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Abstract. Given its superselection sectors with non-abelian braid group statistics,
we extend the algebra stf of local observables into an algebra 2F containing localized
intertwiner fields which carry the superselection charges. The construction of the
inner degrees of freedom, as well as the study of their transformation properties
(quantum symmetry), are entirely in terms of the superselection structure of the
observables. As a novel and characteristic feature for braid group statistics,
Clebsch-Gordan and commutation "coefficients" generically take values in the
algebra Jί of symmetry operators, much as it is the case with quasi-Hopf symmetry.
j/,^, and Jί are all C* algebras, i.e. represented by bounded operators on a
Hubert space with positive metric.

1. Introduction and Results

It is very convenient and successful to describe quantum numbers of particles in
terms of unobservable charged fields, which transform under a gauge group. This
is motivated by the observation that non-trivial representations of the global gauge
group give rise to superselection sectors for the gauge invariant quantities
(observables), and is a posteriori justified by the result [1] of Doplicher and Roberts
(referred to as the DR construction below), based on the theory of superselection
sectors and statistics [2] of the same authors and Haag (DHR), that under
reasonable assumptions in four space-time dimensions superselection sectors
always arise by this mechanism, i.e. a gauge covariant field algebra can be constructed
from the subalgebra of local observables and its superselection structure, such that
its charged fields indeed generate the sectors. Essential for this construction is the
fact that the superselection structure (i.e. multiplicities of irreducible subrepresenta-
tions πy in a product of sectors πα x πβ) coincides with the unitary representation
theory of some compact group G (i.e. multiplicities of Q)Ί within 2Λ®9)β).

Now, in recent analysis of conformal quantum field theory, models were
discovered where this coincidence fails, and this failure has been traced back to a
structural difference in the theory of superselection sectors for low-dimensional
quantum physics in general. It may as well occur in 2 + 1 dimensional theories
with particle-like excitations carrying a "string of glue" with them. The new issue
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is the typical occurrence of braid group statistics [3] instead of familiar permutation
group statistics. The "abelian" case has actually been discussed for a long time
under the name of anyons or fractional statistics, and is reasonably well understood
in rather conservative terms (path integrals or Wightman fields). In contrast, the
"non-abelian" case (its particle-like excitations are called plektons) is still a
challenge, mainly since a satisfactory understanding of the associated "gauge"
symmetry is lacking. An intriguing observation from 2d conformal models is,
however, that the superselection structure of the chiral algebra matches (part of)
the representation theory of a "quantum group" [4], raising much hope that the
latter provide the new concept of symmetry. Unfortunately, attempts failed to
define a field algebra with quantum group symmetry decently represented on a
Hubert space with positive metric, although recent progress [5] suggests that
quasi-Hopf algebras might well work out.

Whether quantum groups are relevant in physics or not, their study taught us
to keep an open mind towards what we mean by a "product" of representations
of an algebra. We emphasize that for general algebras there is no such thing at
all, and the DHR product πα x πβ mentioned above of representations (super-
selection sectors) of the algebra of local observables was a major progress of special
physical relevance. For groups and Lie algebras, the natural composition is the
tensor product, but yet this is not always the physically relevant one. E.g., for the
Poincare group the two-particle representation (in Fock space) differs from the
tensor product of one-particle representations by the appropriate symmetrization
prescription. For space-time covariance groups in low dimensions, the effect of
the statistics on the composition of representations is even more drastic, allowing
for non-additivity (mod 1) of the relevant "spin" quantum number [6]. Indeed, the
miraculous sum rules for the conformal spin h in Wess-Zumino-Witten and
minimal models and the related monodromy problem stood at the beginning of
the study of non-abelian braid group statistics [7, 8].

As for "inner" symmetries, their structure must not even be that of a group.
It is, however, necessary that there is a composition law for its representations
reflecting that a transformation law for fields induces the transformation law for
products of fields. Fqr quantum groups (or, more generally, Hopf or even quasi-
Hopf algebras) the composition law is provided by the co-product, comprising the
tensor product for groups as a special case.

In the present article, a new attempt is made to overcome the problem of
positivity arising with quantum groups. Our construction is explicitly realized on
a positive Hubert space, but the nature of its symmetry is not a priori imposed.
Instead, our starting point is the requirement that the charged fields generate the
superselection sectors, with the tacit expectation that this determines the symmetry
to some extent. We establish a much larger symmetry algebra M which one may
with some reason speculate to contain a quasi-Hopf algebra. The notion of
representations for Jt is replaced by homomorphisms

defining ^-linear transformations as in (1.13) below, and the composition law

(P XP)IKJL = PIJ°PKL

further generalizes the co-product prescription (cf. (1.20)).
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Although the term "plektons" suggests massive excitations in two- or three-
dimensional physics, our (purely algebraic) results neither depend on a mass gap
nor refer to the dimension of space-time. Thus they also pertain to the
positive-energy representations of chiral algebras in rational conformal quantum
field theory. In that context, the present article addresses the problem of how to
pass from vertex-operator-like charged fields [7] to tensor-like fields [8].

The article is organized as follows. In the remainder of this introduction we
present our results. The superselection sectors can be generated by partial
isometrics, and the transformation rules for the latter are displayed in some detail.
The actual construction is contained in Sect. 2 (which is therefore quite technical),
as well as a number of corollaries on the structure of the algebra. Some special
cases, implications, and problems are exposed in Sect. 3. In particular we discuss
the question of the existence of distinguished bases in the special case of permutation
group statistics, which would confirm that the DR construction is a subalgebra
of our field algebra, and formulate it in a basis independent abstract language
referring to the relevant braided (in fact symmetric) inclusion of type II ^ factors.
In the Appendix, we display our positive but incomplete evidence for the validity
of this conjecture in the simplest non-abelian example - this feeding our expectation
that in a similar manner in the braid group statistics case a field theory of plektons
with quasi-Hopf symmetry has a chance to emerge as a subalgebra.

The technical framework of the article is based on the DHR theory of super-
selection sectors as introduced in [2] (see also the excellent review on concepts
and results [9]), which is most powerful for the type of questions under considera-
tion.

We are going to construct a C* field algebra J^ extending the algebra of
observables st c J^ by charged field operators ψk9 which act on the observables
Aestf as charge creating intertwiners:

ψkA = p(A)ψk. (1.1)

In the special case of permutation group statistics (where all statistical dimensions
d are integers), a solution to (1.1) is given by the DR construction in terms of the
Cuntz algebra [10], which is generated by isometrics ψk,k= l,...,d(p), with the
relations

These field operators carry the symmetry of a compact global gauge group G,
such as to reproduce the superselection structure of the observables si = ̂ G.

To keep the present construction for braid group statistics comparable, we
shall in particular establish the analogous form of orthonormality and completeness
relations consistent with non-integer statistical dimensions, as well as the trans-
formation properties of the multiplet field operators ψk under an appropriate
symmetry algebra and their Clebsch-Gordan expansions and commutation
relations. The crucial difference with the Cuntz algebra and its G cz \J(d) symmetry
is the appearance of a non-abelian coefficient ring Jt commuting with the
observables but not with charged fields, in which matrix elements of linear trans-
formations, as well as Clebsch-Gordan coefficients and commutation structure
constants take values. In fact, for the special case of permutation group statistics
we shall present indications, that for an appropriate choice of basis these coefficients
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take scalar values, such that the Cuntz algebra is recovered and the DR construction
arises as a subalgebra of the present (more redundant) field algebra.

