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Abstract. In this paper, we investigate the relation between δ-torsion and
holomorphic vector fields. We consider complex manifolds which fibrate over the
torus having a transverse one dimensional holomorphic foliation. The torsion of
the total space is then computed in terms of compact leaves. This can be
interpreted as a Lefschetz formula for flows of holomorphic vector fields.

1. Introduction

In analogy of recent work of Fried [Fr 3-5], Ruelle [Ru] and older work of Ray
and Singer [RS], we will relate topological invariants of complex manifolds to the
closed orbits of vector fields or closed leaves of a foliation. We will consider
fibrations of compact complex manifolds M

F-+M

(LI)

B,

where B = (C/Γ, Γ=Έ+τΈ with Imτ > 0 together with a complex one dimensional
holomorphic foliation 3F transverse to the fibration. When M is Kahler, Crew and
Fried [CF] showed that the existence of a non-vanishing holomorphic vector field
on M gives rise to such a foliated fibration. The leaves of & are then spanned by the
flow of the vector field. It should be stressed that in this case, the projection map is
not necessarily holomorphic. We will restrict ourselves to the case where π is
holomorphically locally trivial.

The invariants one consider are ratios of ^-torsion (see [RS]). Given two flat
acyclic bundles $ι and S2

 o v e r B °f the same rank, one can construct natural
metric invariants of M, namely the ratios
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where by Tp(M,E) one denotes the pth cΓ-Ray-Singer torsion [RS]. In a previous
work [La], using the adiabatic limit techniques and work of Dai [D], Dai, Epstein,
and Melrose [DEM], gave an explicit formula for (1.2) in terms of the torsion of B
with coefficients in ^t®Hp'qF9 where HpqF denotes the cohomology bundle of F
over B.

For each closed leaf of the foliation, one can construct a theta-like function
which will play the role of the Ruelle Zeta functions (see [Fr 3-5, Ru]). The product
of such functions over closed leaves will yield (1.2). The conditions under which
this can be done are described in the next paragraph. It should be stressed that the
torsion cannot be expressed in terms of local quantities (see [RS], Rosenberg
[Ro]). It is therefore an interesting fact that it can be computed in terms of
semilocal quantities, namely the closed leaves of a foliation.

In terms of dynamics, this correspondence can be interpreted as a Lefschetz
formula for flows (see [Fr 3]). Given such a fibration and a holomorphic vector
field spanning the transverse foliation, the ratio of torsions acts for closed orbits in
much the same way as the Euler characteristic in the traditional Lefschetz formula.

At this point I would like to thank D. Fried who suggested the problem and
without whose interest and encouragement this paper would not have been
possible. I would also like to thank the IMA in Minneapolis and the FIM at the
ETH in Zurich for their hospitality while this work was done.

2. Main Results

2.1. Preliminaries. Associated to the foliated fibration M, there is a natural
holomorphic Έ2 action on the fiber F which will be denoted by

< m : F z ^ F z , n,meZ, (2.1)

where z e B and Fz denotes the fiber above z. These maps are naturally induced as
the time n + mτ maps of the holomorphic flow of π*l. We will consider two cases
for this action. In the first case, we will require that for any zeB and for all n,meZ,

n

2 + m2 + 0,

φz

nm has isolated fixed points. (2.2a)

In order for several of the quantities that will be defined to exist, one also needs a
non-degeneracy condition on the fixed points. This condition is rather technical
and arises from the presence of small divisors. We require that there exists a
constant C>0 and an positive integer r>2 such that for any n,meZ,n2 + m2>0,
given a fixed point x of φ\^m, the eigenvalues λ of dφz

ntm(x) satisfy

U-m^ (12b)

