
commun. Math. Phys. 146,91-102 (1992) Communications in

Mathematical
Physics

© Springer-Verlag 1992

d-Torsion for Complex Manifolds
and the Adiabatic Limit

Stephane Laederich

Department of Mathematics University of Michigan, Ann Arbor, Michigan 48109-1003, USA

Received December 20, 1990; revised form September 16, 1991

Abstract. We consider a complex fibration F-+M-^->B and pull back bundles
Ex and E2 over M. Using the adiabatic limit idea, we compute the metric invariant
TP(E1)/TP(E2), where TP(E) denotes the complex Ray-Singer torsion.

1. Introduction

In this paper we will study the Ray-Singer d-torsion [RSI & II] of complex mani-
folds which are fiber bundles. To be more specific, we consider the fibration

| π , (1.1)

B

where F, B and M are compact complex manifolds and where π is holomorphically
locally trivial. Given a hermitian bundle $ over B, one wants to compute the
δ-torsion Tp(π*$) on M. We recall that the torsion is defined as follows:

^J fhredtX (1.2)
s=0 Γ{s)0 )

where ΔPA is the 5-Laplacian on forms in Λp'qT*M ® π*$ and where the right-hand
side of (1.2) is to be understood as the derivative at s = 0 of the analytic continuation
of the sum. (For more details, we refer to [RSI] and Seeley [Se].) We will use the
convention that A is a positive operator. Note also that (1.2) defines the <3-torsion
to be the square of that of [RSI & II]. In the case where the bundles are constructed
by representations of π^M), J. Fay [Fa], showed that (1.2) allowed to define
analytic extensions of the torsion to non unitary representations.

One wishes to find formulas for the torsion in terms of the torsion of the base
manifold. In the real case, such formulas are known. They can either be proved
topologically (see D. Fried [Fr]) or analytically (see Forman [Fo] or Dai, Epstein
and Melrose [DEM]). For acyclic pull-back bundles, these formulas are remark-
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ably simple: the torsion only depends on the torsion of the base on the bundles
S ® HjF9 where HjF is the/ h cohomology bundle of the fiber over B. The analytical
proofs of these formulas are based on the idea of adiabatic limits first introduced
by Witten [Wi] and later used by Cheeger [C], Bismut and Cheeger [BC] and
Dai [DI&II] or [DEM], [Fo]. One chooses a metric on M which makes the
fibration (1.1) into a Riemannian submersion, that is

One then introduces the modified metrics

(1.3b)

where ε > 0. By taking the limit as ε -> 0 of the torsion and by using the metric
invariance, it is possible to compute the torsion of the pull back bundle π*$.

Since we are interested in the complex case, for which the torsion is not (in
general) a metric invariant (see [RSΠ]), we will consider two bundles δx and δ2

over the base B and take ratios of torsions. We will require that

the bundles Λpι>*-jT*B®£>

i®HP2>j#r are acyclic

for ί = 1,2,Pi = 0, . . . ,d im c £ and p2j
Γ = 0, . . . ,dim c F. (1.4)

That is, the Dolbeault complex with coefficients in S{ ® HP2JF has no cohomology.
Since these the cohomology of these bundles are the E2 terms of the Leray-Hirsch
spectral sequence of the fibration (see Bott & Tu [BT] or Mazzeo-Melrose [MM]),
the condition (1.4) implies that

ΛPί-*T*M®π*δh i = 1,2 are acyclic. (1.5)

We have

Theorem 1.1. Under the condition (1.4), for p = ^. . . jd im^M, the limit as ε->0 of

exists and is equal to
Tp(π*ίl9ε)

Tp(π*δ2,ε)

^ΓTMl®Hp^F)γ^

where Tp(π*$hε) denotes thejj-torsίon defined by (1.2) for the gε

M metric (1.3b) and
where Tp(Si®HP2jF) is the d-torsionfor the gB Laplacian on B with coefficients in

This formula differs from the one for real fibrations in two respects. First there
is the product over p, which is a natural consequence of the splitting of ΛpqT*M ® $
in fiber and base components, and, more important, we have ratios of torsions.
As showed in [RSΠ], this is a natural metric invariant object on compact complex
manifolds.