Let us now present our results more specifically. Assume that si has only
finitely many superselection sectors (i.e. equivalence classes [πα] of irreducible
representations which are locally equivalent to the vacuum representation and
have finite statistics [2]). Let p be a localized endomorphism of si equivalent to
the direct sum of all its sectors, and denote by EΛe(p\p) = p(^}' the minimal
projections in the commutant of p(<$tf) corresponding to the subrepresentation of
equivalence class [πα]. Denote by M the hyperfmite von Neumann factor of type
II 1 obtained as the inductive limit of matrix algebras of intertwiners within si

J ί : ( p f \ p " ) C ( p f + 1 \ p f + 1), (1.2)

(cf. (2.1) below) equipped with the trace state tr = lim φ" generated by the unique
n

standard left-inverse φ of p. Then ̂  will be realized as a C* subalgebra of si® Jt.
In particular, si c= 3F will be realized by the injection

(1.3)

and M a 2F will be realized by the injection

(m). (1.4)

Obviously, i^(si} and ij((Jt} commute.
Let us first describe the internal degrees of freedom of our charged field

multiplets abstractly. The indices fce^Γ o!( ψkt3F <=.si®M will transform like
elements of the irreducible sub-bimodules of the two-sided action of Ji on itself
by left and right multiplication with p(m). These bimodules are realized as linear
spaces jΓα:=EαjΓ c JΓ, labelled by the superselection sectors of si, with the
bimodule action by left multiplication with p(m) and right multiplication with m,
where Jf is the inductive limit of finite dimensional intertwiner spaces in s/9

j f : ( P » + ί\P»)^(P

n+2\P»
+i), (1.5)

in the topology of M. (cf. (2.1). Observe that JΓ* Jf - jf jf * - M, and /c*fc2 may
be regarded as an ^-valued inner product.) The bimodule tensor product has the
orthogonal decomposition

with Ny

aβ = ά\m(pΛpβ\py) the multiplicity of the sector [πy] within the product of
sectors [πα] and [π ]̂, i.e. the tensor structure of the internal degrees of freedom
coincides with the superselection structure of the algebra of observables. There is
a unitary action of the statistics operator ε(p,p):JΓα(χ)^jΓ^^^β®jί^Λ permut-
ing the order of tensor factors, and intertwining the respective bimodule actions

Ji.
The internal structure can be made more explicit in terms of bimodule bases

r} of Jfα labelled by / in finite index sets /„ such tnat

Σ &/&? = £«, b*bj = δjjpj€Jί, (1.7)



Field Operators for Anyons and Plektons 127

where p/ are projections in M. The von Neumann dimension [1 1] of the bimodule
Jfα (with respect to either one-sided action of Jt) is given by the basis-independent
quantity

= </α, (1.8)

the statistical dimension of the superselection sector [πα]. The left action
on bjE Jf is then given by the right multiplication oϊbj (summed over IE/ = (J /„
i.e. a basis of JΓ) with α

Pιj(m)' =b*p(m)bj. (1.9)

The maps m\-^plj(m) define an algebra homomorphism Jί -*MaiN(Jί\ which

actually is a direct sum of homomorphisms, one for either sector I ΛΓ = | </ 1 = Σ I /<=
\ «

There are ̂  valued Clebsch-Gordan coefficients ^(K\JI)e9 with e labelling
the "fusion channels" of (1.6), for the composition of these algebra homomorphisms,
satisfying

IJ K'

Now let us turn to the field algebra itself. Its existence with the properties listed
below is the content of the main Theorem 2.7 and its Corollaries 2.8-2.11.

The charged fields ψke^ fulfill the required charge-creating intertwiner relation
(l.l).1 Actually, for fceJfα, ψk generate the subrepresentation of class [πα] within
πo°P Ψk are linear in /ceJΓ and transform like

(1.11)

In terms of a basis (1.7), the field operators ψj = ψbl are partial isometrics satisfying
the orthonormality and completeness relations in &,

ΣM? = U, ΨWj = δπPιεiA^) (1-12)
/e/

The transformation law may then be rewritten

There is a Wigner-Eckart formula for the reduction of products of tensor operators
of the present quantum symmetry according to (1,6):

(1.14)
e,K

where Te€(p2\p) are observables intertwining the corresponding representations
of stf. The field algebra & is spanned by its elements Aψjin. It has a unit
1 p = is/(ljj) = IM^M\ and ^ ^s closed under the *-operation defined in $4®Jt\
in particular, the *-conjugates of charged field operators carry the conjugate charge,
with coefficients in ij?(J%) if expanded in terms of a basis. There is a notion of

1 Here and below, in all operator equations within «̂ , observables Aestf respectively coefficients
are understood as their images under i^ respectively i^
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localization for field operators (different from the one pertaining to the first factor
in si (x) Jί\ characterized by commutativity with the images under i^ of localized
observables. Multiplication with elements of ijf(Jί\ and hence the action of the
symmetry (1.6), do not affect the localization. Field operators localized at space-like
distance satisfy commutation relations with coefficients again in iM(Jt\

A Hubert space representation of the field algebra is given by the GNS construc-
tion from a vacuum state. The vacuum state is given by the restriction to & of
the state on stf (x) Jί

ω(A®m):=d ω0(W*AW0)'tr(m\ (1.15)

where ω0 = <β, π0( )ί2> is the vacuum state on s/9 W0 is an isometry in (p \ id) such
that W0 W* = E0 is the projection onto the vacuum subrepresentation of p, and

d = d(p) = Σ dα = (tr E0)~ *. Restricted to the observables, ω coincides with ω0:
α

ω°i^ = ω0. (1.16)

On this ground state, the operators Γk = φ:fi^(Wol) with /ceJΓα and isometrics
WΛG(p\pa)9 act as creation operators for the representation πα = π0°pΛ of sί\

(1.17)
Λ

Consequently, the Hubert space jf of ̂  decomposes with respect to the obser-
vables like

'^ = 0 .̂®^ (1-18)
α

where 3?Λ carry the representations πα, and Jfs arise as multiplicity spaces.
We consider the above transformation of fields under Jί as a "master

symmetry," too redundant for practical purposes. In particular, the elements of
ijt(Jt} play the double role of "coefficients" and "symmetry operators," while a
distinction among the two would be more conventional: usually the effect of the
transformation with an operator (commutator, adjoint, or more general) is
expressible in terms of numerical coefficients. The reduction of the "master
symmetry" to a more conventional symmetry may be exemplified by our scenario,
how the DR construction is contained in 2F in the case of integer statistical
dimensions. The idea is to identify a basis {bj} of isometries (i.e. all pl = 1 γ/ and
hence, by (1.8), \/Λ\ = dΛ\ such bases exist by an argument of [12]), for which
moreover all (6(K\JI)e turn into scalars, and to determine the compact symmetry
group G as the subgroup of those unitaries in Jί for which

Pιj(u) = gπ'u with 0/7eC, (1.19)

(divided by the kernel of pu, which is a normal subgroup). Then, (1.13) turns into
the usual linear transformation law with representation matrices glj9 and (1.10)
becomes the usual defining property of Clebsch-Gordan coefficients of a group.
In particular, (1.14) rewritten in the form

UK

shows that the G-invariant elements of the Cuntz algebra are observables. The
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cohomological problem is, of course, to find a basis with the stated properties (see
Sect. 3.2).

More generally, one may hope to identify a Hopf algebra (or quasi-Hopf
algebra, as the non-commuting Clebsch-Gordan coefficients may account for
deviation from co-associativity by conjugation with operators in Jt, cf. also [5])
9C within Jί such that restricted to &

9 (1.20)

where Δ is the co-product and τ is a matrix representation of 3C. Then (1.13)
becomes the commutation relation of the (quasi-) Hopf algebra with field operators
in a linear representation of the former.

