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Abstract. We study chaotic behaviour of the motion of a particle moving like in a
billiard table outside some disks where a symmetric potential acts. Quadratic forms
introduced in (Markarian, 1988) to study non-vanishing Lyapunov exponents are used.

1. Introduction

A. The purpose of this paper is to prove some ergodic properties (see C. below) of
dynamical systems defined by the motion of a point mass in a bounded connected
region ) of the plane. The particle moves like in a billiard table outside some disk
contained in @, and under the action of symmetric potentials inside them.

B. This problem was discussed (on the 2-torus) in Sinai (1963). In Kubo (1976) and
Kubo and Murata (1981) it is proved that some conditions on the rotation function
(see Sect. 2 of this paper) are sufficient for the ergodicity (and the Bernoulli property)
of the dynamical system on the torus; Kubo mentions some repelling potentials that
verify these conditions.

During the International Conference and Workshop on Dynamical Systems,
ILM.P.A., Rio de Janeiro, August 1989, Victor Donnay announced some results (ob-
tained by himself and Carlangelo Liverani) on the same subject, using invariant cone
techniques; and Yacob Sinai suggested me to study related problems using quadratic
forms, a method I used to deduce conditions on the boundaries for chaotic billiards.

C. Let p be a probability measure on a compact 2-manifold M, K a subset such that
w(K) =0, H= M\K and T:H — H the restriction to H of a C"-diffeomorphism,
r > 1, defined on an open subset of M that preserved the measure u. We will assume
that

log* |(T*Y),|| € L'(H,u)  (log* s = max{logs,0}),

a condition that permits to apply the ergodic multiplicative theorem of Oseledets.
2)(T') will denote the Pesin region, that is the set of regular points that have only
non-zero Lyapunov exponents.
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If W(X(T)) = 1 we will say that the map T' (or the dynamical system it defines
is non-uniform hyperbolic or has chaotic behaviour. In Markarian (1990) a charac-
terization of non-uniform hyperbolicity of smooth maps with singularities in terms of
Lyapunov quadratic forms is given.

B:TM — R is a quadratic form on M if B,:T, M — R is a quadratic form in
the usual sense. If f: M — M is a diffeomorphism we denote by f*B (pullback of
B by f) the quadratic form (f*B),u = B #(z)(fou). B is non-degenerate on a subset
N C M if B, is non-degenerate for every x € N, that is, the matrix associate to
B, with respect to any base and the inner product has non-zero eigenvalues. B is
positive in N if Byu > 0 for every x € N and every non-zero u € T, M.

Theorem. Let B:TM — R be a quadratic form such that B, depends measurably
on x, is non-degenerate in H and P, = (T* B — B), is positive for every x € H. Then
WET) = 1.

A slightly different version of the theorem (B, depends continuously on x on a
set of measure one) was proved in Markarian (1988).

D. It is well known that the existence of non-zero Lyapunov exponents for 1" allows
to construct locally invariant submanifolds. If all Lyapunov exponents are different
from zero in a set A, a non-uniform hyperbolic decomposition of T, M is obtained
at each point x € A and if A has positive measure there is a countable number of
invariant sets A; of positive measure (X'1(A;) = pu(A)) such that T'| 4, is ergodic. See,
for instance Pesin and Sinai (1981) for a survey of such results. The ergodicity of
T follows from the uniqueness of the ergodic components A;. And this can be done
studying the behaviour of T" on K, the set of its singularities.

So, applying the theorem in order to have non-vanishing Lyapunov exponents on
sets of measure one we will construct quadratic forms. Conditions on the elements
that determine the dynamical system will appear as a consequence of the hypothesis
on the quadratic forms.

E. To study the dynamical system that is the object of this paper we will work on
the space M, of the pairs (q,v) = x, where ¢ is a point of the set .% union of the
regular components of the boundary of ) and the circumferences determined by the
disks where the potentials are defined, and v is the velocity vector of the trajectory
leaving g. Tx will be the pair (if it exists) defined by the position and the velocity of
the particle at the next “leaving position” on .%.