Where λ = e2πθ, (2.2b) is just a usual diophantine condition on θ. It is known (see
Hardy and Wright [HW]) that for fixed C the set of θ not satisfying this condition
has measure of order C. It is thus easy to see that (2.2 b) is not satisfied on a set of
measure vanishing as C2. This condition is definitely more restrictive than the
requirement of non-degenerate fixed points and will allow us to compute the
Atiyah-Bott [AB] indices of periodic points. We will also consider degenerate Z 2
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action where the maps

< o = Id, neZ. (2.2c)

In this case, we require that 2.2a, b) hold for mφO.
We briefly recall the definition of the p-Atiyah-Bott index of a point x e F for a

holomorphic map / : F->F having isolated fixed points. It is defined to be 0, if x is
not a fixed point of / and for a fixed point as

Λp qdf(x)

iϊ <2 3>
for p = 0,...,dimcF. The pth Lefschetz index of / is defined to be

W ) = dlT(-i)qtr(H^(f))= Σind'(x,/), (2.4)
q = 0

where Hp'q(f) is the map induced by / on the Dolbeault cohomology of F. We now
define the index of a compact leaf.

Definition 2.1. Let if be a compact leaf of the foliation. When (2.2 a, b) hold, we
define the index of the leaf as

indf (J?, < J = Σind'(x, < J , (2.5)

where p = 0, ...,dim€F, zeB and where the sum runs over all points of <£r\Fz.
When the Z2 action is degenerate, i.e. if (2.2 c) holds, we define the index of a
compact leaf to be either equal to (2.5) if mφO or equal to the p-Dolbeault
characteristic of F when m = 0.

As in the product formula for the Ray-Singer torsion (see [La], Dai, Epstein,
and Melrose [DEM] or Forman [Fo]), one considers bundles on B arising from
unitary representations. Let

QiΓ^π^B^Uin) (2.6)

be a representation of π^B). Let $ be the flat bundle associated to this
representation. We will always assume $ to be acyclic. We can now define the
dynamical Zeta functions. These are the complex analogues of the dynamical zeta
functions introduced by Selberg [Se] and later by Ruelle [Ru] and Fried [Fr 1-5].

Definition 2.2. Let J5f be a closed leaf of the foliation. For zeB, se(C let

ζίAs)=1^rJts-1ωlAt)dt, (2.7)

where

^ r(ρ(n + mτ))exp(- ̂ ±^)j . (2.8)

2.2. Main Results. We have

Theorem 2.1. For any closed leaf ££ and any zeB, ζξ^ is an entire function of s.

Associated to these dynamical Zeta functions, we have dynamical theta
functions
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Definition 2.3. For a closed leaf Sέ and for zeB, define

(2.9a)

= Π ®l, <?{#)> ( 2 9 b )
JS? compact

1 ) P. (2.9c)
P

We have

Theorem 2.2. Under the conditions (2.2), for any acyclic bundle $ defined by (2.6), the
dynamical theta functions defined in (2.9) exist.

We now briefly recall the definition of the Ray-Singer torsion for compact
complex manifolds [RS]. Given a flat acyclic vector bundle E over a compact
complex manifold M with metric gM, let Afoq be the ^-Laplacian on (p,q) forms
over M with coefficients in E. Define the zeta-functions

ζp(s)=^)]ts-1Σ(-l)qtve-tAPMqdt, (2.10)

where p = 0,..., d im c M and where se<E. Seeley [Se] showed that ζp is analytic for
Res large enough and that it possesses a meromorphic extension to <C which is
regular at s = 0. Following Ray and Singer [RS], we define

ζp(s). (2.11)
)

Note that this torsion is the square of that of [RS]. As noted by Fay [Fa], this
definition allows for better extensions of the torsion on bundles arising from non-
unitary representations. In the case of fibrated manifolds, one has the product
formula

Theorem 2.3. Let Mbea compact complex manifold as in (1.1). Consider two bundles
Sh Ϊ = 1,2 defined by (2.6) of the same rank; assume they are acyclic. Then

*je> \ Π Π TPί(B,c
>π ®l) Pl+P2 = P j

Tp{M,π*i2) Π
Pί+P2=P

where Hp'qF is the cohomology bundle of F over B and where p = 0, ...jdi

A proof of this theorem can be found in [La]. We can now state our main
theorem.