We want to stress that Jί, tf, and p, and consequently the quantum symmetry
encoded in (1.9), are given in terms of the superselection structure of si alone.
Mathematically, Jt is the "path model" (see e.g. [11]) derived from an incidence
matrix which is the sum of the fusion matrices of all sectors of si. The endomorphism
p:Jί^Jίisa "parallel transport" [13] on Jί. Since Jfα are the equivalence classes
of irreducible sub-bimodules of the inclusion p(Jί} c Jί, the equivalence class of
the homomorphism (1.9) may be considered as an invariant for this inclusion in
the sense of [14, 13]. For instance,

is the square root of the index [Jί\p(M}~\, compare also [15].
In fact, crucial for our construction is also the existence of the statistics operator

and of the conjugate representation. These structures define a strict braided
monoidal C* category with conjugates, subobjects, and direct sums [16], whose
objects are the endomorphisms of si with non-degenerate statistics, and whose
arrows are the intertwiners in si. The inclusion ρ(Jί}^Jί and the trace are
completely determined by the sub-category with objects pn. The braided structure
supplies a "metric" ζeέ (Lemma 2.5), which is the only non-standard ingredient for
our construction, and which will not exist for general inclusions of factors. ζβέ is
related to the antilinear and charge conjugating operation | on intertwiners [9].
Thus, detached from the present context of algebraic quantum field theory (i.e.
restricted to the subalgebra J* n Jt ® Ji\ our results may be regarded as a statement
about special inclusions of type II \ factors and their bimodules, which are naturally
associated with braided C* categories. An application of the intertwiner calculus
is the fact that the trace tr on Jt provides a topological "ribbon invariant" [17]
with "colors" taking values in the irreducible pα and their products. In this context,
ζeέ is related to a ribbon move that rotates a "coupon" by 180°. Finally, we mention
that the abstract intertwiner calculus derived from the DHR theory has its equivalent
in the context of conformal field theory in the famous polynomial identities [18]
for braiding (R below) and fusion (D) matrices.

2. The Construction

In this section, we shall give the field algebra & explicitly as a subalgebra visi®Jt.
The algebraic relations in ̂  announced in the introduction are derived from
identities of the intertwiner calculus for localized endomorphisms, i.e. for the super-
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selection structure of the algebra of observables [2,9]. Let us first recall some
(standard) notations.

Representations of the algebra of observables satisfying the selection criterion
[2] are given in terms of localized endomorphisms p:s# -*stf with a natural com-
position law. For any two localized endomorphisms, the linear space of intertwiners
from p1 to p2 is denoted (opposite to the category notation (Pι,p2)) by

(p2\Pl):={Te^\TPί(A) = p2(A)T}. (2.1)

(p|p) = p(j/)' is the commutant of the endomorphism p and reduces to the scalars
C iff p is irreducible. In particular, for p1 irreducible, there is a positive definite
inner product on (p 2IPι) given by T*Γ/e(p1 |p1) = C.

For any pair of localized endomorphisms there are two unitary statistics
operators

ε ( p ί 9 p 2 ) and ε(p2,p1)*e(p2PιJPιP2λ (2.2)

which coincide in the special case of permutation group statistics, but are distinct
in the general case of braid group statistics. The latter case is relevant when there
is a topological distinction between the "left" and the "right" causal complements
of a space-time region of localization. Whenever pt are localized at space-like
separation and the localization region of pί lies to the right of that of p2, then

ε ( P ι > P 2 ) = l
An endomorphism p with finite statistics possesses a conjugate p and a unique

standard left-inverse $:«a/->«s/, which can be given by the formula

φ(A) = R*p(A)R, (2.3)

with an appropriate isometry Re(ρp\ίd). The statistical dimension d of p is the
number || </>(ε(p,p)) || ~ 1 < oo.

The identities valid among generic intertwiners T, statistics operators ε, and
Re(pp I id) as a consequence of the basic physical assumptions of algebraic quantum
field theory [2] are precisely the axioms of a strict braided monoidal C* category
with conjugates, subobjects, and direct sums [16], whose objects are the endomor-
phisms of s/ with finite statistics, and whose arrows are the intertwiners in Λ/.
In particular, the semi-group A of localized endomorphisms with finite statistics is
closed under composition, and every peΔ has a finite decomposition into irreducible
pαe A We shall select a collection V = {pα} c 4, containing one representative per
superselection sector, with p0 = ideV.

We shall from now on assume that V is finite. This is mainly for technical
reasons, and would amount in the case of permutation group statistics [1] to the
restriction to theories with finite symmetry groups. In the context of conformal
quantum field theories with si = the algebra of chiral observables, it is the restriction
to "rational" theories [18].

We pick pe/4 equivalent to the direct sum of pαeV. Then p(stf)' is a finite
abelian C* algebra with minimal projections Ea=W(XW* onto the irreducible
components, WΛe(p\ρa) isometries. We denote ε = ε(p,p), 3~ = (p2|p), & = (p2\ίd).
Since p is self-conjugate, we choose p = p and Rε& such that (2.3) gives the
standard left-inverse φ of p. Then the following useful formulae hold:

, (2.4)
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= d~2, (2.5)

for Te(pn\pm), (2.6)

where da = d(pΛ) and d = d(p) = £ dα denote the statistical dimensions. We pick a
basis of ff" *

TeeEΛp(Eβ) <Γ Eγ = WaPa(Wβ)<(pΛpβ\Pγ)' W* c ̂ , (2.7)

where e stands for the "superselection channel of type (α, /?, y)" of pΊ contained in
ρΛpβ, or in other words, of the transition from the sector [α] to the sector [y]
effectuated by the charge [/?]. The number of basis elements of a given type is
Ny

Λβ = dim(pΛpβ\py). The basis can be chosen such that

p2), T*Tf = δefEr (2.8)

We fix the intertwiners for the special channels involving the vacuum sector2:
Ts(a) = wo E* for e = s(α) of type (0, α, α),

for e = ί(α) of type (α, 0, α),

for * = r(α) of type (ά,α,0). (2.9)

Now, before we construct the field algebra, we quote a series of technical, more
or less standard lemmas, the proofs of which may be omitted or only sketched.

Lemma 2.1. p(jtf)' = (p\p) = 0C£α, while for n > l , the subalgebras

(ρn\ρn) are spanned by Teι ••• Ten _T*e> ~ T*, . By virtue of (2.6) and (2.5), the map
φn is a trace on (pn\pn\ converging to a trace on Jί given by (1.2). In particular, Jt
is the path algebra [Π] induced from the incidence matrix Nv

Λ = ΣNy

Λβ

Lemma 2.2. (p\id) = &W0, while for n > 1, the linear spaces (pn+i\pn) are spanned
by Teί TβnT* ~T*9 which are orthogonal with respect to the scalar product

(Tί9 T2) = tr(T*T2). Defining tf as in (1.5) (in the topology induced from M by the
identification k\-+kW%eJt) and JΓα = £αJΓ c= JΓ, JΓα are equivalent to the
inequivalent irreducible sub-bimodules of the two-sided action of Jf on itself induced
by the endomorphism p\Jl-*Jt. Every bimodule basis (1.7) of Jfα satisfies the
dimension formula (1.8).

Proof of the last two statements. Consider the two-sided action of M on itself
induced by p, i.e. the action by left and right multiplication with p(m). This action
is naturally equivalent with the action on p(M}@t by left multiplication with p2(m)
and right multiplication with m. Since the commutant of the latter two-sided action
is left multiplication with (p2\p2\ the irreducible sub-bimodules are given by

= JΓα. By (2.6) we have tr^ = <f tr b7fc*, hence (1.8) by (2.5).

Lemma 2.3. Every element meJί has a unique decomposition

m

with keetfβ for e of type (α,β,y).

Requiring the normalization of phases WξR = d 1/2WQ
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Proof. Since R*p(R) is an invertible element of (ρ\p) c: Jt> and le^^"*, we get

proving the existence of an expansion (2.10). Uniqueness is proven by applying
φ(Tf -) to (2.10) and noting that φ(TfT*)e(ρ\ρ)Έβ must be a multiple of Ep,
which in turn with (2.5) and (2.6) is seen to be proportional to δef.

Lemma 2.4. The following finite expansions with scalar biunitary coefficient matrices
D,Rhold.

p(Tf)= Σ DfT TβίT.2T*9 (2.12)
e,eι,C2

p(ε±ί)= £ ^•(iί Γ.ΛΛ*7?;- (2.13)
eι,e2,e\,e'2

D and R vanish unless eί,e29e9f,e'29e
r

1 are of respective type (θL9pί9β)9 (β9p2,y)9

(α,p3,y), (pι,p2,P3)> (^P2,β'\ (^Pι,y)

In the language of [13], (2.12) provides the parallel transport in the path algebra
M. Bi-unitary is the validity of two (pairs of equivalent) identities, which we display
here only for D:

(2.14)

For the case of a group symmetry, we shall recognize the coefficients D as the 6j
symbols (see (3.15)).