Then we study the action of T” on the tangent space to M;. This is done on a
special parametrization of 7'M, (inspired on the study of geodesic flows) that allows
to write the quadratic forms in a very simple way.

Conditions on the rotation function and on the geometry of the problem will appear
after establishing the positivity of

P=T"B-B.

This is studied in general in Sect.3 and in a particular example (U(r) = U (const))
in Sect. 4, where some conjectures proposed in Baldwin (1988) are proved.

We do not study in general the potentials admissible with those rotation functions.
However we indicate the relationship between rotation functions (and their derivatives)
and U(r) in some particular important cases.

In order to have ergodic properties of the flow determined by the motion, some
conditions that must be imposed on the potential are evident: there cannot be sets of
positive measure of trajectories that finish or are contained in the disks.
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2. Central Potentials in a Circle

Let @) be a bounded, connected region of the plane whose boundary consists of a finite

set of curves 8Q;, C™*1, r > 2 with curvature (|k;|) bounded. The regular components

of the boundary 8Q); = OQi\ U 0Q; have positive (focusing components), negative
1#]

(dispersing) or zero curvature (neutral).

Let & be a disk completely contained in @), with boundary & such that d(%”, 0Q);)
> 0 for every i, d is the euclidean distance in R2. In & is defined a central potential
U(r).

We consider the motion of a point unit mass that is reflected elastically in 6Q =
U 0Q; which moves freely with velocity of norm one outside the disk, and under the
action of the potential inside the disk.

If n(q) is the unit inward normal (relative to Q\%) in ¢ € 0Q|J % = %, then
the parametrization ¢(s) and the curvature K (s), where s is the arc length on .%, are
defined by the equations

¢"(s) = Kit = Kig'(s),

.. . . 1
where 14 is the 7/2-angle counter clockwise rotation operator, K = — I on .

In order to determine the movement inside the circle we consider its equations
with energy £ = %, and angular momentum M. Its position in polar coordinates
(r(t), p(t)) is determined by

M=r¢, 3=3@+r¢)+Um),

with initial conditions (r(0), ©(0)) = (R, p2) = ¢, (Fig.1). See, for example, Landau
and Lifchitz (1981, Sect. 14).

Fig. 1
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If M # 0 there is a closest distance of approach to the center r,, = r(T") and we
have

7‘=\/1—2U(r)—M2/r2, 7 € [T, R]

and, finally
dp M

dr /(1 — 202 -

If 6, is the angle of “reflection” — not properly the angle of incidence (see Fig. 1)
— the angular momentum evaluated at t = 0 and

t=T is M=|G@—0)Av|=Rsind, =+/r2(1—2U(r)),

supposing 6, € [0, 7/2).

The symmetry of the potential implies that a particle that enters at the point ¢,
with the indicated angle 6, will leave the disk at ¢ = (R, 2 + g(6)). The angle
between n(g;) and the velocity v, of the particle is 6,.

In the following section we will take coordinates (s, #) on the phase space. In this
case s is measured clockwise on the circumference; so if we take the same origin
(¢ = 0, for example) it results s = — Rop.

The function g: | — g, g — R is called the rotation function. It depends on the
potentials U(r) in the following way:

R

Mdr
6:) =2 if 6, 0,7/2).
90 /7~\/(1—2U(7~))7~2—M2 e/

Tm

Since a particle that enters in the disk with angle 8, € (0, 7/2) will rotate counter
clockwise the same amount that an orbit entering with angle —6, will rotate clockwise,

for — = < 6 < 0 we define g(d) = — g(—0). Thus, in general, g is discontinuous at

6 = 0 and we will ignore the trajectories that enter the disk with angle 8, = 0; they
determine a set of measure zero on our phase space. If 11m 9(6,) = nm, for any
n € Z we are able to define a continuous function: 20"

9(0y) =2nm — g(—6,) if — 5 <6, <0

We suppose that G(6,) = ¢'(6,) exists for every 6, # 0.

