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Abstract. The growth of some numerical characteristics of the mappings under their
iterations in the context of the general problem of integrability is discussed. In the
general case such characteristics as complexity by Arnold or the number of the differ-
ent images for the multiple-valued mappings are growing exponentially. It is shown
that the integrability is closely related with the polynomial growth. The analogies with
quantum integrable systems are discussed.

The goal of this paper is to discuss the growth of some concrete numerical charac-
teristics of the mapping under its iterations in the context of the general problem of
integrability for such discrete systems (see e.g. [1]). The results can be summarized
in a quite natural way: The integrability has an essential correlation with the weak
growth of certain characteristics. One of them is the complexity introduced and in-
vestigated by Arnold in the recent papers [2]. In the simplest case for the mappings
/ of the plane the complexity can be defined as the number of intersection points of
the fixed curve Γ\ with the image of the second curve ΓΊ under the fcth iteration of /

If the mapping / is the polynomial one and the curves Γ\ and /2 are algebraic, then

it is easy to see that the growth of Af

r Γ (k) will in general exponential on &, what

is in a good agreement with the general Arnold's result [2]. In the first paragraph we
will show that for the integrable (in the various senses) polynomial automorphisms
of the plane this growth is much weaker

and this property turns out to be characteristic for the integrable mappings in this case.
In the rest of the paper we discuss the dynamics of the multiple- valued mappings
(correspondences) Φ and the growth of the numbers N^(k) of the different images
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under the kth iteration of Φ
JV*(Jk) - #Φ(k\x).

The second paragraph is devoted to the symplectic correspondences Φ, which are
integrable in the Liouville sense, i.e. have sufficiently many involutive integrals. It
is shown that the numbers N^(k) for them grow polynomially on k instead of usual
exponential growth (see also [3]). In the last paragraph we try to understand what the
polynomial growth of N%(k) means for the dynamics of algebraic correspondences
Φ:CPl —> CP1. The partial results we present also demonstrate the connection of
this property with the integrability. This case is very interesting because of various
connections and parallels with the theory of quantum integrable systems and quantum
groups. Notice that the role of the well-known Yang-Baxter equation in the approach
to the theory of quantum groups developed by Faddeev and his collaborators is to
supply a certain growth of some related algebra (analogue of Poincare-Birkhoff-Witt
theorem). We hope that the results about the dynamics of the algebraic correspon-
dences can be used for the construction of the new solutions of Yang-Baxter equation
and integrable quantum models.

This paper was completed when the author was the guest of the Forschungsinstitut
fiir Mathematik (ETH, Zurich). I am grateful to Prof. J. Moser and E. Zehnder for
this possibility and stimulating discussions.

1. Integrable Polynomial Automorphisms of the Plane
and the Complexity by Arnold

Let /(#, y) = (P(x, y), Q(x, y)) be some polynomial mapping C2 —> C2, the inverse
for which also is polynomial one. Such mappings form affine Cremona group GM2(C).

The problem about iterations of such a mapping / can be considered as the solution
of the following difference system:

( xk+l = P(xk,yk)

I 2/jfe+ι = Q ( x k , y k ) -

We will suppose that / as an element of GA2 has an infinite order otherwise the
problem about its dynamics is not arising.

Following [4], let us give the

Definition. The mapping g E GA2 is called a symmetry of the dynamical system
(1.1) if g commutes with f f o g = g ° f We say that symmetry g is nontrivial, if
g generates with / the subgroup Z Θ Z C GA2.

If (xk,yk) is a solution of the system (1.1), then (x'k,y'k) = g(xk,yk) is also the
solution of (1.1), because of the commutativity / and g. It means that g transforms the
set of the solutions of (1.1) into itself. So this definition is in a good agreement with the
traditional symmetry approach arising to Lie (modern development and application of
this aproach for the classification of integrable nonlinear partial differential equations,
see in [5]). To the author's opinion this approach to the integrability is the most
apropriate for the dynamics of mappings (see [1])..