Proof. Define D by De

f\°e

e2Έγ = T*2Γ*p(7})Te, and R analogously. Equation (2.8)
then implies (2.12), (2.13) as well as unitarity of D (the first line of (2.14)) and R.
Biunitarity of D (the second line of (2.14)) and R is more tedious and involves (2.5)
and (2.6).

Lemma 2.5. There are invertible coefficient matrices ζe- implementing the symmetries

wiίΛ summations over repeated indices understood. ζe- are given by the scalar
operators in (id\id) = C,

> (217)
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which vanish unless for e of type (α,/?,y), e is of the conjugate type (α,/?,y).3 They
satisfy

and take the special values ίs(α)s(-} = ζmm = 1 and ζr(Λ)r(-} = d~i.

The proof can be found in [19].4 From the previous lemmas we obtain

Proposition 2.6. Let ζ:= £ ζ^ -^ T* ® Tϊef* ® 3~*. Then
ee dy

(2.19)

), (2.20)

(2.21)

Proof. (2.19) is just the TPC relation (2.15) and the unitarity of D. Equation (2.20)
is the TPC relation (2.16) and unitarity of R. Equation (2.21) is (2.15) and bi-unitarity
of D. To see the latter, introduce the invertible operator X = R*p(R)ep(jtf)' and
expand, following the spirit of (2.11),

Retracing the effect of the projections E going along with T by (2.7), we find that
for e of type (α, β, y), only / of type (y, β, α) and g of type (y, α, β) contribute to the
sum. Next we expand by (2.12)

T*gp(Te)R = D $» T^T^R = D^ (dy/dβγ<2E-βR.

Here only the special channels r(β) and r(y), cf. (2.9), contribute, and (2.3-5) are
used; similarly,

R*p(Tg)Tf = Dfl ω

Putting everything together, the projections can be absorbed in Tr, and doing the
same manipulations for both tensor factors of £*, we get

f* _ V \ (d d IdV* Π9o^)Γ)r(y)os(α). Γ)3or(^jr)r(yjos(α)
<* — L_\ L \acίayla^ee U e r(γ) U g f U β>(y) U g J

ff L eegg J

• T*p(R)X~ x ® TJp(R)X~1. (2.22)

The numerical coefficient [•••] here can be evaluated by using (2.15) and the

3 This justifies the interpretation of (2.15) and (2.16) as a "TPC" symmetry.
4 To avoid confusion we stress that Tee(p2\p) in (2.7) differ from what was called Tee(pΛpβ\pv)
in [19] by the intertwiners W. This facilitates the presentation at the price of some obvious
changes in the formulae. The present ζei differ from ζ(e) in [19] by the convenient factors ω1/2,
which do not affect the symmetries
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bi-unitarity (2.14) of D twice. It then simplifies to

The operators X~l = [R*p(R)Yleρ(stf)f in (2.22) hit on the projection Eγ of Tf

in the first, and on Eγ in the second tensor factor. Since p(^)' is abelian, they just
contribute scalar coefficients 1/x, 1/x, given by XEy = xEΓ XEy = xE^. We compute

j = xR*p(R)Ej = xR*p(Ey)p(R) = R*p(XEγR),

and apply R* R, using K*K* = R*p2(R*):

xxR*EfR = φ(p(R*)XEyR) = φ(EyXp(R*)R) = φ(Eyφ(RR*)) = d~2φ(Ey).

Then, R*EyR = R*p(Ey)R = φ(Ey) ^ 0 implies 1/xx = d2. This proves (2.21).
Now we can turn to the construction of the field algebra.

Theorem 2.7. For A6.fi/, fee Jf define the operator φ(A,k)e^®Jί as the (basis
independent) sum

φ(A9k):=Σ^ζeiTΪp(A)®T*p(k). (2.23)
e,eUy

The linear span of operators φ(A, k) is closed under multiplication and ^-conjugation:

kf)9 (2.24)

(2.25)

where Af=T*p(A1)A2εA?,kf=T*-p(kί)k2eJf, and A+ =di/2p(A*)ReA?,k+ =
d1/2p(k*)Retf. The C* closure of the algebra spanned by φ(A,k) is the field algebra
2F. The unit operator in & is \& =

φ(A,k) is said to carry charge β ϊf feeJΓ^. Observe that then only e of type
contribute to the sum (2.23), and hence

9k). (2.26)

Obviously, for φe^ carrying charge β, its conjugate <p* carries the conjugate
charge β, and for φt carrying charges βh the expansion (2.24) of φίφ2 contains
only contributions from operators with charges β such that pβ is contained in pβlpβ2.

Note the structure of a crossed product underlying the stf part of (2.24)!

Proof. The proof is immediate from Proposition 2.6, if we note that (2.23) may
be rewritten as

Proposition 2.8. The special elements of ̂  (carrying zero charge),

i^(A):= φ(W0A, WQ)\ (2.27)

):= φ(WQ9 W0m) (2.28)
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coincide with (1.3) respectively (1.4) and satisfy5

m-φ(A9k)'n = φ(A,p(m)kn), m,neJί. (2.29)

The special charged elements

ψk:=φ(R,y k), (2.30)

with y' =Σ \/ddβEβep(jtf)', fulfill the intertwining relation (1.1). Therefore they
β

commute with observables at space-like distance (where p acts trivially). They satisfy
the transformation law (1.1 1\ as well as the orthogonality and completeness relations

(2-31)

whenever Σ/cίfe;* = p(m). (2.32)

For a basis (1.7\ these take the form (1.12) and (1.13).

For fee Jfα, i.e. φk carrying charge α, one has EΛ\l/k = ψk, and W*ψk is an intertwiner
for pΛ. In particular, ψ0:= ψWo = W0ei^(^)9 and all ψk carrying charge zero are
of the form

Proof. The first statement is evident, since due to W0 only e = ί(α) contribute to
(2.23). Equation (2.29) follows from (2.24) using (2.9), (1.1) and (1.11) follow from
(2.29). To verify (2.31), we compute ψ$ψk2 with (2.25) and (2.24), and observe that
due to p(R+)Re& only Tf = Γr(α) contribute. This simplifies the result to

9 W0 k*y*R*p(R)Eayk2).

As in the final part of the proof of Proposition 2.6, we have y*R*p(R)EΛy = dΛdxEΛ

and R*R*p(R)EtR = xφ(Ea) = (djd)x with xx = d~2, which gives (2.31). To verify
(2.32) from (2.24) and (2.25), we observe that to the M part Tfρ(yp(m)y*)R =
TJrp(yy*)R-monly f = r(α) contribute, and use (2.4), (2.5), and (2.9). The rest follows
immediately from the definitions.

Corollary 2.9. For a bimodule basis (1.7) and ψj = ψbι, the operators

A'ψI'm = φ(p(A)R,ybJm), AedJε/.meJί (2.33)

span ̂  . The following expansion holds (with appropriate ke)

, (2.34)

where for ψki carrying charge βt only e of type (βι,β29β) wd ψke carrying charge
β contribute. In particular, for bases fc/eJf βι9bjEJ^ β2,bκεtf β as in (1.7) the
expansion (1.14) holds with coefficients in M,

(2.35)

which we call Clebsch-Gordan, since they decompose product representations of the

Recall footnote 1
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symmetry in the sense of (1.10). Finally, with k+ as in (2.25),

ψ* = dί/2R* ψk + . (2.36)

Proof. The first statement is obvious since p(j/)R = stf [3] and bl are a right
module basis. Equation (2.34) follows from

A, = I^ff9(p(T*)T*p(R)R9 TJp(yk,)yk2\

The Jf entry vanishes unless / is of type (β2,βι,β), and is an element of J f β .
Then / is of type (/?2, β\ , β)9 and the <$# entry vanishes unless e is of type (βί , /?2 > /?)•
The <£/ entry, being an element of Efffl, is a multiple of EβR, and by virtue of
φ(EβR, k) = φ(R, Eβk) all contributions sum up to a term φ(R,yke) = ψke with
keeJfβ. Working out the details yields ke=f^p(kί)k2, hence (2.35) for k1=bI

and fe2 = frj basis elements. It is an elementary check, that these coefficients have
the property (1.10). Equation (2.36) follows easily from the definitions, (2.25), and
(ykΓ=y k+.