Hence, we have

Corollary 1.2. For any Riemannian metric g on M, under condition (1.4) and for any
p = 0, ...,dim cM,

is given by (1.6).
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The author has been made aware that in the case of locally Kahler fibrations,
these results are implictly contained in the papers of Bismut, Gillet and Soule
[BGS I, II & III]. However, the techniques used here are based on different ideas
and the proof is valid for arbitrary holomorphic fibrations.

A dynamical interpretation as well as examples of the use of such a product
formula will be given in a subsequent paper. The idea is that on Kahler manifolds
M with a non-vanishing holomorphic vector field v, there is a flow-induced fibration
over B = C/Z + τTL (see Crew and Fried [CF]). The product formula then relates
an invariant of the manifold to the dynamics on M, that is, as in the standard
Lefschetz formula, counts closed orbits of the flow of v.

The rest of this paper is organized as follows: we first describe an extension of
the 3-torsion which will allow us to simplify the proof of the theorem. We then
analyse the spectrum of the Δξ*q Laplacian, that is, we investigate the asymptotically
small eigenvalues of the Laplacian and we finish by computing their contribution
to the trace of the heat kernel, that is to the torsion, as ε -* 0. It should be noted
that it is this analysis which cannot be carried out in the more general case of a
C00 fibration of complex manifolds.

At this point, I would like to thank David Fried for having introduced me to
this problem and for the constant support he provided during this work. I would
also like to thank the many people who helped me during this work. To name
but a few, they are: Xiangzhe Dai, Steve Rosenberg, Andrzej Lesniewski and
Richard Melrose.

2. The d-Torsίon

We briefly define the δ-torsion ([RSI&II]) and give a few of its properties. We
borrow the notation of F. Tangerman [T] in his announcement of the proof of
the Ray-Singer conjecture using Witten's complex [Wi].

In the following we will let Eq, q = 0,..., N be spaces of sections of bundles δq

over a fixed manifold M. We will denote the inner products on Eq by h9. Let dq

be differential operators of degree k (not necessarily equal to 1)

dq:Eq-+Eq+1

such that ( £ , M ) is an elliptic complex. (See Atiyah-Bott [ABI&II], Gilkey [Gi]
or Wells [We]). Taking the adjoints (dq)* with respect to hq of the operators dq

9

we consider the corresponding Laplacians

Δq = (dq)*dq + dq-1(dq-1)*:Eq-*Eq. (2.1)

Following Seeley [Se], one can define a zeta function associated to the Laplacians.

Definition 2.1. For se<C with Re(s) sufficiently large, define

ζq(s) = -*rJts-1 tτ(e-tΔq - Pq)dt9 (2.2)

where Pq is the projection on K e r ^ .

In this paper, Seeley showed that ζq(s) is analytic for Re(s) sufficiently large
and possesses an analytic extension which is regular at s = 0. Using the zeta
functions one can define a zeta-regularized determinant of Δq by
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Definition 2.2.

d e t ζ ^ = exp ζq(s). (2.3)
ds s=o

We can now define the torsion of the elliptic complex (£, ft, d).

Definition 2.3. The torsion of the elliptic complex (£, ft, d) is defined by

Tor(£, ft, d) = Π (detζ Λ«)< ~1)9+lq (2.4)

Note that Tor(£, ft, d) will depend on the inner products hq. It nevertheless has
some nice properties which will be given.

Two cases will be of special interest. Let M be a manifold and E SL flat bundle
over M. Let g be a metric on M. Choosing Eq as the sections of ΛqT*M®E and
letting dq be the usual exterior differentiation, (E,g,d) is the de Rham complex
and Tor(E9g,d) is the Reidemeister torsion. In the complex case, choosing Eq to
be sections over ΛP'^T*M (x) E and dq = 5, that is, (£, #, d) is the Dolbeault complex,
Tor(£,0,d) is the ^-torsion Tp(E). We now give some simple properties of the
torsion.

