oo —oo—oo

The following proposition is a central limit theorem which is used to characterize
the long-time behavior in regions II and IIW.

Proposition B.3. Assume ε > 0, z > 0 and ε + z > 0. Let Gδ(y, s) be given by

Gδ(y9s) = i - f J Gδ(k,ω)eiky+iωsdkdω9 (B.24)

Wί'ίft

Gδ(k, ω) = —
2 \l/2

all2πil2(l+^- a

π^Vlfel^ + ω 2) 1 ' 2 ' ( B 2 5 )
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and define the stationary random process

Vs(s) = #1+*'2Σ UnGs(δp^,δ'τM+s), (B.26)

where {Un} and {(p{n\ τ{n)} verify the assumptions of Model A or Model B. Then, for
all positive functions θ(δ), such that lim θ(δ) = +00, the random variables

δ[0

1 β(δ)

Vδ(s)ds (B.27)

converge in distribution to a centered Gaussian with variance

, 2ΰ2,. ε-zdk. (B.28)
a

Proof The proof proceeds in two steps. First^it is shown that for each positive
number v > 0, there exists a smooth function G(y, s), with compact support, such
that

+ 00 +

j j G(y,s)dyds = 0, (B.29)
— 00—00

with the property that, if we define the process

Vδ(s) = <5(1 +z)lz X UnG(δpin\ δzτ(n) + 5) (B.30)
n

and set

1
J Vό(s)ds,

then the asymptotic variance of Y(δ) — Ϋ(δ) is bounded by v, i.e.,

ϊϊm<|r(<5)- ?(c5)|2>^v. (B.32)
δ[0

The second step consists in showing that Ϋ(δ) is equal to a normalized sum of
"2-dependent" random variables satisfying the classical Lyapunov 4th moment
condition for asymptotic normality [6,11]. This implies that Ϋ(δ) is asymptotically
normal, and, since the asymptotic variance of Y(δ) - Ϋ(δ) can be made arbitrarily
small, the conclusion follows.

Step 1. Let us fix (50 > 0. For each δ > 0, set

K(0) = δn + z)/2 £ UnGδo(δp^\ δzτin) + 5) (B.33)
n

and
1 θ(δ)

y < o > ( ( 5 ) = J V(o){s)ds ( B 3 4 )

Jθ{δ) 0
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Notice that < Y{0\δ) > = < Y(δ) > = 0, for all δ > 0. An explicit calculation shows that

lim<| Y(δ)- Y°(δ)\2> = \im2U2 jφo(k)[ψjδk)112- J M W 2 ] ! * ! 1 " '

— f ds\e-aW*s'ds')dk.

+ —7ψo(m-ΨH,2(δoW\k\1-ε-zdk. (B.35)
a -oo

Hence, the asymptotic variance of Y(δ) — Y{0)(δ)) can be made arbitrarily small by
choosing <50 small enough. Consequently, if Yi0)(δ) is asymptotically normal for all
(50, as δ ->0, then the same is true for Y(δ). This reduces the problem to the study of
the single blob Gδo(y, s), which has the property that its Fourier transform, Gδo(k, ω)
is smooth and vanishes for \k\ < k0 or \k\ > kί9 where ko,k1 are positive constants.
For this reason, the partial derivatives

V«/ϊl/2,// ri>W2i// (λ l\l/2\L\(l-ε + z)/2

(B.36)

are square-integrable for all p > 0 , q>0 and hence |j>HsHGdo(j;,s)| is square-
integrable for all positive integers p, q. From this, we conclude that for all v > 0,
there exists G(y, 5) smooth, with compact support, such that (B.29) holds and

+ 00 / + 00 \ l / 2 1/2

J ds f \Gδ0(y,s)-G(y,s)\2dy) <-=—=. (B.37)
- O O \-00 / Uy/2

The asymptotic variance of (Y{0)(δ) — Y(δ)) is given by

/^ θ(δ) j

lim <| Yi0\δ) - Ϋ(δ)\2} =lim J ds] <(V{

δ

0){s) - Vδ(s))(Vδ°\sf) - Vδ(s'))}ds'
δ[0 δ[ 0 θ(δ) 0 0

2ϋ2θ(δ) s

= lim — r J ds\ (Gδo - G)*(Gδo - G)(0, sf)ds'
δ[0 θyό) 0 0

+ 00 f + 00

= 2C/2 jT f
— 00 L — oo

= 2U2( f ( f\Gδ0(y,S)-G(y,s)\2dy\l2ds)2

\ - 0 0 \ - 0 0 / /

< v. (B.38)

Since v can be arbitrarily small, this calculation shows that it is sufficient to establish
the asymptotic normality of Y(δ) as (5 -• 0, for arbitrary smooth functions G(y, s)
with compact support and mean zero. This completes the proof of Step 1.