Now let us consider two algebraic curves Γ\, Γ2 in the plane and the intersection
of Γ2 with the image of Γi under the fcth iteration of /

. (1.2)
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It is the particular case of the numerical characteristics introduced and investigated by
Arnold [2], which he calls complexity. It is closely connected with such characteristics
as the algebraic degrees of the iterations of /, where an algebraic degree of the
polynomial mapping / = (P, Q) is defined as the maximum of the full degrees of its
components

deg / = max(deg P, deg Q) . (1.3)

Theorem 1. The following 4 conditions are equivalent to each other:
1) the dynamical system (1.1) has a nontrivial symmetry;
2) there exists a polynomial change of coordinates transforming the mapping f to the
triangular form:

y + c ) , (1.4)

where P(y) is some polynomial of y;
3) the algebraic degrees of all iterations of the mapping f are bounded:

deg/(fe)<C(/); (1.5)

4) the complexity A*Γ Γ (k) is bounded:

2J) (1.6)

for all Γ\ , Γ2 being in the general position (such that these intersections consist of the
finite numbers of points).

Proof. The equivalence 1) <=>• 2) ̂  3) was established in [4] and simply follows from
the algebraic results about affine Cremona group GA2 [6, 7]. The theorem by Jung
[6] plays a fundamental role here; it states that this group is the amalgamated free
product of the groups of affine and the triangular transformations

GA2 = A * Γ.
AΠT

Using this theorem Wright gave some description of all abelian subgroups in GA2

[7]. As follows from his results all subgroups Z 0 Z are conjugated in GA2 to some
subgroups of A or T, and therefore the condition (1.5) holds. Moreover he proved that
this condition is sufficient to the conjugacy of the element / G GA2 to some element
of A or T. To establish the property 2) notice that over C any affine transformation
can be transformed to the triangular form. It is easy to check that any triangular
transformation of infinite order has nontrivial symmetry. It leads to the equivalence
of the first three conditions.

Now the boundness of the complexity follows from the inequality

Af

ΓlΛ(k) < degPj degP2(deg/(fc)) , (1.7)

where PI = 0, P2 = 0 are the equations of the curves Γ\ and Γ2. Indeed the
intersection Γi Π f(k\Γ2) is described by the system

) = o

( '
which according to the well-known Bezout theorem has no more than

deg Pi (x, y) deg P2(f(k\x, y)) < deg PI deg P2 deg /(fc)
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solutions, otherwise we will have the whole common curve and not a general position.
The inverse implication 4) => 3) follows from the fact that for any mapping h 6 GA2

there exists an open by Zariski set of the pairs of the straight lines (/i, fe), such that

The proof is finished.

Remark 1. If we add in the condition 2) to the triangular transformations the affine
ones then we will have the implications 1) ̂  2) <=> 3) => 4) for the real affine
Cremona group GA2(R) (see [4, 7]). We think that the implication 4) =^ 3) also
holds on the reals but have not now the complete proof.

Remark 2. The mapping / e GA2 of the finite order: /(7V) = Id for some TV, is
conjugated to the triangular or affine form, as follows from [7].

Notice that the iterations of affine and triangular transformations can be found
explicitly. Thus, the conditions 1), 2), meaning the integrability of the dynamical
system (1.1), imply the boundness of the complexity by Arnold for this system instead
of usual exponential growth.

It is very interesting to compare these considerations with ones by Moser [8], who
analyzed the mapping

x x + y .
/ : — M o , sin a Φ 0 .

\yj \(x + yό) sin a + y cos α/

It is easy to see that the algebraic degrees of / grow exponentially

and therefore this / is nonintegrable in our sense. Moser has proved the nonintegrabil-
ity of this mapping in the Birkhoff sense, i.e. the divergence of the series transforming
this mapping to the normal form. His investigation is based on the calculation of the
numbers of the periodic points and also uses the algebraic nature of the maping.

Similar properties have the quadratic mappings from GA2. By affine change of
coordinates such mappings can be reduced to the form

f i ~ \ _ / ̂ u ~f~ a\x ~^ azy ~*~aχl

\V;

where a\β2 — ot2β\ Φ 0, aβ2 — a2β = 0. It is easy to see that

if α ^ O ,

so the integrability has a place only for a = 0. This leads to two cases:
1) a2 — 0; 2) β = 0. The first case is triangular, in the second we have affine
transformation.