Since it can be useful for applications, we calculate explicitly G(6,) in the case
U(r) continuous for r» € (0, R], U(R) = 0, U'(r) continuous for 7 € (0, R). Some
additional conditions must be imposed in order to have convergent integrals.

We study first the relation between 6, and r,,. Studying the velocity of the particle
at qu, t = 2T, we obtain

7(2T)
cosfy = .
VRAPQT) + 22T)
From the energy equation it results 1 = 72(2T) + R?>¢*(2T). So #?2T) = 1 —
VR = M?

M?/R? and 0=
/R? and cos 7
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VR - M2
Supposing 6, > 0, we have M, ¢ > 0 and 6, = Arcos —Fr with M =
Tm(l = 2U(rm))!/2. So

dbr _ rin(1 = 2U(rp) — rmU'(rm))

drm MV - I
In order to calculate d_(j"g— is better to make the substitution r = e®r,,. Then
log R/Tm
() =2 / (1 —2U(ry))'/2ds
Srm) = [2°[1 — 2U(e*r)le?® — 1+ 20(r)1172
and
12 5 log R/rm
dg  —2(1 =2U(rm)) Tm
37; - =i + i / I(s)ds
with
I(s) = 331 = 2U(rm)U' (erm) — e25(1 — 2U(e3rm DU (1)
N [€25[1 — 2U(e5Tm)] — 1 + 2U (1) 132
And finally
\/_2_2 log R/Tm
-2(1-2 2 -
G(,) = (- 20Cm) R -M / I(s)ds.
1=2U(ry) —rnU(rn) 1 =2U@w) — raU/(rm)

3. Dynamics and Chaotic Behaviour

As usually, let be
My ={(g,v):q € B, |lv]| = 1, (v,n()) > O} .

Given z; = (q1,v1) € M), Tz (if defined) is defined moving forward in the
direction v;, a distance (time) ¢, till the intersection either with 8Q in ¢, or with %
in @,. In the first case let v be the reflected vector: v, = vy — 2(n(gz), v1)n(q2); in the
second one, let ¢, be as in the previous section, and v, = e’02n(q2), where €2 is the
rotation operator of angle 6,(e"™/? = ). In any case Tz, = z; = (q2,v2). We do not
define it on S, determined by the x; € M, such that ¢, € Q\Q, or v; is tangent to
Zorh,=0if @ € &.Let K =T%S, k € Z.1f as usual du = df ds cos 6, normalized
and H = M;\K it results that T:H — H is measurable, C" diffeomorphism and
WK) =

Small modifications must be done in the proof of Lemma 1, Chap. 6 of Cornfeld
etal. (1982) in order to prove that T is p-measure preserving. The proof that T
verifies the general conditions on the map f of Sect. 1 and that it is a discontinuous
dynamical system (or a smooth map with singularities) are given in details in Part V
(Plane billiards as smooth dynamical systems, by J.M. Strelcyn) of Katok and Strelcyn
(1986).

A wave front is given by the curve (g(s),v(s)) in M; and so an element in the
tangent space at x = (g(0), v(0)) € M is (¢'(0),v'(0)) = (¢, v"). We restrict now the
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analysis to the case q; € 9Q, ¢, € %. The other two cases (q1,q € 0Q, q; € %,
¢ € 0Q) are studied as the billiard map.

Let be 1, 72 the parametrization of dQ and %, respectively, with parameters the
arc lengths; s;, s the arc lengths of 7;, 7, in neighbourhoods of g, g2; 8;(s;) the
angles of n(g;(s;)) with v;(s;); and K;(s;) the curvatures in g;(s;), j = 1,2. In this

analysis K = — —.

If ¢ and v’ are projected on iv, the positive m/2-rotated of v, we obtain a natural
parametrization of the tangent space. Let be V; = (v}, iv;), oy = (g}, 1v;), 7 = 1,2.

