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Abstract. We present a construction of the closed string algebra in terms of
Gaussian processes and crossed products. Also we give a purely functional analytical
prove of the sh-Lie-structure.

1. Introduction

In 1989 M. Saadi and B. Zwiebach, [S-Z], inspired by the work of M. Kaku, [K],
introduced an interaction of closed string fields along polyhedra. This was further
investigated and generalized by T. Kugo, H. Kunimoto and K. Suehiro, [K-K-S,
K-S]. They called it a nonpolynomial closed string field theory. They presented
the theory in the operator formalism using the techniques of conformal theory
and complex analysis. The nonpolynomial interaction of closed string fields should
obey a gauge invariance, which was reformulated as an algebraic property. This
later property was proved in [K-S] and for more general background fields in
[S]. It was J. Stasheff who recognized that these algebraic relations define a strongly
homotopy Lie algebra (sh-Lie-algebra), [Stl]. The aim of this paper is to construct
this algebra of closed string fields by using techniques of functional analysis. Also
we will give an analytic proof of the sh-Lie-structure.

2. The Closed String Bosonic Fields

A classical closed string in the Euclidean formulation is given by a continuous
imbedding

ω S1-*!^. (1)

In the Schrodinger picture of quantization the closed string fields are functional
on such paths. The measure of integration is given by the free dynamics of the
classical string.
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Let

dμ=@dμLo®dy, (2)
i = l

where dμLo is the Gaussian measure with co variance L"1,

L0 = y^Z; (3)
and — Δp is the Laplacian on L2([ — π,π]) with periodic boundary conditions in
— π, π, — Δ'p the restriction of — Δp onto the orthogonal complement of the kernel
(without zero modes). The kernels sum up to Rd. Let dy denote the Lebesgue
measure on Rd. We can split an arbitrary closed path into ω = ω' + y,y = orthogonal
projection of ω onto the kernel, i.e., a based part and the localization of ω(0).

A closed string bosonic field Φ is then by definition a square integrable function
w.r.t. dμ.

In order to split strings etc. we have to take care.

Lemma 1. For μLo-almost every ωe<$^'[ — π,π] there exists no nonempty open set
U c [ — π, π] such that ω restricted on U is a signed measure. In particular, ω is
not a continuous function on any such U.

Proof. The covariance of μLo

c(s,ί)= Σ —einπte-ίnπs

neZ\0 \n\

= ln(l-eiπ(t+s})(l-eiπ(t-s)) (4)

is obviously not continuous, which implies the lemma, [Co-La]. Π

For the definition of the interaction we need the splitting of closed strings. By
the lemma we cannot define this in a naive way. We need some technical pre-
liminaries.

Let σ0 = — π < σ1 < - - < σn = π, neN, be a partition of [ — π, π]. Define

Lσ:=Lσι + +Lσn + /! + -+/„, (5)

where Lσi = ̂ / -Δ'N^ and - ΔNti the Neumann Laplacian on L2([σi-ί,σi']), - Δ'Nti

the restriction of — ΔNti on the complement of the kernel, see (33), It = identity on
span{χ[<τ._1>σi]} (χ the characteristic function). We want to prove

Theorem. 2. Let neN, σh Lσ as above. Then

L~l —L~l is of trace class. (6)

This technical result will allow us to define appropriate splittings of closed
strings needed for the interaction. For the proof of the theorem we use

Lemma 3. Let [α, b~\ c R be an interval, — ΔD (respectively — Δ'N) the Laplacian on
L2([α, b~\) with Dirichlet (Neumann) boundary conditions at a and b (without zero
mode). Then

restricted onto the complement of the kernel of — ΔN is of trace class.
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Assuming Lemma 3 we now give a

Proof of Theorem 2. Let Lσι as above,

-ΔNtσ=-ΔNtί + .:+(-ΔNtΛ) (8)

and

-ΔDtσ:=-ΔDtί + .. +(-ΔDtΛ), (9)

the analog with Neumann boundary conditions replaced by Dirichlet boundary
conditions.

In general we have [R-S IV, p. 270]

0£-ΔNt0£-ΔN9 (10)

where — ΔN is the Neumann Laplacian on L2([ — π, π]), and

Q£-ΔD£-ΔD,σ (11)

with — ΔD the Dirichlet Laplacian on L2([ — π, π]). Furthermore we have in general
[G-R-S, p.254]

0< -4v + α l d g -Λp + αld^ -4D + αId, αeR + \0. (12)

Denote J#Ό the closed subspace spanned by the zero modes of — ΔNti9 i.e.