Corollary 2.10. The ground state (LI 5) takes the form

). (2.37)

The n-point function for generic charged operators φl — Γ^A^^, where
Γk = ψ* WΛ9 fee Jf β, Λeίj/Cfi/), reads

(kOMfe3 )U* (2.38)

ei are of type (y, _ 15 αί5 γt)9 yo = yn = 0, standing for the subsequent interpolation of
the fields carrying charge α between sectors 7, and teι = p(W*^W*ι_ιTe.Wyi€
( p y i _ ί P Λ i \ P γ i ) 9 t e ι = I.6 The vacuum-to-vacuum amplitude ω0( ) depends only on
the local degrees of freedom and the involved sectors, but neither on the kind nor
the values of the symmetry degrees of freedom attached to fields: in the case of
an ordinary group symmetry, they coincide with the reduced amplitudes of n-point
functions of tensor operators (in the Wigner-Eckart sense), e.g., those given by
the DR construction. In the general case they coincide with the full π-point function
of the operators (ei9 AJ of the reduced field bundle [3], which is a construction
completely deprived of inner degrees of freedom. The dependence on the symmetry
degrees of freedom k is entirely in the amplitude tr( ), which (for /cί = ί?ίi basis
vectors) may be expanded as polynomials in the Clebsch-Gordan coefficients
(using T*ρ(bI)bj = Σbκ

(£(K\JI)e) and their images under pLM (using ρ(m) =
K

Σ ^LPLΛf(m)^M) In particular, if a basis can be identified for which all (&(K\JI)e
LM
are scalars (see Sect. 3.2), these polynomials coincide with the usual expressions
for the invariant tensor amplitudes in terms of Clebsch-Gordan coefficients.

Proof. Equation (2.37) is easily computed from the definitions (2.30), (2.23), using
(2.29) and (2.4-9). Using (1.1) and (2.34) repeatedly (with ke as specified in the proof

6 Recall footnote 4; the present te are the Te of [3,19]
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of Corrollary 2.9) yields

φ. φι = Σ ^^...r:χ-H^^ p(^2^)^^ι
62 -'-en

with kη=f*p(f* y' pn-2(T*e2)pn-l(k,)...p(kn_,)kn. Then (2.38) follows from
(2.37).

Let us now turn to the notion of localization. A field operator φ(A, k) is said
to be localized in a (double-cone) region G if it commutes with all observables
localized in the casual complement &. As in [3] it is easily seen that then A = U*C
with Ce.fl/(0), U unitary, and p( ) = Up( )U* localized in 0. In particular, ψk are
localized in the localization region of p, and i^(U)ψk, which are intertwiners for
β, are localized in 0. Actually,

Proposition 2.11. Let φl = U^φj be localized in Gί9 and φ'j = U2ψj in G2. Then the
following commutation relations hold:

J'Γ

= * ( p 2 , P ι ) Σ V j 9r'&JΪ(-)> (2 39)
J'Γ

where Pi(') = Utp(')Uf. In particular, when (9i are at space-like distance and G1 is
to the right of 02, then ε(p l 5p2) = 1 and the first formula gives the commutation
relation with coefficients $( + )eJί, while for G^ to the left of G2,ε(p29p1)= 1 and
the second formula gives the commutation relation with coefficients $( — )eJt. The
coefficients are given by

, (2.40)
ee'K

Proof. It is sufficient to prove (2.39) for 1^=1, Pi = p, since l/ιp(l/2)
β(P»P) =

ε(p2,Pι)^2P(^ι) Thus we compute ε ψjψj. With (2.3.0), (2.24), (2.29) we get

X ζff φ(p(ε)T*fP(R)R, T^yb^ybj).
ff

We use p2(ε)p(R)R = p(ε*)RR = εp(R)R and ζ (ε ® 1) = £•(! ® ε), which is (2.20) after
right multiplication with W0® W0. This gives

yp(y) commutes with ε. Finally expanding ερ(bI)bJ=

we obtain the first equation (2.39) with (̂ + ) given by (2.40). The calculation is
identical for the second equation (2.39).

We have thus established the existence of a C* field algebra with very analogous
properties as shared by the DR construction, except that its transformation rules,
operator product expansions, and commutation relations come with non-
commuting instead of scalar coefficients.
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3. Special Bases and Special Cases

In this section, we want to discuss the program of finding subalgebras on which
a more conventional symmetry is realized, for some special instances. The most
important question is whether for permutation group statistics the usual gauge
group symmetry, which is known to exist independently [1], is in fact realized
within our "master symmetry." Although we cannot prove this in general, we
discuss the consistency of this scenario by a number of structural cross-checks in
Sect. 3.2. The answer is positive for an abelian gauge group, and is extended to
abelian braid group statistics (anyons). Here, a new and apparently typical feature
of quantum symmetry in low-dimensional systems shows up in its most trans-
parent version: the symmetry may become implemented by inner automorphisms
of the field algebra. This is discussed in Sect. 3.1. Finally we show in Sect. 3.3 that
the "exchange algebra" (with its structure constant matrices on "path spaces"
instead of tensor spaces [3]) is also contained in the present construction.

3.1. The Abelian Case (Anyons). Let us consider for simplicity a theory with 2£N

superselection structure

V = {α"|n = 0,...,ΛΓ-l}, p^id. (3.1)

As is well known, the statistics phases are ω(p") = ω"2, implying ωN = ± 1. The
sign is + if N is odd. It is also -f in the special case of permutation group statistics.
Let us first assume the sign to be +. This is equivalent [2, 19] to the existence of
a representative pαe[α] for which pN

Λ = id, which in turn amounts to the existence
of a choice of basis Te = Γ0 = ρ(Wj)Wί Wf+j for e of type (αf, αj, α* +J) (with addition
always modΛf), for which all non-vanishing matrix elements De

f\°e2 = 1. Thus

= Σ71

HΓ(k + ft/Γ*+Λk. (3.2)
k•

Now put

(3.3)

(3.4)
kl k

We immediately verify

(3.5)

(3.6)

(3.7)

(3-8)

(3.9)

where for the last two statements we use ε(px, pa) = ω, hence ε(p'a, ρj

a) = ωij. This
confirms the desired transformation properties of ή/t under the group ZN im-
plemented by utJί, as well as the anyonic commutation relations at space-like
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distance (with notation as in (2.39))

ωWφ'ψt. (3.10)

Observe that the subalgebra generated by the observables and ι/^ is spanned by
A - ψί9 and hence the symmetry operators un act as outer automorphisms on this sub-
algebra. This is the usual situation with global gauge transformations implemented
by global charges which are not in the algebra of localized fields.

In contrast, in the case with an obstruction [19]: N even, ωN = — 1 (which is
excluded for permutation group statistics), one obtains non-scalar ^(k\ji) with
values in the group ring of ZNe«^, while the transformation properties given by
(3.7) remain unchanged. At least for N = 2 and 4, the coefficients in the sum (3.3)
may be adjusted such that all Clebsch-Gordan coefficients are scalar multiples of
group elements. Thus the fields transform in the usual way, but the multiplication
law for charged fields lets the unitaries un implementing the symmetry be in the
algebra generated by s/ and if/^ The symmetry is implemented by inner auto-
morphisms, and, since the vacuum vector obtained from the ground state (1.Γ5)
is separating, it cannot be invariant under u: instead there is an Λf-fold degenerate
vacuum. One may envisage another ground state on this subalgebra (realized in
j/(χ)(p2|p2)) by replacing tr(m) in (1.15) by d~2W*W*mW()W(), which gives rise
to an invariant but not separating vacuum vector.

In fact, the issue is independent of our present construction: just postulating
ψ to satisfy the intertwining relation (1.1), the DHR theory predicts the commuta-
tion relations (3.10) for i or j or ί—j = Q. Then (q>i)N carries zero charge but
anticommutes with φ'Γ This already excludes scalar %>.