Finally, we remark that, without loss of generality, the random variables {[/„} can
be assumed to be uniformly bounded. In fact, let U* = max ( - M, (min (£/„, M)) - C,
where M is a large positive constant and C is chosen so that < (7*> = 0. The reader will

readily verify that asymptotic variance of the difference between (θ(δ))~1/2 j Vδ{s)ds
0



Mathematical Models with Exact Renormalization for Turbulent Transport, II 197

θ(δ)

and θ(δ)~1/2 J V*(s)ds, where F*(s) = δ{1 + z ) / 2 Σ U* Gδ(δp(n\ δzτ{n) + 5), can be made
0 n

arbitrarily small by choosing M large enough.

Step 2. We consider first Model A (Un independent, identically distributed, (p(n\ τ(n))
~ L

ergodic). Suppose that G(y,s) vanishes for | s | > — , where L is a given, positive

number. Let us fix a realization (p(n\τ(n)) of the ergodic point process. Then, for all
s, 5' such that \s — s'\>L9 the random variables Vδ(s) and Vδ(sf) are independent.
This a consequence of the fact that the variables {Un} are independent, and that if,
for some n ^ 1, the variables Un gives a non-zero contribution to Vδ(s\ then Un

cannotj :ontribute to Vδ(s'),jmce \{δzτin) + s)- (δzτ(n) + s')\ = \s-s'\>L and thus
either G(δp{n\ δzτ{n) + s) or G(δp{n\ δzτ{n) + s') must vanish. Defining the triangular
array of random variables

^ d s (B.39)Xm(δ) ^!Vδ(s)ds

1 L ~
= δil+z)/2 Συn-F\ G(¥n) + mL, δzτ{n) + mL + s)ds

= δ(1 +z)l2 Σ UnH(δpin) + mL, δzτ{n) + mL\ (B.40)
n

where

1 L

H{y9 s) = — J G(y, s + σ)dσ9 (B.41)

we see that Xm(δ), Xm>{δ) are independent (given {(p(u\ τ(π))}) for \m - m'\ ^ 2. Notice
that for all N > 0, we have

t jv-i { NL

Σ Xm(δ) = -— j Vδ(s)ds. (B.42)

We set iV = N(δ) = [β(δ)/L]. Also, the conditional variance, σ2(δ\ of the normalized
sum (B.42) given {{p(n\τ(n))} satisfies

2 / 7 2 Λf(d) s / N

lim σ2{δ) = lim f ds f ( δ1 +z V G((5p(M), (3V 0 + s ' J G ί V ^ ^ ( z )^ ( n )) Ids'
δϊO δiθN{δ) 0 0\ n J

5|0 N(δ) 0 0 \ n ' /
L

= lim 2U2δι +z Σ J G (δp(">, 5zτ ( π ) +
δi° n 0

L 00

= 2U2j(G*G)(0,s)ds = 2U2 J(G*G)(0,s)ώ. (B.43)
0 0

Hence, by a well-known central limit theorem for "m-dependent" variables [33], the
normalized sums (B.42), with N = N(δ) converge in distribution to a centered
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Gaussian random variable, if the following Lyapunov condition holds:

i W)-l
l i m 7 ^ I Σ E{(Xm(δ)f\{(p<n\τn)}}=0. (B.44)

Here E{-\ {(pin\ τ(π))} denotes the conditional expectation, given a realization of the
point process, i.e., averaging only over {un}. We show first that (B.44) holds in
probability, by establishing that

(B.45)

(where brackets denote averaging over both {Un} and (p(w),τ(π))) for some constant
independent of δ, and hence that

mδ)~1 \ 1
4 ) (B.46)

l i m ( ^ ^ Σ X ^ ) ) l i m
<Ho \N(δ)2

 m = 0 / δ[oN(δ)

To prove (B.45), notice that the fourth moment of X0(δ) is given by

-<52<1+*><l/2>2( Σ tfX2)> (B.47)
\ « / \nΦn' I

where

1 L

HH = — $ G0(δp\ δzτ{n) + 5)rf5 = H(δpin\ δzτ{η)). (B.48)