.̂ 0 = span {χ [ f f l_ ltσι]}, (13)

P0 the orthogonal projection onto J^Q. Then we get

o ̂  PO( - ΔNtσ)p0 £ PO( - ZWPO ̂  n( - ^p)n
^ P0( - Z1D)F0 ̂  PO( ~ ΔD,σ)P0 g - 4 .̂ (14)

Taking inverse and square roots we get

O^P0(-ΔDtσΓ
1/2Po^Po(-ΔpΓ

ί/2Po^Po(-ΔNtσΓ
ί/2P0. (15)

This shows the estimate

0 ̂  Po(( - ΔNtσΓ
112 ~ ( ~ ΔpΓ

i/2)PQ ^ Po( ~ ΔN,σΓ
112 - ( - ΔDtσ)~ 1/2P0 (16)

Now

(-Δ^Γll2-(-ΔD.βΓ
ll2= Σ (-Δ^Γ^-i-Δ^Γ112. (17)

i = l

Using Lemma 3 we easily get the theorem. Π

So we are left with the

Proof of Lemma 3. Scaling the interval we can assume [α, b~\ = [ — 1, 1]. Then

(18)
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is an orthonormal basis of eigenfunctions for ( — AD\

), (19)

an orthonormal basis of eigenvectors for ( — ΔN).
For their scalar products one computes

K Ψn> Φm ) I = 0 f°r m> n °dd or m> n even,

4m
\(ψn,φmy\ = - 1 - for w odd, w = 4/c, or n odd, m = 4k -h 2, /eeN,

π|n — m I

4n
|< \I/Λ9 ώm > I = - - - -- for n odd, m = 4/c, or m odd, n = 4fc + 2. (20)

π|n 2 -m 2 |

By the general estimate on the Laplacians it is enough to show

with

k = l K

All summands are positive and we can rearrange the sum arbitrarily. Let us first
prove a simple general estimate

Lemma 4. For weN we have

0 Y 2k + l - l.ϊ! + o /T| (23)
^o((2n)2-(2/c+l)2)2"2n 8 + °U 2 Λ

H) Σ — ^ = °(4Λ (24)
fc=0((2n)2-(2/c+l)2)(2fc + l) \» /

Proo/.

i) » 2 / c + l 1 «

tt
jo((2n)2-(2fe+l)2)2 8n*tJoV(2n + 2/c+l) 2 (2n-2fc-l)2: + -

(25)

Σ—: ϊ = Σ —^—' /^Λ,^\2 / ' Λ / , i 1 \ 2 W > / , i 1 \ -̂< OL

= Σ + Σ

(26)
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Using the integral criterion we estimate

y <0[-L . (27)
*-' /"">/, i 1W^M i O7, i 1W>™ ")/, 1\ — \ ™2 I v 7

1

ΊΪ+1 (2k + l)(2n + 2k+ l)(2n - 2/c - 1) ~ \n

Rearranging the first sum we get

1 / 1 1= y
=0 (2/c + l)(2n + 2fc + 1) \(2(n - k) - 1) (2(2n + k) + I);

(28)
k =o (2/c + l)(2(n + fc) + l)(2(n - fc) - l)(2(2n + /c) + 1)

Estimating

2(n + k) + l~2

and applying the integral criterion shows the lemma. Π

Now we can estimate

£ I f 4(2/c+l) \2 1

Ό ?

1

^oπ2\,^2

and using

4n + 2 V I

((4n + 2)2 - (2/c + I)2)2 ((4n + 2)2 - (2k + l)2)(2/c -

we get

(30)
4n

(32)
<*n -t- z \w*V

Similarly we get

^ h 0 ( ) (33)

and thereby with

the final proof or the theorem. Q

Our main application of the theorem is

Corollary 5. Let σ = {σjί = 0,.,n> ^^N be a partition of [ —π,π],dx£ ίΛe Lebesgue
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measure on the 1-dim. span{χ [ f f ι_1 ><Γi]}, i = l,.,n. 77ίen
n n

MLO® <Wω', j>) = Fσ(ω'l9.., α>;, x'19.., xj,) (X) μ^K) (g)dx,, (35)
i = l ί = l

vviί/z fl nonvanishing measurable function Fσ, i.e. ί/ze two measures are absolutely
continuous.