It is thus impossible to maintain a sharp distinction between "local" and
"global" aspects: u are generated from localized operators, but have the global
property of non-trivially transforming charged operators at any localization. This
seems to be a characteristic feature of the quantum symmetry. It is most clearly
exhibited in our example of abelian braid group statistics with an obstruction
(such models are explicitly constructed in [20]; in fact, there the group ring valued
coefficients were already encountered, but - in the context of chiral algebras on
the circle - had to be considered as elements of <£/), while it is also implicit in all
attempts to implement non-abelian Hopf or quasi-Hopf algebra symmetries on
operator algebras (e.g. [5]).

3.2. The Case of Permutation Group Statistics. In the case of permutation group
statistics, the DR construction [1] yields a field algebra, which extends the
observables j f by intertwining isometrics ψj with the properties (1.1), (1.12), (1.14)
with PJ = 1 and ^(K\JI)e scalars, as well as a group G represented by unitaries
°U(g) on the Hubert space, under which ψj transform as finite multiplets such that
(&(K\JI)e are the Clebsch-Gordan coefficients of the corresponding unitary
representation matrices @u(g)e<C. This algebra is constructed abstractly and does
not involve M like ours.

• We conjecture that the DR construction is a subalgebra of our construction.

This conjecture has been confirmed above for abelian symmetry groups. In other
words, we expect isometrics fe/e Jf α and unitaries u(g)e^ί(Jί) to solve the following
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equations in Jί\

ΣM? = £., b*bj = δlj9 (3.11)
Je/.

,)bj = V(K\ J/)ee(C, (3.12)

bΪP(u(g))bj = /?„(%)) = 9u(g\u(g\ (3.14)

(Actually, (3.13) needs to hold only up to a cocycle z commuting with ψl9 i.e.
p/J(z) = ̂ /J z.) If these conditions are fulfilled, then the C* algebra generated by
eβ/ and ^/ will never involve elements of Jt other than scalars. We emphasize that
these conditions are sufficient to identify φj algebraically with those given by [1]
(possibly up to a Klein transformation) and the corresponding subalgebra of 3F
with #"DR, and to turn (1.14) and (2.38) into the familiar Wigner-Eckart formulae.

In fact, the existence of such bases is an intricate cohomological problem, where
the major part of the mathematical depth of the DR result has been shifted into
in the present approach. Essentially, (3.12) provides the concrete representation
spaces span^/l/e^} together with their intertwiners Te9 i.e. the prerequisites for
the Tannaka-Krein theorem. We shall present part of an explicit construction for
the smallest non-abelian group S3 in Appendix.

The following properties are automatically shared by solutions to (3.11-14).
We take the tight self-consistency and consistency with the DR result which they
reflect as support, though not proof, for our conjecture.

The C* subalgebra of 3F generated by si and φj is spanned by jtfψj. Namely,
the condition ^(K\JI)ee(C implies (putting J = OE/O) that b0= W0 up to a
phase and bl are isometrics: p/ = 1, and (putting K = 0) that span{b/ \Ie/Λ} =
sρan{frj| Js/ά}, hence ^fespanfjR*^} by (2.36).
Given a basis of isometrics, the unitaries of M satisfying (1.19) form a group
with unitary representation matrices @u(u\ The unitaries with @u(u) = δ13 form
a normal subgroup, and <3>u is a faithful representation of the quotient group
G. 2 decomposes as a direct sum of subrepresentations Q)Λ for 1,J£/Λ.
Equations (3. 14) and (1.10) imply that the scalars <β(K \ JI)e are the group theoreti-
cal Clebsch-Gordan coefficients of G. In particular, £ °̂ for [0] = \_id~] is the
trivial representation, and & and ̂ α are conjugate representations. Finally, the
corresponding field operators transform in the conventional way:

• For bases of isometrics, the size |/J of the multiplet of charge α, i.e. the
dimension of the corresponding representation of the symmetry group, is given
by the statistical dimension dαeIN. This is evident from (1.8).

• tr°w is the ^-function on G: summing (3.14) over / = Je/Λ and applying tr, with
(2.6), (3.11), and (2.5) yields dβ tr(ιιfo))= £ ®//fo) tφ(0)). Now, £ 3π(g\ the

/6/α /6/a

character of the representation ^α, differs from its dimension dΛ unless g is the
group unit, hence tr(u(g)) = δge.

• As in the DR construction, the coefficients D of the parallel transport are nothing
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but the group theoretical recoupling constants (ό -symbols). Namely, comparing
the two possibilities to expand ρ2(bj)ρ(bj)bκ in terms of bM by using (3.12) in
the form p(bj)bj = £ TebκV(K\Jl)e twice yields

Ke

δu. Dtf= Σ V(L\KM)fV(M\JI)e«(L\NI);«(N\KJ)*. (3.15)
IJKMN

• The commutation matrix &jf differs from the "canonical" graded permutation
matrix ± διrδjj, (with entries— 1 if both / and J belong to a fermionic sector,
+ 1 else) at most by a similarity transformation, corresponding to some Klein
transformation for the field operators ψ. Namely, ̂  is a unitary G-invariant
matrix with scalar entries (by (2.40)), and defines a matrix representation of Sn

/ \ ®n

on I ©<Cdα 1 in the commutant of the action of G. The character of this
\ α /

representation can be calculated by inserting the first formula (2.40) for J>,
applying tr (since everything is scalar, this does not change the result), and using
(2.6) and completeness of bj. This yields d" times the trace tr of the corresponding

operator representative in terms of ε I e.g. £ ^^ = d2 tr(ε£α) = ωα<iα 1, which
\ /,Je/« /

in turn is known to coincide with the character of the canonical representation
ofS n .

We want to include a proof that a basis of isometries in Jfα always exists, and
hence (1.1) can be solved by the generators of a Cuntz subalgebra. To this end, we
study the inclusion Jf = p(Jί) a M and the corresponding "basic construction"
[14] Ji c Jt± = <^,e>, where e is the projection on L2(j^} <= l}(Ji\ The argu-
ment is just an adaptation of an argument given in [12]: for Q^Ji^ a partition of
unity into projections of trace tr(gf f) = [̂  J^]"1 =d~2 = tr(e) there are partial
isometries v^Jί^ such that vfvt = e, vtvf = gh and m^Jί such that vt = mte. Now,
since all the factors are isomorphic to the unique hyperfinite type II 1 factor, it is
convenient to identify Jl± with Ji such that etJt± is represented as RR*eJί. This
identification maps the subfactors Jί c M± into p(Jί) c M and Jf c Ji into
ρ2(J{) <= p(J{\ The Pimsner-Popa basis above is thus given by vt = pfa^RR*. Now
it suffices to choose the partition of unity gt to be finer than the partition of unity
by Eβp(EΛ\ the traces of which are dΛdβ/d2 = integer multiples of tr(^). Then there
are precisely da projections gl among the gt which are majorized by £0p(£α). The
corresponding mI are in EΛJ?E0. Setting bI=W$p(mI)R = d~ll2mIWQeJ#r

ol, the
properties of m/ given in [12] precisely translate into (3.11).

The above also gives rise to a more abstract formulation for the condition (3.12).
One may view the subfactor ρ(Jί) a M as a special inclusion which is equiped with
Jones projections et = pl~1(e) (e = RR*) and with unitary representatives of the
braid group (in this case: permutation group) εί = pI~1(ε) satisfying a system of
structure identities. Moreover, p(J()' n Jί is an abelian C* algebra spanned by its
central projections £α, there is a notion of label conjugation such that Eae = p(Ed)e,
and a distinguished self-conjugate label 0. In this setting, (3.12) can be equivalently
formulated as the condition on ml — £αm/£0,

with t*jEp2(J?y r^Jί. (3.16)
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It seems intriguing that (3.16) has a formal solution if ml were allowed to take
values in the homogeneous Cuntz algebra C0 c J^DR of which Jί is the subalgebra
of G-invariants [1], corresponding to bl = ψ®R formally solving (3.11) and (3.12);
but of course this does not help us to construct ^/:= ψbl since ψ®R are not in Jf.