In particular, Henon mapping

Q ίl+y- α

"* V bx

is integrable in our sense only for α = 0.
In the symplectic case we can pose another question: whether or not a given

polynomial automorphism from GA2 has a polynomial integral?
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Using Theorem 1 and some results of the paper [10] by Friedland and Milnor
one can prove (see [4, 11]) that the existence of a nonconstant polynomial integral
/ for the dynamical system (1.1): I(#fc+ι,2/fc+ι) = I(xk,Vk) for the symplectic / is
equivalent to every condition from l)-4) of Theorem I1. To replace the polynomial
integral by a rational one changes nothing in this statement.

So the situation with polynomial automorphisms of C2(R2) seems to be clear. To
investigate analogous problems for other dimensions n > 2 is an interesting open
problem. We mention here only the recent paper by Moser [12], where the quadratic
symplectic mappings are considered.

2. Multiple-valued Symplectic Mappings: The Growth of the Numbers
of Different Images of Their Iterations

We begin with the remark that for the symplectic mappings the multiple-valueness is
not exotic but is quite a natural property. Let us consider, for example, the symplectic
mapping

Φ : Γ*Mn -» T*Mn, Φ(p, q) = (P, Q) ,

determined by the relations

_
~ ΘQ' P~~dq> <

where % = &(q,Q) is the generating function % = Mn x Mn -> K (see [13]).
To find (P, Q) for given (p,g) we need to solve the system (2.1), which in general
has no unique solution. Such mappings correspond to the Lagrangian systems with
discrete time, where S§ plays the role of the Lagrangian (see e.g. [14]).

Let us give some natural definitions. General multiple^ valued mapping or corre-
spondence Φ : M — » M is determined by its graph ΓΦ C M x M. The point y e M
is called the image of x G M under the correspondence Φ if (x,y) E Γφ. More
generally, y is the image of x under the kth iteration of Φ if there exists a sequence
(x = x, #ι, . . . , Xk = y), such that fe_ι, Xi) E Γφ, ί = 1, . . . , k. If M = M2n is
some symplectic manifold with the structure ω, then we will call the correspondence
Φ as symplectic if its graph Γφ is a Lagrangian submanifold of M2n x M2n with the
induced structure

Ω = π*ω — π^ω ,

TΓi : M2n x M2n — > M2n are the projections on the first and second factors corre-
spondingly. The function F on the manifold M2n is called the integral of Φ if the
function πfF — π*F after the restriction to ΓΦ becomes zero.

We will say that the symplectic correspondence Φ : M2n — > M2n is ίntegrable
(in Liouville's sense) if there exist n independent integrals FI, ... , Fn being in
involution {F;, Fj} = 0. The common nondegenerate compact level of these integrals

Mc = {x e M2n : Fi(x) = Ci}

must be the finite set of the tori Γ/1, . . . , T™ for the same reasons as in the usual
Liouville theorem (see [13]).

1 The author is grateful to A. Eremenko, who called his attention to the paper [10] and explained
how its results can be used to answer one of the questions posed in [4]
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Let us consider the numbers of different images of some point x under the kth

iteration of Φ,
N%(k) = #Φ(k\x) . (2.2)

If NX (I) = m > 1 then it is quite natural to expect that these numbers will grow
exponentially

JVf (fe) w mk .

It turns out that for the integrable correspondences they grow much slower.

Theorem 2. The numbers of the different images of the point under the kth iteration of
the integrable symplectic correspondence are growing no more then some polynomial
on k. More precisely, ίfp is the number of the components of Mc, containing the point
x, and m is the maximal number of images of Φ on the level Mc, then there exists
some constant C, independent of k, such that

Nf(k) < Ckmp-1 . (2.3)

Proof is based on the corresponding discrete version of Liouville theorem (see [3]).
The idea becomes clear already in the case p = 1, i.e. when Mc ^Tn. On the level
Mc we have the action of the abelian group Rn, generating by the Hamiltonian flows
with the Hamiltonians FI, . . . , Fn. Our mapping Φ commutes with this action and
therefore should determine some set of shifts

Φ(x) = {x + α} , α e A C Rn . (2.4)

Such mappings Φ : Tn = Rn/L — > Tn we will call as multiple-valued shifts and
denote as IA Now the numbers N^(k) are easily calculated

where m = \A\ = N*(l).
The following picture demonstrates the difference between integrable and general

situations

Fig. 1

For the several components of Mc p > 1 let us consider two of them, say T\ and Γ2,
connected by correspondence Φ. They can be represented as quotients Ti = W1 /Li,
where the lattices LI are the corresponding stationary subgroups for the action of Rn.
Let us define also the lattice Z/ι2,

L12 = {6 G Rn : Φ(x + b) = Φ(x)}
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or, equivalently,

Li2 = {b e Rn : Φ(x) = Φ(x) + b} , x e TI , Φ(x) e Γ2 .