Proof. Noting that the two measures
n n

μLσ(ω'l9.,ωn,x'19.,x^)« (g) /xLe,,K) ® ̂ i (36)
i = l i = l

are absolutely continuous, this follows now from Shale's Theorem, [Si]. Π

By Corollary 5 we can accordingly split an arbitrary closed string to a partition
of [ —π,π].

3. The Bosonic Part of the Algebra (I)

Let us illustrate the essential ideas in the simple case of the product of two fields.
Let Φ, Ψ be closed string bosonic fields, i.e. L2(μ)-functionals. For any ΞeL2(μ)

we define a complex number

(Φ,Ψ,Ξ)beC (37)

in a continuous manner, such that we get by Riesz theorem an element Φ * *PeL2(μ).
Let — π = σ 0 <σ 1 =0<σ 2 = πbea partition of [ — π, π]. Due to the Corollary 5

we can split a closed string accordingly (see Fig. 1)

ω = (ω', y) = (ω\9 x\9 ω'2, x'2) (38)

We define

(Φ, Ψ9 Ξ)b,:= ^dμ^ω'^dμ^ω^dμ^ώ^dx', dx'2 dx'2

'Fσ(ωf

19ω2,xf

19x
f

2)Φ(ω'19ω
r

29x'19x
r

2)

•Fσ(r(ω
r

2), ώ'2, x'2, x'2) Ψ(r(ω'2\ ώ'2, x'2,x'2)

•Fσ(r(ώ2), r(ω\\ x2, x\)Ξ(r(ώ'2\ r(ω\\ x2, x'J (39)

with r(ω')(t) = ω'(π — t). Then we sum over all possible choices

(Φ, Ψ, Ξ)b:= I((Φ, «P, Ξ)b. + (Ψ, Ξ, Φ\, + - - + (£, Φ, no- (40)
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Using Cauchy Schwartz inequality we get

\ ( Φ , Ψ , Ξ ) b \ Z \ \ Φ \ \ 2 \ \ Ψ \ \ 2 \ \ Ξ \ \ 2 9 (41)

where || ||2 denotes the L2(μLo)-norm. By Riesz Theorem we get a unique vector
denoted by

[Φ, <F]beL2(μLo). (42)

4. The Restricted Polyhedra

We want to generalize this construction to a product of n closed string bosonic
fields. This was suggested by M. Kaku, [K], M. Saadi and B. Zwiebach, [S-Z],
and further developed by T. Kugo, H. Kunimoto, K. Suehiro, [K-K-S, K-S],
A. Sen, [S], and others. The idea is to let closed string fields interact along socalled
restricted polyhedra.

A restricted polyhedra is defined in [K-K-S, K-S] by the following properties:

i) they are homeomorphic to S2,
ii) only three edges join at each vertex,

iii) the perimeter of any face equals 2π,
iv) any closed path (surrounding two or more faces) has a length larger or equal
to 2π.

These properties are explained in the following remarks.
In string theory it was early noted that only three string fields can interact "at

once." This is reflected in ii). The closed string fields are thought to give boundary
conditions on the polyhedra, i.e. the perimeter of the faces are viewed as layed
with closed strings. This motivates condition iii). In order to not overcount the
interactions given by polyhedra one has to restrict to iv), see [S-Z, K-K-S], where
the interested reader can also find the argument for including such generalized
interactions.

In order to define the restricted polyhedra in an applicable way for our des-
cription of closed strings we have to take care of Lemma 1. Since we cannot use
the notion of continueity, we have to rephrase i).

To define an interaction we only will use the one and zero dimensional simplices
of the polyhedra.

Let 2n be the number of vertices (0-simplices). By condition iii) we get 3n edges
(1-simplices). Now the Euler number uniquely characterizes the topological sphere
S2. If our polyhedra has (n + 2)-faces (2 simplices) it obeys i).

We want to describe the moduli space of such polyhedra appropriate to the
closed strings in the support of μLo. Let us first look at (n + 2)-interacting closed
string fields. According to the above remarks we will have 3n overlapping edges
and 2n splitting vertices. We will describe such a configuration in the following
way. In a splitting point three closed strings contact. We interpret therefore a
vertex as an identification of three coordinate points of three different closed
strings. In the same spirit an edge will be the identification of two parameter
intervals of the interacting strings. We will put some restrictions to such choices
in order to mimic the notion of restricted polyhedra.