Therefore,

/ l y ^\|4-\ _ 52(2+1)// rr4\ /jj2\2\l

+ 00+00

— 00—00

2

J (H(y,s))2dyds)\ (B.49)

We conclude that <|Jfo((5)|4> is uniformly bounded and hence that (B.45) holds. In
particular, the sum of the conditional fourth moments,

i N(δ)-1

r2 Σ E{Xm(δW\τW)} (B.50)

converges to zero in probability. Hence there exists a sequence <5yJ,0 such that
Fδj {(p(n\ τ(n)} converges to zero in a set of full measure in the space of configurations
of the point process (pin\ τ(n)). We conclude that the normalized Y(δj% with
N(δj) = [θ(δj)/Ll satisfy

lim E{eiλY^Wn\τn)} = eiXV)l\ (B.51)
(5j-»0

almost surely, for i i n a countable, dense set of R, with
00

σ2 = 2U2 J (G*G){O,s)ds. (B.52)
o
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Integrating (B.51) with respect to (p{n\τ{n)) statistics, and using the Dominated
Convergence Theorem, we have

e-^2)l\ (B.53)

for a countable dense set of λ% and hence for all λeR. Since the family of random
variables is tight (because (Y(δ)2} is uniformly bounded), every sequence {Y(δj)}
has a subsequence {Y(δjn)} converging to a centered Gaussian with variance σ2. We
conclude from this that the entire family {y(<5)} converges to this distribution. This
concludes the proof of the proposition for Model A.

The corresponding result for Model B is proved in a similar fashion, observing
that for \s — s'\ > L the functions G( , + 5) and G( , + s') have disjoint supports and
hence, since (δp{n\δzτ(n)) is a Poisson point process, the corresponding random
variables Vδ(s) and Vδ(s') are independent. •

The next proposition is used to characterize the long-time behavior corres-
ponding region IVW.

Proposition B.4. Suppose that w^O, and that ε, z satisfy the inequalities 1 < z < ε < 2.
Define Gδ(y, s) = {In)'1 \\Gδ{K ω)eiky+iωsdkdω by its Fourier transform

Let Vδ{s) be the random process defined by

V,(s) = δΣ Gδ(δpM + ws, <Sτ<"> + s), (B.55)
n

where {£/„}, {(p(n\ τ{n))} satisfy the assumptions of Models A or B. Then, if θ(δ)-+ 00
as δ -» 0, the random variables

* 1 β(δ)

Y(δ) = -—- J Vδ(s)ds (B.56)
y/θ(δ) 0

converge in distribution as δ -> 0 to a centered Gaussian with variance

Γ1+*-z
σ2 = 2E_^ 1 ψo(k)\kΓ1+*-zdk. (B.57)

Proof The proof consists in reducing the problem to the study of a single "blob,"
independent of <5, having compact support. This enables us to invoke, as in Step 2
of the proof of Proposition B.3, a Central Limit Theorem for sums of 2-dependent
random variables.

In a first of a series of reductions, we observe that it is sufficient to the asymptotic
normality of modified sequence of random variables, Y(1)(<5), obtained by considering,
instead of Gό(y, s), the blobs

, s) = -1- J J G^iK ω)eiky+iωsdkdω (B.58)
2π

with
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In this last equation, notice that G(/}(fc,ω) vanishes for \k\ < k0 and \k\>kl9 where
/c0, k1 are positive constants which are independent of δ. The justification of this
reduction is done by explicitly computing the asymptotic variance of Y(δ) - Ya\δ)
and showing that it can be made arbitrarily small by an appropriate choice of the
parameter <5X in (B.59). This explicit calculation is possible because (B.54) and (B.59)
have the same form, as functions of ω.

Due to the presence of the small parameter δ2(z~1] in the denominator of
G^\k, ω), this function becomes singular as δ -• 0. For this reason, we make a second
approximation, introducing the function G{2)(y, s), with Fourier transform

\ (B.60)

where δ2 is a fixed constant. This new function vanishes identically for | ω | S cδ2.
This implies, using the fact that the function G{2\k, ω) is band-limited in k, that the
derivatives Dp

ωDq

kGδ

2)(k, ώ) are uniformly bounded in L2(R2), for all positive integers
p and q. Hence, |s|p|3;|9G^2)(y, s) ̂  Cpq for some constant Cpq, uniformly in the small
parameter δ. We claim that, for an appropriate choice of the small parameter δ2,
the functions Gf]{y, s) give rise to normalized sums Y{2)(δ) (defined according to
(B.55), with G{2) in place of Gδ\ such that {Yi2)(δ) - Y(1)(δ)) has an arbitrarily small
asymptotic variance. To see this, define the function

and observe that

= 21im— f
^10 fj(O) o 0

i θ(δ)