3.3. The Exchange Algebra. There is an immediate choice of a bimodule basis of
jΓα satisfying (1.7), namely the intertwiners Teε JΓα with e of type (α, , •), or fee JΓα

with e of type ( ,α, ) (see (2.35)), which are partial isometrics. The corresponding
ψe or ij/e generate a subalgebra J%ed of J ,̂ which is known as the "reduced field
bundle" [3] or "exchange algebra" [7]. The operators Fe given in [3] essentially
coincide with A ψe. The range projections pe are given by sector projections Ey

and thus account for the interpolation properties of exchange field operators.
Actually, «^red = J^ is the first member of a series of increasing subalgebras

J% c j/®(pn + 1\pn + 1) with inductive limit &. The entire analysis for & holds for
either J^ except that the appropriate Jf,,^ are finite dimensional reducible
bimodules for the finite dimensional matrix rings Jtn = (pn\pn) with non-trivial
center, and there is no chance to find bases with pl = 1 for non-abelian statistics.
In particular, ̂ red is completely deprived of the symmetry, since the left and right
action of (p\p) c M is trivial; e.g., in the case of an ordinary group symmetry, the
ft-point functions of J*red are the reduced amplitudes of n-point functions of tensor
operators, with all Clebsch-Gordan coefficients stripped off in the sense of the
Wigner-Eckart theorem.

This example shows how the role of elements of Jί can be shifted from the
desired one: carriers of the gauge symmetry, to another extremum: mere measurers
of the sector (Casimir operators). In order to avoid the occurrence of non-numerical
coefficients, the reduced field bundle has sacrificed the irreducibility of the charged
multiplets. But in fact, for a decent interpretation as a symmetry, precisely the
latter should be an essential aspect.

4. Conclusion and Discussion

We presented the construction of a C* field algebra of charged operators, which
are intertwiners for the superselection sectors of the subalgebra of observables.
The transformation properties of the field operators with respect to an appropriate
quantum symmetry satisfy the "duality" requirements between symmetry and
statistics [21]. On the other hand, the symmetry algebra has some unusual aspects,
which partly are only of formal nature (e.g., we do not deal with matrix representa-
tions but rather with homomorphisms into the matrix ring over the algebra), but
partly also reflect an intrinsically novel feature of symmetries for low-dimensional
quantum field theories. This feature is that operators which implement the global
symmetry are algebraically (i.e. not as limits of integrals over densities) generated
by localized charged fields. This surprising observation has a bearing at least on
issues like the Noether theorem in quantum field theory and on the structure of
the ground state, as we discussed for the most explicit example of certain anyonic
field theories. These abelian examples show also, that the need of operator-valued
structure constants for interpolating fields is a property of superselection sectors
with braid group statistics, which generically cannot be avoided by a better choice
of fields. It is an intrinsic signal of what is built into most model constructions by
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means of flux lines, contour integrals, or Jordan-Wigner transformations. More
fundamentally, it urges us to remember that we should not expect the classical
fields of a model to match the physical excitations (charged particle states): the
actual local(ization) properties of quantum operators generating the latter may
turn out unrelated to how they are described in terms of microscopic degrees of
freedom.

A definite advantage of our construction is that it automatically yields a repre-
sentation of the field algebra on a Hubert space (the GNS representation induced
from the ground state ω) thus avoiding all problems with indefinite matrics. The
price to pay is a huge redundance of the field algebra reflected in the multiplet
structure of infinite complex dimension, to be reduced to finite multiplets in terms
of appropriate bases and appropriate subalgebras of our "master symmetry"
algebra M. What "appropriate" means here, is not known a priori, but the study
of this question can be restricted to the superselection structure and statistics of
stf alone, completely detached from the rest of the dynamics. This is the virtue of
the separation of the quantum symmetry in terms od Eqs. (1.6-10) from the field
algebra relations (1.1) and (1.11-14).

A central problem is the question, how "close to scalar" the Clebsch-Gordan
coefficients can be chosen. For non-isometric bases, which are necessary in the
case of non-integer statistical dimensions, the condition (3.16) on the Pimsner-Popa
basis is equivalent to the property that f*p(bj)bj and (provided m0 = E0)bf are
linear combinations of bκ, i.e. that the span of s^-\\ιl closes as a C* subalgebra.
On the other hand, resuming the speculation in the introduction about a quasi-
Hopf symmetry, we rather expect ^(K\JI)e to factorize into scalar coefficients
c(K I JΊ')e carrying the dependence on K and e, and elements (τιr ® τu> ® id)(φ)G&,
where the "associator" φe2£®3£®% controls the deviation from co-associativity
[5]. This type of quantum symmetry would signal itself if (3.16) can be solved only
with additional coefficients in p2(J{) multiplying from the right.

Indeed, the obstructed abelian situations with ωN = — 1 discussed in Sect. 3.1
correspond to quasi-Hopf algebras, which as algebras and as co-algebras coincide
with the Hopf algebras of ZN but are equiped with a non-trivial "permutator" R
and associator φ. E.g., for Z2 = {e, #}, putting p = \(e + g) and q = ̂ (e- g\
R=p®p+q®p+ q®p±iq®q and φ = e®e®e — 2q®q®q solve the quasi-
Hopf axioms [4], and yield the correct G-valued Clebsch-Gordan coefficient
^(0| 11) = (τί ®τ1 ® ίd)(φ) = g. This shows that the quasi-Hopf structure, as it goes
beyond the algebra and co-algebra structures, encodes the multiplicative properties
of intertwiners generating the representations.

We admit that we have not solved (except for the abelian case) the cohomologi-
cal problem to reproduce in the special case of permutation group statistics from
our construction the DR result of an ordinary (finite) symmetry group. But we
see the virtue of our analysis in that it provides a quite natural, for intrinsic, frame-
work to study the issue of quantum symmetry associated with general statistics,
without relying on a present from the Heavens (the Cuntz algebra) available for
permutation group statistics only.

The present construction is an improved version of an attempt initiated in [21],
the major flaw of which was the lack of the *-operation. The crucial technique to
get the *-operation is to contract conjugate charges (in the sense of Theorem 2.7)
with a "metric" implementing a rudimental TPC symmetry (Lemma 2.5). It was
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applied before in [19] for an analogous construction with st®stf instead of

Formally, our construction may be viewed as a (diagonal) chiral tensoring of
a dynamical theory (the observable physics of interest) with a corresponding "topo-
logical field theory" [22]. The degrees of freedom of the latter are purely kinematical
data, namely the finite-dimensional spaces of intertwiners between products of the
(representatives of) superselection sectors of the observables. This is more fashion-
ably depicted as a functor from surfaces with boundaries labelled by the sectors into
vector spaces. In the present context, these degrees of freedom acquire the role of
the gauge symmetry for the opposite (dynamical) tensor factor.

Appendix

We present elements of an explicit solution to (3.11-14) for a specific example, the
non-abelian group S3 = D3. It is the group generated by its elements g2 and g3

with the relations g2

2 = g\ = (g2Qι}2 = e. It has three representations of symmetric,
anti-symmetric, and mixed symmetry type. Hence, we consider a quantum field
theory with three superselection sectors [0], [σ], [τ] of statistical dimensions 1, 2, 1
respectively, and with the non-trivial fusion rules

[τ][τ] = [0], [τ][σ] = [σ], [σ] [σ] = [0] + [σ] + [τ], (A.I)

consistent with permutation group statistics only if all sectors are bosonic, ωα = 1.
We have to solve (3.11-14) within Jf and Jί with the Clebsch-Gordan coeffi-

cients <€ and the recoupling constants D determining the parallel transport p given
by those of S3.