It contains L\ and LI as a sublattice. Considering corresponding torus T\ι = W1 /L\2
we have the following commutative diagram

T ,•M2 - > -ί-12

where t\ι is some multiple- valued shift, so our correspondence Φ has the form

Φ = π^1 oίΛ oτrι .

Now let us take all tori of Mc, which are connected with the given torus TI, containing
the point x, by the correspondence Φ and its iterations, let it be TI, ... , Tq, q < p.
There exists the lattice L, which contains the lattices L^ described above for all
possible 1 < i, j < q. On the corresponding torus T = Rn/L we have the multiple-
valued shift, which is the projection of Φ. It is easy to see that it consists of no more
than rnq usual shifts. It means that the numbers of the images for the iterations after
such a projection grow as

N(k) < Ckmq-1 < Ckmp~l .

But these numbers differ from ones we need only by some bounded factor. The proof
is finished.

In the algebraic situation when the Liouville tori are the real parts of some abelian
varieties, the role of the number p plays the number of irreducible components of
Mc. In particular, for the irreducible Mc we have the inequality

l ) <m 2 , i f m > l .

It can be used as an effective test for such integrable systems. The examples of such
systems can be found in [14].

3. The Dynamics of the Algebraic Correspondences
CP1 —> CP1 and Yang-Baxter Equation

Let us consider now the correspondences Φ: CP1 — > CP1, determined by the poly-
nomial equation

We say that Φ is ra— n correspondence if the degrees of Φ(x, y) with respect to x and y
are n and m correspondingly. It means that in the general case the point has m images
and n preimages under the mapping Φ. The composition of two correspondences
φ(x, y) = 0 and Ψ(x, y) = 0 can be found with the help of resultant.

Let Nφ(k) be the number of the different images of fcth iteration of Φ for the
general point x

Nφ(k) = #Φ(k\x) .
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The problem we are interested in is how these numbers are growing and when this
growth is polynomial on k.

This problem seems to be very difficult but very interesting for many reasons. One
follows from the previous discussion of the symplectic case and concerns the general
problem of integrability for the multiple-valued mappings. The second motivation
goes from the theory of the Yang-Baxter equation and quantum integrable systems
(see below).

We begin with the simplest case of 2-2 correspondences, given by the biquadratic
equation

Φ(x,y) = ]Γ aijx
iyj=Q.

0<iJ<2

Some results about the dynamics of these mapping can be found in [15]. The numbers
Nφ(k) for the general coefficients α^ grow exponentially

Nφ(k) = 2k .

The reason for the slow growth is the glueing of the images for some iterations
of Φ. Let us consider the case when it happens already for the second iteration of
Φ: Nφ(2) < 22 = 4. Two possible situations are pictured in Fig. 2.

Fig. 2

Theorem 3. The glueing of the images for the second iteration has a place only for
the following 2-2 correspondences:
1) symmetric correspondence Φ(x, y) = Φ(y, x),

Φ(x, y) = a22x
2y2 + anxy(x + y) + a20(x2 + y2)

+ a\\xy + αoi (x + y) + GOO = 0; (3.1)

2) reducible correspondence

Φ(x, y) = (a\xy 4- β\x + 71 y + δ\) (oiixy + $1% + ΊiV + ^2) = 0 , (3.2)

βiX + δi
corresponding to the commuting transformations x — > y = -- (i = 1,2);

OLiX + 7i

3) the correspondence

Φ(x,y) = xy(x + εy) + b = Q , ε3 = 1 , ε φ 1;