Theorem 2.4. Let M and gi9 i = l,2 be as in Theorem 2.2. Assume that (2.2) is
satisfied. Then, for any zeB,

^) _

) ALTp(M,π*£2) ALA Θί

where p=0,...,dim<s:M. By convention we set
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This theorem is reminiscent of the dynamical expressions of the torsion in
terms of closed orbits given by Ray and Singer [RS] or Fried [Fr3-5]. The
simplest results of this type express the torsion of hyperbolic manifolds in terms of
closed orbits of the geodesic flow (see [RS, Fr 3,4]). These results were extended by
Fried [Fr 5] to general manifolds with strict conditions on the flow. The interesting
fact is that (2.13) relates a topological invariant associated to M (see [RS]) to the
dynamics on M. As in [Fr 2] this can be interpreted as a Lefschetz formula for
flows. In the traditional Lefschetz formula, one relates a global topological
invariant to the zeroes of a vector field. Here, the global invariant (the ratio of
torsions) is related to semilocal quantities given by the dynamics.

Perhaps the most interesting fact is that by knowing the ratio of torsions for
different bundles Sh i = 1,2, one can retrieve part of the dynamics on M. This will
be illustrated in the next section.

2.3. A Simple Case. In a simple case of a degenerate Έ2 action, that is when (2.2c) is
assumed, one can compute the functions given in (2.9) explicitly. These results will
partly justify the name of dynamical theta functions. We consider rank 1 bundles
and require that the action

is such that φ has a finite number of periodic orbits. This implies in particular that
the Atiyah-Bott indices are bounded provided (2.2) holds (see [Fr 6]). The simplest
examples of such cases are twisted products. Let

(2.14)

where the map φ is as above. The bundles $ we consider are given by (2.6) where

ρ(n + mτ) = exp (2πi(nv + mu)). (2.15)

It is now easy to see that compact leaves correspond to periodic orbits of φ. We can
thus define the period of a compact leaf <£ as the smallest integer α such that

φ*(x) = x, xeFzn&. (2.16)

It was shown by Fried [Fr 6] that a finite number of periodic orbits implies the
periodicity of the Atiyah-Bott indices of φm. That is,

(2.17)

where Jv is defined by (2.4). For υ, x, and y real, consider the function

f(v9 χ9 y) = exp (2πx Im τ(v2 - v + £) + πy Im τ(i + 2v)). (2.18)

We denote the usual theta function with characteristic (1/2,1/2) by θl9 that is

Θx(z9τ)= Σ exp(πfφ + i) 2 + 2πi(n + i)(z + i)). (2.19)
neZ

We can now state

Theorem 2.5. Let p = 0,...,dim€F and ££ be a compact leaf of period α. Assume
that (2.14) holds and let $ be defined by (2.6) and (2.15). Then, if O^wgl and
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ι φθ(modl) then

( τm 2πi(nv + mau) \

Σ TZ ΐΓ™<*P(x>Φam) > (2.20a)

) W«τ)|" 2ΘMu - τι>), α τ ^ φ - τv), - ατ), (2.20b)

and

(t>, χp(F), Jp(φj)){\η{βτ)\" ^ ( f l u - τv), βτ)ΘMu - ft;), -^

(2.20c)

(τ) denotes the Dedekind eta function, where χ(F) and χp(F) denote the Euler
characteristic and the Dolbeault characteristic of F, and where β is the period of the
pth Lefschetz indices of φ.

Since θ^w, τ) defined by (2.19) is a standard theta function (see Mumford [Mu]),
this partly justifies the name of dynamical theta functions given to the ΘP^{S)
functions.