= 2l/2lim— f
sio U(o) o o

i θ(δ) s

= 2U2\im J ]
<5|0 θ(δ) o 0

(δ) o LHo θ(δ)

= 2U2lim-^-jFδ(s)ds, (B.62)

where

Fδ(s) = j$IG{2\k,ω - few) - G^ίfe,ω - kw)\2^^-dkdω
ω



Mathematical Models with Exact Renormalization for Turbulent Transport, II 201

We write the limit in (B.62) as

1 — cos ωθ(δ) .

θ(δ)ω
by

Since the function — 2 — , in non-negative, the latter expression is bounded

i θ(δ)

f
π\ω-kw\2 \ ω2θ(δ)

J F0(s)ds, (B.65)
<Uo 0(5) o

where the function F0(s) is obtained by setting δ = 0 in (B.63), i.e.,

= α

π |ω — /cw| ω

We now choose the parameter δ2 in the cutoff function ζ(ω) = 1 — Ψol2[ — I so that

the supports of ζ2( — wk) and φo(k) are disjoint. This is always possible if δ2 is small
enough. In the latter case, the following property must hold: there exists a positive
number ω 0 , such that

fif ψo(k)>0 and ζ > - f c w ) > 0 , ( B f i 7 )

(then | |

On account of (B.67), the function

(B.68)

|ω — kw\ ω

is integrable, so that by the classical Riemann-Lebesgue lemma, we have

lim F0(s) = 0, (B.69)
s-> oo

and hence
lim <[Y(2)(<5) - r(1)((5)]2> = 0. (B.70)

Finally, we claim that the asymptotic error is negligible if G{

δ

2)(y, s) is replaced by
the fixed blob G(3)(y, s) with the Fourier transform obtained by setting δ = 0 in (B.60),
i.e.,

π1/2\ωl

In fact, the asymptotic variance of the difference between the corresponding random
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variables Y{2)(δ) and Y(3)(<5) is given by

= 2U2lim fJIG<2)(fc,ω - kw) - G(3)(fc,ω - kw)\2(l ~C°*ωθ(δ))dkdω. (B.72)
<H<> \ ω2θ(δ) )

This last integral is dominated by

ι l - ε( yy — /CVV \

— Γ — I*!1

δ2 ) 1-008 0*0) .,,.,„ ( B 7 3 )

π \ω — kw\2 ω2θ(δ)

2(z-l) 3 1 β(ί)

1 F(s)ds, (B.74)f
π 0(5) 6

where the auxiliary function F(s) is defined by

' ω — kw

S i n ω ί d W c o . (B.75)
\ω — kw\2

ω

The function in brackets in this integral is easily seen to be smooth and integrable.
Hence,

\imFδ(s) = π J φo(k)ΨaO(δχk)ψo[—-)\krι-κ+3xdk (B.76)
Ho -co \ δ2 J

and from (B.74), we conclude that < [ Y(3)(<5) - Y (2)(δ)]2 > converges to zero as δ -»0.
We have reduced the problem to the study of a single blob, G(3)(y, 5), independent

of δ, which is smooth and decays rapidly at infinity. The asymptotic variance of
Y(3)(<5) is

00

lim<[Y ( 3 )((5)] 2> = 2L/2 f (G ( 3 )*G ( 3 ))(w5,5)ds, (B.77)

where * denotes convolution in y and s. Given a small positive number v, let G(y, 5)
be a smooth function with compact support satisfying

^ (B.78)
2(7

and

HG(y9s)dyds = O. (B.79)

It is easy to verify that the asymptotic variance of the corresponding normalized
sums satisfies

00

lim <[Y(3)((5) - Y(<5)]2> = 2U2 j (G(3) - G)^(G{3) - G)(ws,s)ds < v. (B.80)
no 0

We have therefore shown that the conclusion of Proposition 4 follows if we establish



Mathematical Models with Exact Renormalization for Turbulent Transport, II 203

the asymptotic normality of normalized integrals (B.56) corresponding to compactly
supported blobs with mean zero. The proof of this latter fact is done in the same
way as Step 2, Proposition B.3, using the fact that the corresponding random
processes Vδ(s) have finite domain of dependence. This concludes the proof of
Proposition B.4. •
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