Lemma 2.1. Let (Eι,hί9d1) and (E2,h2,d2) be two elliptic complexes. Then

h2j2). (2.5)

The proof of this lemma is a straightforward application of the definition and
will be omitted. For the next property, we need

Definition 2.4. The characteristic of the elliptic complex (E, ft, d) is defined as

χ(E)= Σ(-l)q dim Hq(E,d). (2.6)

Given two complexes (El9hί9dί) and (E2, ft2, d2) with dγ and d2 of the some degree,
one can build a third complex

@2 (2.7)
7 = 0

with the natural metric ft and differential operation d. One has

Lemma 2.2.

Tor(£, ft, d) = τoτ(El9 hl9 d 1)'<£ a )Tor(£ 2, ft2, d2f^\ (2.8)

The proof of Lemma 2.2 is exactly the same as the proof of Theorem 3.3 of

[RS II]. It is based on the fact that the heat kernel on E is given by

and on a theorem of T. Kotake [Ko] which gives the characteristic of a complex
in terms of heat kernels:

- ' 4 9 . (2.9)
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When (El9hl9dί)is acyclic, i.e. has no cohomology, one can rephrase Lemma 2.2
in terms of the bundles

2, (2.10)

where HjE2 is the cohomology bundle of E2. One has

Lemma 2.3. Let E be as in {2.7). Then

Tor (£, h, d) = Πj Tor (jf,., hj9 dj)( ~1)j.

Several other properties of the torsion do exist but will not be discussed here.

3. The Splitting of the Torsion

In order to simplify the notations we will let E be either of the bundles π*$h i = 1,2
and write Λp'q(M9E) for Λp*qT*M®E. In many cases, we will drop the index p.

The main idea is to make a spectral decomposition of Λ(M9 E), i = 1,2 in terms
of the behaviour of the eigenvalues of Δε as ε->0. By using the properties of
Tor(.,.,.), one can then study the torsion on each factor. The decomposition is
done as follows:

Definition 3.1. For ε > 0 and for g = 0,..., d im c M define

&p q{ε) = \ ωeΛp-q{M9E)\Δεω = λ(ε)ω and λ(ε) >0 i, (3.1a)
ε-0

and min(Λ,(ε)) > 0} (3.1b)

and define

Sp>q(ε) = span ^PA(ε\ R™(ε) = span StPΛ{ε). (3.2)

Due to the properties of Δ\ one immediately obtains

Lemma 3.1. (i) Λ*(Λf, E) = Sq(ε) Θ Kβ(ε).
(ii) Δ\ is diagonal with respect to this splitting of Λq(M,E). By the results of the

previous section, the torsion splits (for fixed p) as

Tor(/1(M, E), ge, d.) = Tor(5(ε), gt, dt) Ύor(R(ε), gt, dε). (3.3)

In the subsequent sections, the limit as ε->0 of each of these factors will be
discussed. Consider the bundles over B

0 φΛ"ι'q'}T*B<S>^®HP2 iF (3.4)
Pί+P2 = P j

and denote by Δ™ the gB Laplacian on these bundles. The following result, due
to X. Dai, (see [D], Theorem 1.1), characterises the asymptotically small eigenvalues
of Δε in terms of the eigenvalues of ΔP

B

A.

Theorem 3.2. There exists a constant λ0 such that for any eigenvalue λ(ε) of ΔPΛ

on R(έ),
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The eigenvalues of Δζ'q on S(ε) have the asymptotics

λ(ε) = με2(l+c1(ε)με\

where the μs are the eigenvalues of A%q and where c1 is uniformly bounded. The
correspondence is between λ's and μs 1 — 1 and there is a uniform constant c2 such
that |/ l(ε)ε" 2 -μ|<c 2 .