3. Zeta Functions

3.1. ^-Torsion. We will start by computing the torsion terms arising in the product
formula (2.12). Note that since B is a torus, for any acyclic bundle $ over B,

T0{B,S)=T,{B,S). (3.1)

In order to compute (2.10) it is thus sufficient to compute

®Hp-qFy-1)q. (3.2)

By (3.1), the product over p and p — 1 of (3.2) yields the numerator or denominator
of (2.12). Using the definition of the torsion, it is sufficient to compute

ωp(t)=- Σ (-l)qtre-tΔPή\ (3.3)
q = 0

where Ap'q denotes the ^-Laplacian for the flat metric gB on B with coefficients
£®Hp>qF. For se<E with Res large enough define

^J (3.4)

By definition, (3.2) is then equal to the derivative at 5 = 0 of the analytic extension
of ζp(s). Note that even though the bundle we are considering is not unitary, by
[Se], the analytic extension is regular at 0 and hence the torsion is well defined. To
compute ωp{t) we use the techniques of Ray and Singer [RS]. Recall that

B = <ε/Γ, Γ=Z + τZ, Imτ>0. (3.5)

B is naturally covered by C. It is then possible to relate the heat kernel of A%q

denoted by kp

B> % x, y) to the heat kernel of Δ$q denoted by kξ; % x, y). One obtains
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(see [F, RS])

kps%χ,y)=Σ ip'q(y)k£%*,y(y)), (3.6)
yeΓ

where x, y have projections x and y9 where y(y) = y + n + mτ if y = n + mτ and where
JPί€(y) are the transition functions of the bundles arising in (3.2). One easily finds
that

IpΛl) = Q{y)H™{φnJ γ = n + mτ, (3.7)

where ρ is defined by (2.6) and where the Hp'q(φnm) are the functions acting on
HpqF induced by the holonomy φnm defined earlier. Taking (3.7) at x = y and
integrating over B one obtains

ψl Σ jp.«(n + mφ-l»+»«l2/". (3.8)
4πί n,meZ

Hence,

ω P W = - T T Σ Q(n + mτ)J"(φnJe-^+m^t, (3.9)

where Jp{φnym) are the p-Lefschetz indices (see [AB1, 2]) of the map φ^m defined
by (2.4). We now follow Ray and Singer [RS] and compute the corresponding zeta
function. For simplicity, let

φ , m) =

Then, for Res large,

+ 7^Ji i-1tre-"V. (3.10)
i yS) l

The right-hand side of (3.10) defines a meromorphic function of the 5 plane which
is the desired continuation. When Res<0, we can insert (3.9) into the last integral
in (3.10) to obtain

ϊmτ °°
ζP{s)=-A^ΰ\lf~2 Σ Φ,m)dt. (3.11)

4πi (5) 0 n2+m2>0

3.2. Dynamical Zeta Functions. We can now investigate the dynamical zeta
functions. We recall that for zeB and for p = 0,...,dim(CF, we defined

ωlAt)ψ^ Σ indf^φ^Jtraceίφ + mτ^expf-^1^) (3.12)
4 π ί w2 + m 2>o \ 4ί /

for any compact leaf J£? of the foliation. In order to prove the convergence of (3.12)
as well as the properties of the related zeta functions, we need estimates on the
index of a compact leaf. Fix zeB and let if be a compact leaf. By construction of
the Z2 action, for any two points xt and x2 in S£nFz, there exist (n,m)eZ2 such
that ψz

njm{x\) = x2- That is, JS?c\Fz is the orbit of a single point which we denote by
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Xg. Let Tee be the isotropy subgroup of x#. When non-trivial, this subgroup is
generated by two elements ψ1 and ψ2 of the action. These two maps fix x#. We can
now state

Lemma 3.1. Let zeB and ££ be a compact leaf. Then there are positive constants
c(p,J£) and α such that for any (n,m)eZ2,

\mdξ(&,φz

nj\^c(\n\ + \m\y. (3.13)