For bases ψθ9 ψ ±, φ3 of the three representations of S3

=1
±(βι) = e±2πi/\

033(02)=-!, 033(03)=!, (A.2)

we have the Clebsch-Gordan coefficients

*(0|33)=1, V(± \ ±3) = <f(± |3±)= ± 1,

±)=l (A.3)

(omitting the self-explanatory index e for the relevant channel). These by (3.15)
determine the recoupling constants D, and hence the action (2.12) of p on the basis
intertwiners:

y

= ±|τ(φW > <y'(y)τ| ( - l f« = ̂  = )' =
\ + otherwise

= |σ(τ)σ(τ)σ> <σ(0)σ|,
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Eβp(|σ(τ)σ»=-Σlσ(σ)α(τ)α t> <αϊ(σ)σ|,

= X i v l̂ σ(σ)α(σ)σ> <σ(0)σ

£αp(|σ(σ)σ» = X sig(α)(|σ(σ)σ(σ)α> <α(<r)σ| + V|σ(σ)α(σ)σ> <σ(σ)σ|), (A.4)
α^σ

where we put [α][τ] =:[αr], sig(O) = l,sig(τ) = — 1, and adopted a simplifying
notation appropriate when there is only one channel of a given type, Ny

Λβ ^ 1 :

(A-5)

for et of type (α f_ x, j?f, αf), displaying the successive transitions from the sector αf _ x

to the sector α f made by the charge βίf

We shall first identify u(g)εJV. For this purpose consider linear maps in (ρn + 1 1 /?),
defined on Tη as follows. First split η into three pieces (cf. (A.5)): the first piece is
determined by α0, . . . , α v _ x = σ, the second one by αv, . . . , αμ φ σ, and the remainder
begins with α μ + 1 =σ. This implies βv = βμ + l=σ while βv+ί9...9βμ^σ. The
lengths of the pieces can be n ̂  μ ̂  v ̂  0. Then define

'W ̂  lσί/ΪJσ..^

(A.6)
/2 ' Π^i8W2πl73 I ¥ k(/»ι)σ σ(σ)αv(/?v+1)αv+1.-αμ(σ)σ->,

with εv = 0 or 1. The "exceptional" paths for which (A.6) is not defined, namely
those with α 0,...,αn = σ, are taken into themselves by both /,. We easily check
/2°/2 = /3°/3°/3 = /2°/3°/2°/3 = "*, hence setting

i = 2,3 (A.7)

with T^ running over the bases (A.5) of (pn+l\p), provides a non-trivial homo-
morphism S3->^(^). In fact, un(g^ depend on n, but due to the fact that the
effect of f i essentially depends only on the beginning of the path 77, one may
convince oneself that they are Cauchy series, the limit points of which in the
closure Jt are from now on denoted by ut — u(g^). While tr(w2) = 0 is obvious (to
tr(Mn(02)) contribute only the 3" exceptional paths with tr^T*) = 2 4~ n ~ 1 each),
one has to carefully adjust the values of εv = 0,1 to ensure tr(w3) = 0. This solves
(3.13).

Next, we verify that the isometrics fc0=WoeJf0 and £3 = £ |τ(α)ατ> are
α

orthogonal and complete bases of JΓ0 respectively JΓτ in the sense of (3.11), and
(using (A.4)) satisfy the multiplication law (3.12) as well as the transformation laws
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b*p(ui)b0 = ui and b*p(u2)b3 = — u2, b^p(u3)b^ = u^1. The appearance of u~l

instead of w3 on the right-hand side of the last equation can be corrected by
replacing b3 = ip(u2)b3 without affecting the other equations, thus solving (3.1 1-14)
for all /,J = 0,3.

Next, we shall determine b±eJfσ which solve the transformation law (3.14) for

/ , J=±:
pfa)Mf = Σ f r/®/Λ0Λ (A 8)/

as well as the expansions (3.12) for either / or J = 0, 3:

T$σ}p(b0)b± = b±9 T*Mp(b±)b0 = b±,

T*p(b3)b± = ±b±, f?p(b±)b3=±b±. (A.9)

(Here, / is of type (τ, σ, σ) and r of type (σ, τ, σ).) Note that the linear equations
(A.8), (A.9) in jfσ are equivalent to (3.14), (3.12) provided (3.11) is satisfied. The
first pair of Eqs. (A.9) holds trivially for every feeJfσ. For the other equations,
consider the linear maps JΓσ -> jfff corresponding to left and right action of ut and
to left and right bimodule tensoring with b3\

I2'.k\-+p(u2)k, r2:/ch- >/ctί2,

r3:fcι— >/cu3,

From the previous knowledge one can verify that the "left" maps /# commute with
the "right" maps r^, and that

/ b / 2 = - / 2 / » /b/3 = '3/6, l2

b=ll = ll = (lM2 = id (A.ll)

hold as well as the same equations with the right maps. Then there are simultaneous
eigenvectors of lb and rb with eigenvalue + 1 and of /3r3 with eigenvalue e2πi/3.
Calling such an eigenvector b+ and putting b_ =/2^2(^+X yields (A.8) and (A.9)
by virtue of (A.ll), as well as

ί > * f e _ = 0 , b*_b.=u2(b*+b + )u*, (4.12)

that is, b- is an isometry iff b + is an isometry. This would also ensure the
completeness relation (3.11), since 6 + 6* +6_6* would be a projection in Jί,
majorized by Eσ and having the same trace dσ/d = 1/2 as Eσ.

Although isometrics in Jfσ abound, we did not yet identify one explicitly in
the required eigenspace for b + . Apart from this (minor) problem, there remains
the non-linear problem to solve (3.12) for / and J = ±. Certainly, more powerful
mathematical techniques are necessary to prove our conjecture, and to proceed
for the general case of braid group statistics. However, from our explicit calculations
with the examples above we draw much confidence that the structures available
from Theorem 2.7 are sufficiently rich for a systematic study of finite-dimensional
(?) quantum symmetry by "thinning out the master symmetry."

We want to include a remark concerning the possibility of non-abelian ordinary
group symmetry (and scalar Clebsch-Gordan expansions) associated with braid
group statistics. The abelian case has been treated in Sect. 3.1. We note that for the
superselection structure of the above S3 theory, there exists another braided
structure for the category of intertwiners; indeed each of the three statistics
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operators

ε(p,p) = (obvious terms) + |τ(τ)0><0(τ)τ| + (|τ(σ)σ><σ(τ)σ| + c.c)

with ωσ = ω a third root of unity, is compatible with the axioms, given the endo-
morphism (A.4). The case ω = 1 is the above case of permutation group statistics,
while the other two (which are conjugate to each other) are realized in appropriate
(sub-)models of chiral algebras, e.g., the three sectors of integer isospin in an SU(2)
Wess-Zumino-Witten model at level 4. Then the same bases bj solve the conditions
(3.11-14) with the same representatives u of the gauge group, while only the
numerical coefficients of the commutation relations (2.39) change. To be specific,
at space-like distance the field components φQ and φ3 commute among each other
and with the doublet φ±9 while for the latter if φ is localized at the right of φ',

φ±φ'±=ω'φ'±φ±,

One might wonder how the two components of an irreducible doublet can have
different commutation relations with a given other component, but the two-
dimensional representation (A.2) of S3 perfectly respects (A. 14). There is more
reason to wonder about the anyonic appearance of (A. 14). Indeed, it is known
that upon including the local field φ3 into the algebra of observables, the super-
selection structure changes into that of an anyonic Z3 theory, or, turning the
argument around, the observables of the non-abelian S3 theory are those obser-
vables of the Z3 theory which are invariant under an additional Έ2 symmetry.
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Note added in proof. I am indebted to R. Longo for clarifying discussions during a visit at the II.
University of Rome, which resulted in the following view of the present construction. Let us
abbreviate &:=^®J?,ί:= ί^®ί^,σ:=p® p\^-^^,E\=^EΛ®E-^σ(^ r\^^\^E^E, and

let Z:=ζ*e(σ2 |σ)n^ (cf. Proposition 2.6), satisfying Z*Z = ^ιd^E and ZZ* = σ(Z*)Z =

Z*σ(Z). Then

i(&) = Eσ(@)E = Z*σ2(@)Z c & = Z*σ(@)Z <=:<# = Z*@Z.

The inclusion i(&) c 2F (studied in this article) has index £ ά\ in analogy to the fixpoint inclusion

w.r.t. a finite group, and depth > 2 ( = 2 in the abelian case). Its Jones projection is Ej = EQ <g) EQe&,
•and (J^Ej) = ̂ . In fact, the inclusion i(^)c # is equivalent to an endomorphism @pΛ®p^
the range of E in σ (cf. [23])
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