X. Dai proved this theorem for spin manifolds and Dirac operators. However,
the proof carries over verbatim to the ease of D2 where D = d + d*. Locally, D is
Dirac which is the only requirement for the proof to work. This theorem will allow
us to compute the S(ε) torsion directly. The R(ε) torsion is a bit more complicated
to compute. This will be done in the next section.

4. The Large Eigenvalues Contribution: The R(ε) Torsion

We can now compute the contribution of the "large" eigenvalues of Δε to the torsion
as ε->0. That is, the contribution of R(ε) as ε->0.

As defined in (3.2), we will denote by R^ε), R2(ε) the large eigenvalue part for
each of the bundles SUS2, the corresponding Laplacians by Δίtε9 Δ2ε, the Hodge
star operators on R{{έ) by *< and the adjoints of dε by δiε. We will also omit the
superscripts p, q. We have

Theorem 4.1. l i m

 T ^ l ^ ^ ) = L

e-oTor(K2(ε),0β,dβ)

To prove this theorem, we will first investigate the small time behaviour of the
heat kernels. Then, using the finite propagation speed techniques discussed in
Cheeger, Gromov and Taylor [CGT], we estimate the contribution of the trace of
the heat kernels to the torsion for t bounded away from 0.

4.1. The Small Time Behaviour. To analyse the small time behaviour, we make use
of the well known asymptotics (see Ray-Singer [RSI & II] for small times, stating
that

tΓέΓM l-tΓέΓM 2 = 0(έΓc/ί) as ί->0. ι4.1)

Even though the proof of this formula is well known, we will give a short sketch in
order to obtain careful estimates of the constants in terms of ε. We have

Proposition 4.2. For t < ε" 2 , there exist constants cx and c2, independent of ε such
that

Proof The proof is based on DuhameΓs principle. We denote by kiε(t, x, y), i = 1,2
the kernels of Δ{ ,tE. We can then write for any simple connected WczM, x,yeW9

0 W

-kltΛ{s9x,u) A *1Δ2fεk2,ε(t-s,u,y)']. (4.2)
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Let U = {Ua} be a trivializing cover for the bundles St. Without loss of generality
we can assume that there are points xa in B and a constant c such that

(4.3)

This is a crucial fact. The bundles which one considers, that is Et = π*$h i = 1,2,
are pull back bundles; whence (4.3). We define

Wa=UaxF. (4.4)

The Laplacians ΔitS9 ί = 1,2 are now equal on sections over Ua. Hence as in [RSI]
we can apply Green's formula to (4.2) to obtain

ki,ε(t9x,y)-k2,ε(t9x9y)
t

= -\ds j [/c2,ε(ί-s,w,<y)Λ *έ/fclfe(x,u,s)-δfelf<5(s,x,M)Λ *k2,ε(t-s,u,y)
0 dW*

- kltε{s9x9u) A *dk2,ε(t-s9u,y) + δkUe(t- s,u,y) A */C2)£(S,X,M)]. (4.5)

r c j
Now for ε sufficiently small, d Wa = < p2

ε{x, xa) = — >, so that we can use the standard
estimate t ε J

I V ^ V ^ / c ^ x , ) ; ) ! ^ ^ , , ^ ^ - ^ 2 ^ ^ , (4.6)

for pε(x,^) sufficiently large; (see [CGT] or Cheeger [C]). This estimate is obtained
via finite propagation speed techniques (see [CGT]). Splitting the heat kernel into
a finite range part, (pε(x9 y) ^ b) and a remainder, one estimates each part separately.
Choosing b sufficiently large yields the above estimate. Using (4.6), we thus obtain
the proposition. •

4.2. The Median and Large Time Behaviour. We now turn our attention to the
behaviour of the trace for ί0 ^ t < oo. This will be done by the methods used in
[CGT]. Let φ(x) be an even C00 function such that

^ λ o } , (4.7)

and define

H(x) = φ(x)e~χ2t. (4.8)

Now by Theorem 3.2, we have that

I t r e - tΔε\R(ε) i ^ i t r H{^fΔε) I. (4.9)