We have that

q(s) =7(s1), 82 = 82(s1),

vi(s1) = i7] (1)€Y = —inh(sy)e 020D (1)

@(82) = v1(s1) + ti(spvi(s1), 2)

@(52) = 72(s2 — Rg(62(s2)) = 0 + €992 (yy(s55) — 0) 3)

v2(82) = i7h(s2 — Rg(6a(52))e™22) . @)

If we denote @ =0, d—02 =0, d—al = 0] and take derivatives with respect to
dsy ds, dsq

s1 in the previous formulas we obtain from (1),
i (sD)e1V — 41 (s1)0] (1)€Y = o' [—iv](s2) — Va(s2)0(s2)]e D,

and so
K + 0/1 = 0'/[K2 - 9/2], ®))

and from (2), taking products by —iv; = — fyée‘w%

<7£0Ja _’Yée_wz) = <’7; + tll'vl + tlvll’7iei91> )
—0'cosf, = cos O — (K| +8)),

and so
cos @) = o'[t1(K, — 65) — cos 6>] . 6)

Finally,

@ = (g5, i2) = (Y5(s2 — Rg(62)) (1 — Rg'(62)65)0”, i (s2 — Rg(62))e™®2))
—cos (1 — Rg'(62)6)0’
(v}, iv2) = (74 (s2 — Rg(62)) (1 — Rg'(62)0)0" ™2
— V(52 — Rg(62)040" ™2, — (s — Rg(62))e™?)

= o'[K2(1 — Rg'(62)65) + 631,

Vi= (vi,i’Ul) =K+ 0’1 =d'(K; — 03)7
a; = (¢}, iv1) = —cos @) = o’[cos O, — t;(K, — 65)].

Vi

The general expression of a quadratic form B,, z = (q,v) is Bz(¢',v') = ac® +
2baV + cV?, where a, b, ¢ are functions of s, § (using the natural parametrization of
M;). In order to verify condition (ii) of Theorem 1, a, b and ¢ must be measurable
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functions of = and ac — b*> # 0. We take b = 1 in order to have control of non-
degeneracy of B and to simplify the calculus. We will use @ instead of 6,, K instead
of K, and G instead of g'(6,). Then

Py (q',v")
= (T*B - B);,(d,?V) = @20 — 202V + & V5 — a;0% — 20,V — ¢V
= (a2 — a)a3 + (¢ — c)VF + a1(@ — o) + 2(Vs — au Vi) + 1 (V3£ — V)
= d*{6"*[(a2 — a1)R*G? cos* 6 + (c; — ¢1) (1 — KRG)* + a1(R*G? cos* 6 — t?)
—2KR?G?cos 8 + 2RG cos 0 + 2t + c;(K?R*G? — 2K RG)]
+ 20'[—(az — a1)RG cos® 0 + (¢; — ¢1) (K — K*RG)
+ a1 (Kt? — RG cos* 0 — t; cos 0) + 2K RG cos 6 — 2Kt + c;2K — K*RG)]
+ (a2 — a1)cos? 0 + (c; — ¢1)K? + a1 (2Kt cos — Kzt%)
—4K cosf +2K*t} . )
If a; =0, P > 0 if and only if
[(c; — 1) (1 — KRG)? — 2K R*G? cos § + 2RG cos 6
+2t; + ¢ (K*R2G* — 2K RG] 6% + 20'[(c; — ¢1) (K — K*RG)
+2KRGcosf — 2Kt + c;2K — K*RG)]
+(cy — e)K? — 4K cos 0 + 2K?*t; > 0, (8)
and this is true if and only if
(ca — e1)K? — 4K cos 0 +2K%t; > 0,
and,
[e2(K — K*RG) + ¢, K + 2K RG cos 0 — 2Kt,]?
— [2(1 = KRG)* — ¢; — 2K R*G? cos 6 4 2RG cos 6 + 2t,]
x [(cy — ¢1)K* — 4K cos 6 + 2K*t,]1 < 0.
If ¢; = 0O, these inequalities become (K = — 1/R),

2cos b t1

7t >0

2
(—2Gcos0+2%) - (2RG20030+2RGcos€+2t1)<4COS9 + 2“) <0.