4) the correspondence Φ of the form

Φ(x, y) = ax2y2 + bx2 + cy2 + d = 0;

and for the correspondences, which are equivalent to these ones up to the projective
transformations of the independent variable.
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Before the proof let us make some comments.
A symmetric biquadratic relation of the form (3.1) plays an important role in

Euler's proof of the addition law for the elliptic integrals. Chasles was the first who
realized it as the multiple-valued mapping in the geometrical situation pictured in
Fig. 3 and related it to the "great" Poncelet theorem (see [16])

Fig. 3

The curves pictures here are conies, x is the rational parameter on one of them.
We will call the correspondence (3.1) a Euler-Chasles correspondence. To describe its
dynamics notice that Eq. (3.1) determines in general a position on the elliptic curve
Γ, which has the symmetry σ: (x, y) —> (y, x). There exists also the second involution
T, changing the lists of y, which is a 2-valued function of x. The composition of these
involutions σ o r corresponds to the shift of Γ: z —> z + α for some α. So we have
the commutative diagram

Γ ^^ Γ

i i-
In other words there exists some elliptic function φ(z) (the function x on Γ) of the
second order, such that if x = φ(z), then y = φ(z ± α). This consideration is the
slight variation of one from the paper by Griffiths [17], devoted to Poncelet theorem.
The decomposition of the mapping into the product of two involutions often happens
in the discrete dynamics (see e.g. [12, 14]).

The reducible correspondence needs not any comments.
The mapping (3.3) corresponds to the transformations z — >• εz ± α for the elliptic

curves given by (3-3) and having the parameter τ — - , α = - . Indeed

it follows from the addition theorem for the Weierstrass ^-function that the pairs
,&\εz ± α)) satisfy the equation

which after the change x — > — , y —> - goes to the (3.3).
x y
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The correspondence (3.4) is semiconjugate to the usual project!ve mapping: after
the noninvertible change u — x2 the relation (3-4) has the form

auv + bu + cv + d = 0,

bu + d
which describes the mapping u —> .

au + c

Proof of Theorem 3. Let us begin with the case pictured on the left scheme of Fig. 2:
N(2) = 3. In this case we have the well-defined mapping x —> z (see Fig. 4)

Fig. 4

After appropriate projective transformations we have two possibilities
1) z = x + α; 2) z = \x.
In the first case the curve Γφ must be invariant under the transformation σ: (x, y) —>
(y, x + α), and therefore under σ2 : (x, y) —> (x + α, y + a). If α ̂  0 such a curve has to
be a pair of the straight lines of the form y—x = const. So Φ determines two shifts and
belongs to the family (2). If a — 0 then ΓΦ has a symmetry σ: (x, y) —> (y, x). It means
that Φ(x, y) — ±Φ(?/, x). If Φ(x, ?/) = Φ(y, x) we have Euler-Chasles correspondence.
Otherwise Φ has the form

xy(x -y) + b(x-y) = 0

and belongs to the type (3.3).
In the case z = \x, λ ^ 1 the curve Γφ is invariant under the transformation

σ(x, y) — (y, \x) and its iterations. In particular, for every point (x, y) £ Γφ the
points σ2k(x,y) = (λkx,λky) also belong to ΓΦ for all k € N. If λfc ^ 1 for
k = 2,3,4 then we have more than four common points of Γ with the corresponding
straight line ax + βy = 0, and therefore Γ must be the union of two such lines

(OL\X + β\y) (a2x + fay) = 0.

The investigation of the cases \k — 1, k = 2,3,4 adds the only new correspondence
(3.3) (for k = 3).

When N(2) = 2 (left diagram of Fig. 2) we have well-defined involution σ: CP' -»
CP1 (see Fig. 5)

In the appropriate coordinate it has the form σ(x) = — x and the correspondence
Φ must be the mapping of pairs Φ:(±x) -» (±y) (compare with [15]). All such
correspondences have the form (3.4). The proof is finished.

Corollary. The glueing of the images of the second iteration implies for 2-2 corre-
spondences the explicit description of the dynamics and no more than linear growth
ofNφ(k\
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Fig. 5

In the paper [3] the correspondences whose dynamics for the first two iterations
has the same scheme as for a multiple-valued shift on some torus, are called abelian.
If it is true for all iterations we will call such correspondences abelian in the strong
sense. So among all 2-2 correspondences only those pointed out in the first three
cases of Theorem 3 are abelian.