We will estimate the trace of H(y/~Δε) via finite propagation speed techniques. We
first remark that on M, the injectivity radius for the gε is bounded away from zero
and that the sectional curvature is bounded from above. Hence by (1.29) of [CGT]
one has that

I / C H I ^ C / Σ ]\H<»(ξ)\dξ9 (4.10)
k = 0 0
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where kH denotes the Schwartzian kernel of / / ( χ / Z j , where n = dim R M, and where
H(k) denotes the fcth derivative of the Fourier transform. As in Dai [D], we can
estimate the Fourier transforms of H by

ί

(4.11)

To estimate the integral in (4.10) we write

and
(1 + ξ2)H{k\ξ) = H*>{ξ) + (H"f\ξ) -

(cf. [D]). Hence, we obtain for some constants N and C 3

and thus, by integration

+ ξ2

ί)-(k-

(4.12)

(4.13)

where p = diniRβ. Summarizing, we obtain

Lemma 4.3. There exist constants N and C, independent of ε such that

- - tλol*

where p = d i m R β .

4.3. Proof of Theorem 4.1. We can now prove Theorem 4.1. By the definition of
Tor, we have to estimate

1

Γ(s)Jo

as ε->0. For \s\ g \, we have by Proposition 4.2 that

(4.14)

(4.15)

forίo<ε 2 .
Hence, choosing ί0 = ε" 1 , we have the uniform estimate of (4.15) by Cε for any

se{|s | ^j}. Similarly, using Lemma 4.3, we have the estimate

Γ(s) ί0

, ί = 1,2 (4.16)
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By our choice of ί0, the right-hand side of (4.16) can be estimated by Cε for some
constant C. Summing up these estimates we see that (4.14) is uniformly estimated
by 3Cε for se{\s\ ^ | } . Hence, the claim of the theorem.

5. The Small Eigenvalue Contribution: The S(ε) Torsion

Using Theorem 3.2, it will be possible to compute the S(ε) contribution to the torsion
as ε -• 0. Before this is done, we briefly recall that the bundles

0 ®Apuq-JT*B®£i®HP2jF (5.1)
Pί+P2 = P j

form an acyclic complex ίor_dB for i = 1,2. Note that this operator increases q by
one. We denote by A\Λ the d-Laplacian on the bundles defined by (5.1) and let

ζ%(s,ε) = - i - J ts~1 tr e-"ΔT"dt. (5.2)
Γ(s)0

We also define the zeta functions on 5t(ε) by

Cf'f feε) = - L ϊ f1 Me-W«*dt. (5.3)
Γ(s)0

We have

Lemma 5.1. Under the condition of acyclicity of (5.1)

(C^(5,ε)-^(5,ε))

and its first s-derivative are independent ofeat 5 = 0 for p,q = 0,..., dim^B.

Proof The proof is based on the fact that

^tre-*2tΔP'9 = t2-tre-ε2tΔP'\
dε εdt

Using Proposition 4.2 and denoting by j(s, ε) the difference ζ™(s, ε) — ζ%*(s9 ε) we see
that

and that the integrand is absolutely integrable. Hence, carrying out the integration,
one obtains, since the bundles are acyclic,

—j(s,ε) = O, — — ;(s,ε) | s = o = 0.
dε dε os

Thus — j(s, ε) | s = 0 is independent of ε. •
ds

We now denote by /tf (ε) the eigenvalues of ΔP'q on Sf(ε), i = 1,2 and by μt the
eigenvalues of ΔB on the bundles (5.1). Using Proposition 4.2 on the bundles
$1,1 = 1,2, we have
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Lemma 5.2. For \s\< 1/2, for to = ε 3 / 2, and for p = 0,..., d i m c M, q = 0,..., d i m c M,

and

We have

1 ί 0

1—1 / \ J

<Cε

<Cε.

1 (5) 0

(5.4a)

(5.4b)

(5.5)Σ
λi(ε)tμi

By Lemmas 5.1 and 5.2, we only need to compute the integral on the right-hand
side of (5.5) between ί0 = ε~3 / 2 and oo. We now break the sum in the integral in
(5.5) in a sum where λt ^ Kε and a sum where λ( < Kε for some constant K. These
two sums and their contribution to (5.5) will be computed separately.