R 'R
The first one is always true and the second one is

cose{ _ G(G +2)cosf — %(G+ 1)(G+2)} <0.

As cos 8 > 0 it must be (G + 2)[RG cos 8 + t;(G + 1)] > 0 which is true either if

t
G<20G> ——m—— > —1.
© t; + Rcosd >
If G = —2, very simple considerations allow to deduce that each trajectory goes

out the disk as it does not exist; that is v; = v,. If the case ) were a square, we
have a dynamical system that has vanishing Lyapunov exponents and is not ergodic.



442 R. Markarian

Indeed, if G = —2, the expression that must be studied to know the sign of P is
(a; =¢; =0),
2t 4 2t
(4Rcosf + 2t1)9% +2 (40050 + #) + = cosf + fl
= icoso9+it (RO +1>0 if 0 # 1 =K
~\R R R
From (5), 6’ = 6, = K, implies #] = — K; = 0. Now consider the wave front that

has entered the disk with 6, = K: at the moment it leaves the circle it has §; = — K,

because the circulation on the circumference of inward and outward trajectories are
opposite. Then, as (5) is valid for billiards, at the next bounce against the rectilinear
wall, we have 6, = 0. This implies that P = 0 along these trajectories and we cannot
apply Theorem 1.
_tl

t; + Rcosf
(8) we deduced that the positivity of P is not difficult to study when c¢; = c(const).
In this case P is positive if and only if

(G+2)
R2

As we are supposing —RG cosf — t1(G + 1) > 0, the expression between the
parenthesis is smaller than

We study now what happens if ~2 < G < . By looking at expression

{4RcosO[—RGcos — (G + D]+ c(G+2)(c—2t)} < 0. (9

—4R[RG + ti(G+ D]+ (G +2)(c—2ty).

We suppose now, for example, that ¢; > c; then a sufficient condition for verifying
) is
—4R[RG — (G + 1)] = H(G +2) < 0;

and, if G+2>d >0, f(c) = dc® + 4Re(d — 1) + 4R*(d — 2) > 0.

2R2—d
But f(c) = d(c + 2R) [c - —(d—)
2R2—d
c> ——(d—2 =c.
This is not a good condition since ¢; — +oo if d — 0 but the method used indicates
how to work in specific problems.

As another example, observe that if ¢; > g, a sufficient condition for verifying
) is

J which is positive, for positive c, if

(10)

—RG—%(G+1)<O;

and if G > —1, this is verified if
es —2RG
G+1°

If ¢, € 8Q;, the positivity of P must be studied as in the billiard map. This was
done in our paper (Markarian 1990), formulas (6), (7), and (7'), where it is proved
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that sufficient and necessary condition for P being positive are

¢ — ¢ —alt%+2t1 >0,

EZ
(cy — 2t + a1t%) (402 —2E + (a3 —ay) T)

+oF (2 —2a1t; — (a2 — a1) %)

22E2 2
+AUE o with B = ‘;389; if K, #0), (12)
2
(a2 —a))(c1 — ¢ —2t) + arapt? <0, if K =0. (129

We have used two quadratic forms:

ai=0, C,;=0
a; =0, ¢; =c(const).

In both cases formula (10) is verified, (12') is transformed in an equality and P = 0
for a value of ¢'.

But if almost all trajectories enter in the disk — and thus P > 0 — there is no
problem with this “bad” wave front. This is the case when () is the unit square
centered in the center of & with R < 1/2.

If K, < 0, (12) is verified and we can use any type of C* dispersing curve as
0Q);, obtaining non-uniform hyperbolic systems.

We can also combine neutral and dispersing components as parts of %\ % if we
take care of not generating sets of positive measure of trajectories that bounce only
at the neutral ones.

4. Constant Potentials

In this section we study some of the results conjectured in Baldwin, 1988) for constant
potentials U(r) = U (const), 0 < r < R in the torus. See Sect.5 of his paper
and remember that only chaotic behaviour is observed by numerical methods; not
ergodicity. As he works with total energy E' = 1, his U corresponds to our 2U.