To describe all abelian mapping is an interesting open problem. It is connected
with the following problem, investigated by Julia, Faton, and Ritt [18-20]: to describe
all commuting rational (polynomial) mappings of CP1. Under some assumptions all
such mapping turn out to be connected with the transformation law for the elliptic
functions and its elementary degenerations (see [18-21, 1]). It is easy to see that the
reducible correspondence

( y - f ( χ ) ) ( y - g ( x ) ) = 0

is abelian i f f o g = gof. One more demonstration of the connection of the problem
about commuting mappings and the problem of growth of N(k) is given by the
following simple proposition.

Let Φ~l denote the correspondence whose graph is symmetric to ΓΦ according to
the diagonal x = y,

Notice that (Φ~l)~l and the composition Φ~λ o Φ as well as Φ o Φ~l in general is
some multiple-valued, but not identical mapping.

Proposition. The condition
Φ"1 o Φ = Φ o Φ~l

for 2-2 correspondence Φ implies the glueing of the images of the second iteration of
Φ and therefore leads to the list of Theorem 3.

The proof follows from the simple analysis of the possible schemes of the dynamics
for such mappings.

The general problem about the commuting correspondences is far from the com-
plete investigation in contrast with the case of rational mappings. The following
consideration shows that here we have some principally new examples.

Let Φn(x,y) = 0 be the modular equation, which is satisfied by the pairs (x,2/),
x = J(z), y = J(nz), J(z) is modular function. This equation plays a very important
role in the theory of elliptic curves (see e.g. [21]). In the simplest nontrivial case
n = 2 it has the following form:

x3 + y3 - x2y2 + 24 3 - 3lxy(x + y) - 24 - 34 5 V + y2)

+ 34 - 53 4027X7/ + 28 - 37 - 56(x + y) - 212 - 39 - 59 = 0 .
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Using the properties of these equations, it is easy to prove that the correspondences
determined by them for the mutually prime m and n commute

ΦJ

 0Φ
J = ΦJ oΦJ = Φj

m n n m ran '

The problem about commuting correspondences appeared in the paper by Krichever
[22], devoted to the solution of the quantum Yang-Baxter (YB) equation. One of the
crucial steps in this paper consists of the construction of some correspondence for
the certain solutions of the YB equation. The further investigation shows that only
correspondences (3.1) and (3.4) are possible, which leads to the final classification of
the considered solutions of the YB equation. Euler-Chasles mapping corresponds to
the well-known Baxter solution [23], the correspondence (4) - to the solution found
by Felderhof.

It is interesting that the important role of the YB equation in the problem of growth
for the related algebraic objects, was underlined by Faddeev and his collaborators
from the very beginning of the theory of quantum integrable systems and quantum
groups. For example, Sklyanin algebra [24] is the algebra with the quadratic relations,
which grows precisely like the commutative algebra of the polynomials. Notice that
this growth coincides with the growth of the numbers Nx(k) for the corresponding
multiple-valued shift. The analogy with the notion of the abelian correspondence
seems to be clear.

From this point of view the following generalizations of Euler-Chasles correspon-
dence seems to be important (see [1]).

Let G be the complex simple Lie algebra of rank n, H is its Cartan subalgebra, L is
the lattice in H, dual to the lattice, generated by the fundamental weights ω\, ... , ωn

(see [25]). Determine the abelian variety MG as the quotient

where r E C, Im r > 0. It is the product of the elliptic curves with the parameter
T, on which the natural action of Weyl group W is defined. As it was proven by
Looijenga [26, 28]. Bernstein and Schwarzman [27] the quotient Mc/W is isomorphic
to the "weighted"projective space CPn. So for any VF-invariant finite set A we can
determine the correspondences ΦG,A from the following commutative diagram

z^'z+A

w w

CPn

For the case G = A\, A = {±α}, W = Z2 we have a Euler-Chasles correspondence
of the form (3.1), so ΦG,A can be considered as its multidimensional generalizations.
Notice that ΦG,A and ΦG,B commute

and the numbers of the images for its iterations N(k) grow polynomially. Their
dynamics is clear from the definition. To understand what the quantum analogues of
these correspondences are is the problem under investigation.
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