5.1. Breaking-up the Trace. By Theorem 3.2, to each λ^ε) there corresponds a
unique μt such that

= μiε
2(l+c1(ε)μiε% (5.6)

where cx(ε) is uniformly bounded. Hence, for any small enough constant K, if λ^ε) ^
2Kε, the corresponding μt ^ K/ε. To see this, assume that for every ε, μt < K/ε.
Using (5.6), one immediately obtains that λ^ε) < 2Kε. For a small enough constant
β, we see that if μt < β/ε then

μtε
2 < λi(ε) < \β.

Furthermore, since |ε~2/lί(ε) — μt\ < c2, if λ^ε) < 2Kε, then μt < K/ε. We now choose
K < β/2 and write

λι(ε),μι

- μ , ε 2 Γ | _ y 1 r -Ai(«)(

λi<2Kε

le
-λi{ε)t -e-μiε2t~\. (5.7)

In the first sum on the right-hand side of (5.7), the μf ^ K/ε. The first sum on
the right-hand side of (5.7) can be estimated by

V
m<β/ε

2t-ι (5.8)

5.2. Contribution to the Torsion. For the second sum on the right-hand side of (5.6),
we use the same techniques as in the proof of Lemma 4.3. By choosing a function
H(x) as in (4.8), where λ0 = 2Xε, (4.13) yields that for i = 1,2,

y Γe~λi(ε)t

λi(ε) ^ 2Kε

Hence, we obtain that for i = 1,2,

1

-tKε/4.

™ r < Σ

(5.9)

(5.10)
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where the sums runs over ^(ε) ^ 2Kε and the corresponding μ/s. By our choice
of t0 = ε" 3 / 2 , for |s | < δ sufficiently small, we can thus estimate the right-hand side
of (5.10) by Cε for some constant C. We now estimate (5.8) by

where the sum runs over μι<β/ε. We now use the fact that when
μt < β/ε, λi(ε) > ^^2/2. Hence,

\μiε
2-λi(ε)\<^.

Since \e x — 11 ̂  \x\e w we can therefore estimate (5.11) by

μι<β/ε

We therefore have

1 ? ._,
1 \S)to

μ2ε3teμiε2t/2dt
•e\Γ{s)\ βi < β/ε

(5.12)

(5.13)

where for this last step, we used the fact that x2e ax takes its maximum value
4oc2e^2 at x = 2α~1. Hence, that μfίexp(-μjε2ί/4) is estimated by Cε~ίt~1 for
some constant C. Rescaling time by a factor 4ε~2 in the integral on the right-hand
side of (5.13), we estimate (5.13) by

-1,1)1. (5.14)

By Seeley, [Se] or Shubin [Sh], this zeta function is analytic near s = 0, and thus,
for \s\ < δ small enough, we can estimate (5.13) by Cε1 / 2. Summarising the estimates
obtained in (5.4), (5.9) and (5.14), we see that for \s\ < δ small enough, one has

I Kξ «(s, ε) - C'f (s, ε)] - [£™(s, ε) - £™(s, ε)] | < Cε1'2 (5.15)

for some constant C. Since the estimate is uniform in s we can take derivatives
5 = 0 of

[£?•«(*, ε) - CJf (5, ε)] - K5 «(s, ε) - ζ™(s, ε)].

Exponentiating the result and using Lemma 5.1, we see that

exists and that the limit is equal to

Tor/
Pi+P2 = P

Tor ® HP2JF, gB,
Pl+P2 =

and hence using the properties of Tor derived in Sect. 2, that the limit is equal to
(1.6) which concludes the proof of Theorem 1.1.