We calculate first the value of G(6,) = ¢'(6,).

Inside the disk the trajectory is rectilinear. For 6, € [0,7/2), we have (Fig.2,
observe how we measure 0,) r,, = Rsin@, and the angular momentum is

M = Rsin6, = Rsin8,v/1 =2U .

So
7 Md
T
g0 =2 [
/(1 = 2U)r2 — M2
and, if
1-2U0
2 _ 2
=0 r-—1,
Ry p
z 1-2U sin 6,
0,)=2 — = 2 Arct; —— — 1 =2 Arcos ———
962) /z2-|—1 & sin? 6, V1=-2U

™



444 R. Markarian

Fig. 2

(we take the determination of Arcos z such that w > Arcos z > 0). In order to make
g continuous at §, = 0, we take, for 6, € (—7/2,0), g(62) = 27 — g(—6,).

Observe that if U > 0, for certain angles (sinf, > /1 — 2U) the expression of
g(6,) does not make sense. In these cases the particle does not enter in the disk: it is
reflected as in a billiard, and the graph of g is as in Fig.3

9(92)

a0,

Fig. 3 6, = Arc sen Viezu

If g(6,) is defined,
—2¢0s 6,

\/cos? 0, —2U ’

which graph is in Fig.4a for U < 0, and in Fig.4b for 0 < U < 1/2.

Observe that from the formula for V7, oy, that are valid for billiards, as we calculate
P, neutral components can be ignored if ¢; indicates time between two successive
touchs with % . Indeed, if K; = 0 and the subindex O is used for all the elements in

G(6) =
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the previous (to g;) bounce, then

d81
dS()

d.
—cosfy = d—: [cos 6 — to(K, — 6))]

; dsy

9 =22k, @)
1 dSO( 2 2)’

d
Ko+06=d—:)(Kl—0’1)=—

d
- __d52 [— cos by + (to + t1) (Ka — 65)] .
S0

So, the study of chaotic behaviour of a particle moving on a torus, freely outside a
disk and submitted to the action of a potential inside, it can be considered as in a
square (). If the square has unit sides, and the disk has radius R, both centered in
(0,0), then t; >2(3 —R)=1-2R.
If U(r) = U, we must distinguish two cases:

a) 0 < U < 1/2. In this case we use the quadratic form with a; = ¢; = 0. If the
particle enters in the disk, G < —2 (see Fig.4b) and P > 0. If it does not enter, it
is reflected as in a billiard, and from our previous work (Markarian 1988, Sect.2.A),
it is deduced again that P > 0. So in this case the dynamical system has chaotic
behaviour.

a b 8= Arc sen 122y

u=0

i

U<0

6(87) ~ 1-2u

e

Fig. 4 ——

b) U < 0. We use the quadratic form with a; = 0, ¢; = ¢ (constant).

_ —242/1-2
As G > ——2—,wetakein(10)d= ;U,andsocl =
V1-=-2U 1-2U0
2R Ast; > 1-2R,wecantakec = 1-2Rif 1-2R > 2R
1+vio2o U T ’ - 1+Vi20

1 2
N 1— —U.
This implies 2U < (1 — 2R) U,
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U
1/[
chaotic
2 R
non chaotic
Ul =1+ _.1_.. 2
-2R

chaotic

Fig. 5

Baldwin proved — using KAM theory — that the system neither is ergodic nor has
Pesin region of measure one if 2U > U;. He conjectured (5.4) that the system is
ergodic for 2U < w;; we have proved that it has chaotic behaviour (see Fig. 5).

In this case the quadratic form B(¢’,v") = 2aV + (1 — 2R)V? is the best one since
it allows to deduce chaotic behaviour in the maximal set 2U < Uj.

As I was revising this paper I knew that A. Knauf had proved the results in Sect. 4
using invariant cones techniques: Physica D 36, 259-262 (1989).
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