Proof Since we consider compact leaves, by the definition of the index, it is
sufficient to prove (3.13) for a single point x in 5£r\¥z. The isotropy subgroup of x
is Γj?. Hence, if

(3.14)

for some (k,l)eZ2. Note that |Λ| + |/|^|w| + |m|. dψ^x) and dψ2(x) are two
commuting complex matrices. We can therefore arrange their eigenvalues
λl9...,λN and μu...,μN in such a way that the eigenvalues of dψ^xfdψ^x)1 are
λ\μ\, i = 1,..., N. They will be denoted by β^k, ΐ). From the definition of the Atiyah-
Bott indices, we have to compute

tτΛpdψ\dψι

2 (3.15)

The eigenvalues of Λpdψk

1dψι

2 are of the given by βtι...βi , where iί<...< ip. We
will denote the one with the largest modulus by βh ... βjp. ΪΊIUS, there is a constant
C(p) such that we can estimate (3.15) by

which is equal to

C(p)

C(p)

Π (i-U/J Π
>*h J

1 1

Π (i -βi)
(3.16)

(3.17)

To see this, assume that it is false. Then, we can fin k and / such that (3.17) is false.
Let d = gcd(fc,/). Then

We now make use of (2.2 b). For (fc,/) + (0,0), we have

where the last inequality is obtained by applying (2.2 b) to (λaμβ)d with cud = k,βd = I
Since |fe| + |/| = |d|(|α| + |)8|), one immediately has a contradiction. Using (3.17), we
estimate (3.16) by

c-N(\k\+\ι\r,
and hence, one obtains (3.13). •
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It is now possible to show that ωp

z#(t) is well defined for ί>0. We define a
function

W ) = Λ Σe-(n2+m2)/4t. (3.18)
47U n,m

By the Poisson summation formula, we can rewrite φ(t) as

y e-4πt(n2 + m2) ^ (3.19)
n,m

Hence, for any positive integers k and / we have

K έ X ^ - ά ) - * ' as ^°°' (120a)

and

r f c (έ) '(^-i)- 0 ' as °̂ (3 2Ob)

Now using Lemma 3.1, we have

Σ (N + |
2

Hence, using the definition of φ(t), there are positive integers γ and δ such that

(3.21)

Hence by (3.20) and (3.21), for every integer fc>0, we obtain

|i~*<*(f)|-»0, as ί^ O, (3.22a)

and

| t " < ^ ( ί ) H 0 , as t-*oo. (3.22b)

Theorem 2.1 can now be proved. Recall that the pth dynamical zeta function
associated to a compact leaf JSP is defined by

(3.23)

where se<E. Using (3.22), one sees that

define entire functions of s, which proves Theorem 2.1.

4. Proof of the Main Theorems

We can now prove the main theorems. We first begin by a summation formula.
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Proposition 4.1. Assume that (2.2) holds. Then, for any zeB and any ί > 0 ,

ωp(t)=~ψ^ + Σ <Λt), (4.1)
4 π ί & compact

where ωp(t) is defined by (3.9).

Proof For simplicity, let

φ, m) = tr (ρ(n + me)) exp ( - ^±^)j . ( 4 . 2 )

Let M be a positive integer. By (2.2b), for |n| + | m | ^ M , there are finitely many
compact leaves for which indf (jέf, φn>m) is non-zero. Hence, by the definition of the
index of a leaf, we have

Σ <?p(φn,m)φ, m) = Σ Σ cfa m) mάp{<?, φ Π , J . (4.3)
0<|«| + |m|^M .S? compact 0<|« | + |m|^M

We note that the left-hand side of (4.3) converges to

^ (4.4)

as M goes to infinity. Hence, letting M tend to infinity and using the definition of
ω?,*(0> we obtain (4.1). •

The proof of Theorems 2.2 and 2.4 is a triviality. Theorem 2.1 guarantees that
the functions ΘP#(S) are well defined for compact leaves J£?. Hence, the functions
Θz #(β) exist for any zeB and for any acyclic bundle S. For Θp{£\ we rewrite (4.1)
in terms of zeta functions. For this, we use (3.11). Note that the integrand in (3.11) is
precisely the sum over compact leaves i f of cop^(t). Hence, for Res<0, one has