102 S. Laederich

References

ABI Atiyah, M., Bott, R.: A Lefschetz fixed point formula for elliptic complexes I. Ann. Math.
86, 374-407 (1967)

ABΠ Atiyah, M., Bott, R.: A Lefschetz fixed point formula for elliptic complexes II. Ann.
Math. 88, 451-491 (1968)

BC Bismut, J. M., Cheeger, J.: ^-invariants and their adiabatic limits. J. Am. Math. Soc. 2,
33-70 (1988)

BGSI Bismut, J. M., Gillet, H., Soule, C: Analytic torsion and holomorphic determinant
bundles I, Bott Chern forms and analytic torsion. Commun. Math. Phys. 115, 49-78
(1988)

BGSII Bismut, J. M., Gillet, H., Soule, G: Analytic torsion and holomorphic determinant
bundles II, Direct images and Bott Chern forms. Commun. Math. Phys. 115, 79-126
(1988)

BGSIII Bismut, J. M., Gillet, H., Soule, G: Analytic torsion and holomorphic determinant
bundles III, Quillen metrics on holomorphic determinants. Commun. Math. Phys.
115, 301-351 (1988)

BT Bott, R., Tu, L.: Differential forms in algebraic topology. GTM, 82, Berlin, Heidelberg,
New York: Springer 1986

BV Bismut, J. M., Vasserot, E.: The asymptotics of the Ray-Singer analytic torsion associated
with high powers of a positive line bundle. Commun. Math. Phys. 115, 355-367 (1989)

C Cheeger, J.: ^-invariants, the adiabatic approximation and conical singularities. J. Diff.
Geom. 26, 175-221 (1987)

CGT Cheeger, J., Gromov, M., Taylor, M.: Finite propagation speed, kernel estimates for
functions of the Laplace Operator and the geometry of complete Riemanian manifolds.
J. Diff. Geom. 17, 15-53 (1982)

CF Crew, R., Fried, D.: Nonsingular holomorphic flows. Top. 25, (4) 471-473 (1986)
DI Dai, X.: Adiabatic limits non-multiplicativity of signature and the Leray spectral

sequence. MIT Preprint (1990)
DΠ Dai, X.: Geometric invariants and their adiabatic limits, MIT Preprint (1990)
FA Fay, J.: Analytic torsion and Prym differentials. Ann. Math. Studies. Princeton, NJ:

Princeton University Press 1981
DEM Dai, X., Epstein, G, Melrose, R.: Adiabatic limit of the Ray-Singer analytic torsion, in

preparation
Fo Forman, R.: Personal communication
Fr Fried, D.: Lefschetz formulas for flows. Contemp. Math. 58 III, 19-69 (1987)
G Gilkey, P.: Invariant theory, the heat equation and the Atiyah Singer index theorem.

Publish or Perish 11, (1984)
Ko Kotake, T.: The fixed point theorem of Atiyah Bott via parabolic operators. Commun.

Pure Appl. Math. XXII, 789-806 (1969)
MM Mazzeo, R., Melrose, R.: The adiabatic limit, Hodge Cohomology and Leray's spectral

sequence for a fibration. J. Diff. Geom. 31, 185-213 (1990)
RSI Ray, D., Singer, I.: R-torsion and the Laplacian on Riemannian Manifolds. Adv. Math.

7, 145-210 (1971)
RSΠ Ray, D., Singer, I.: Analytic torsion for complex manifolds. Ann. Math. 108, 1-39 (1978)

Se Seeley, R. T.: Complex powers of an Elliptic Operator, Proc. Symp. Pure Math. 10,
288-307 (1967)

Sh Shubin, M. A.: Pseudodifferential operators and spectral theory. Berlin, Heidelberg, New
York: Springer 1987

T Tangerman, F.: Reidemeister torsion and analytic torsion: Announcement of a proof
of the Ray Singer conjecture using the Witten Complex, Courant Institute (1989)

We Wells, R. O.: Differential analysis on complex manifolds. GTM vol. 65. Berlin,
Heidelberg, New York: Springer 1986

Wi Witten, E.: Supersymmetry and Morse theory. Adv. Math. 4, 109-126 (1970)

Communicated by A. Jaffe