Cp(s)= Σ CIA*), (4.5)
J? compact

where ζp is defined by (3.4) and where ζξt# is defined by (3.20). Both sides define
functions which are analytic for s near 0. Hence, (4.5) holds at s = 0 for the functions
and their derivatives. Taking the derivatives of both sides of (4.6) at 5 = 0 and
taking the exponential yields (2.9 b) and shows that Θp{$) is well defined. Now by
the definition of ωp(t), the derivative of ζp(s) at s = 0 yields the logarithm of (3.2).
Hence, using (2.9 b) and the product formula (2.12) one easily obtains Theorem 2.4.

5. Degenerate Actions

We now proceed to compute the dynamical theta functions in the case of
degenerate Z2 actions as defined in (2.13). We will follow closely Ray and Singer
[RS]. In the following, let ££ be a compact leaf of period α and denote the period of
the pth Lefschetz index by β. We have to compute the zeta functions associated to
ωp, ωp^{t) and to Σ ( - l ) p ω £ ^ ( ί ) . First note that

mdp(&,φm) = 0 if m + feα.

Using the definitions of these functions and the method yielding (3.13), we obtain
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that

β Γ(ί—s) Imτ . / 4 V - s

ζp(s)= — T ——r — V ρ(n + mβτ)tfp(φJ)[- TΓ-ΓΪ) , (5.1a)

^ Σ ίKπ+i»m)indί(J2',W——^Y \ (5.1b)

and

, . . Γ(l-s)Imτ _ /

^ ( ) \ i YΓ(s) 4π «2 + ^> 0

κ v v \ |n+mατ | a

(5.1c)

For (5.1a), we used the periodicity of the p-Lefschetz indices. For (5.1c), we used
that

for a holomorphic function φ (the alternate sum of Atiyah-Bott indices is the
classical Lefschetz index), that JSfnFz contains α points and that for m = 0 the
alternate sum of the pth Lefschetz indices yields the Euler characteristic. Note that
these zeta functions all vanish at s = 0. Their derivatives at s = 0 are therefore equal
to the sums on the right-hand side of (5.1) taken at 5 = 0. These sums are not
absolutely convergent at 5 = 0. To check their convergence, we follow [RS]. Let

with Imw>0 and consider

Imτ 1 Imτ 1
Σ ρ(n + mw)- , 9_ 9 g = V ρ(n) Ί_o

π n2+m2>o \n + mwτ\2 π ΠΦO n2 2s

By our definition of the representation, the first sum on the right-hand side of (5.2)
converges at 5 = 0 and is equal to

2πlmφ-υ2-\). (5.3)

For the second sum let

__
— e sinπt?

and

bn = \mw + n\2s~2.

Hence

The last sum is easily bounded by

1

sinπi; |m|(Imw)2-2s (5.4)
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Using Kronecker second limit, one can explicitly compute this second sum at 5 = 0.
(See [RS] and Siegel [Si].) It is equal to

Imτ

Imw
log ΓT Π_e2πi(\k\w-εkz)\

fe= - 0 0
(5.5)

with εfc = sign(fc + ̂ ) and z = (Imw/Imτ)w — wv. We can now prove Theorem 2.5.
The boundedness of the Atiyah-Bott indices and (5.3), (5.4) guarantee the
convergence of the sum in (5.1b) at s = 0. Hence, taking the exponential of the
derivative of (5.1b) yields (2.20a). For (2.20b) and (2.20c), we use the standard
product formulas of theta functions (see Mumford [Mu] or Siegel [Si]) to
compute the exponential of the derivatives of (5.1 a, c). With (5.3) and (5.5), it is easy
to see that one obtains the formulas of Theorem 2.5.
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