Let us start with 2n vertices.
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Let

σ:{l,2,..,2nH[-π,π]3x/, (43)

where /:= {(1,7, k)/ij, fce{l,2,., n + 2}, i φjφkφ ί}. The / th vertex is given by

σ(l) = (σί9σ2,σ3,ij,k) = (σί9ί) x (σ2,7*) x (σ3,fc), (44)

where we say: σ(l) splits the z th string in σi etc. Condition ii) is then automatically
fulfilled if we restrict to

Condition I. Two vertices σ(/),σ(/c),/ Φ k do not split the same string at the same
point.

Next we want to describe the edges. We need some preparations.
Let

Si(σ):= {σe[ - π, π]/3/e{l, 2,.., 2n}, σ(ί) splits the ith string in <τ}. (45)

It is the set of splittings of the ith string according to σ. That the ith string takes
part in a nontrivial interaction is reflected in

Condition 2. \ St (σ) | ̂  2, i = 1,., 2,.., n + 2.
We want to get the notion of edges. We therefore put the finite set S^σ) in

increasing order. A pair (σ1,σ2)eSί(σ) is called an edge of the ith string iff σ t and
σ2 are nearest neighbors (n.n) in increasing order, or σ x is the largest and σ2 the
smallest element in Sf(σ), (cyclic order). Thus edges are naturally directed. We
denote by £f(σ) the set of edges of the ith string. Again we can put £f(σ) in cyclic
order compatible with the order of S, (σ). To an edge ei = (σ\9σ

l

2)eEi(σ) we can
uniquely associate the vertices σ(/ι),σ(/2) for σ1,σ2,/1,/26{l,2,.,2n}. We denote
these data by

1i(ei) = ( l i , l 2 )
/! the startpoint vertex of et

12 the endpoint vertex of e{. (46)

Also we denote by e\ the pair (σl

29σ\) the reversed of et. Now we can define an
edge of the polyhedra.

A pair (e^e^eE^σ) x Ej(σ) is called an edge of a polyhedra iff

$ l f J
ii) σ2 — σ\ =σj

2 — σ{.

The meaning of Conditions i) is obvious and ii) just says that the two parameter
intervals can be identified. We remark here that the condition η^e^ = η^) as
would be suggested by the classical picture is not appropriate for the discontinuous
strings, see Lemma 1.

Denote

£(σ)="(j£ί(σ) (47)
i = l

the set of all string edges. We want to pair two edges to one edge of the polyhedra.
This is described by an involution. A map PE

PE:E(σ)^E(σ) (48)
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is called a set of polyhedra edges, iff (PE)2 = Id and for all eeE(σ)(e,PE(e)) is an
edge of a polyhedra. Furthermore one requires that two n.n edges of a string i are
not mapped to n.n. edges of a string j.

We need a last definition. Let

C = (el9.,ek) (49)

be a A;-tuple of string edges, fceN and let startpoint vertex of ej+1 = endpoint vertex
of ej(en+ l=el).

Then we call C a closed path. The value

k ίi = IK,4)|:=σ^-σ\eR + , (50)

respectively

|C|:= Σ k l (5i)
i= 1

is called the length of the closed path C.
Now we can transcribe all the conditions for restricted polyhedra to our case.

Condition 3. The cardinality of E(σ) is 4n.
This replaces condition i) above.

Condition 4. Let C be a closed path, C = (ei9.9ek) with ej+l ^PE(ej\j = 1,.,/c.
Then |C|^2π.

One easily checkes that such a closed path is a face or surrounds one or more
faces of the polyhedra. This condition replaces iv).

Now we can define a restricted polyhedra to be a pair (σ, PE) of the above
type obeying conditions l)-4). Looking at these conditions one notices that they
are all linear. Hence the set Mp(n + 2) of pairs (σ, PE) as above may be described as
a finite union of (2n — 2)-dimensional locally convex bounded subsets of [ — π, π]6w.
There is a unique measure on Mp(n + 2) compatible with the convex structure,
induced by the Lebesgue measure on R2 n~2. We denote this measure by dλ^.

5. The Bosonic Part of the Algebra (II)

We want to generalize the product of Chap. 3 to restricted polyhedra.
Let (σ,PE) be a restricted polyhedra with (n + 2) faces and Φl9.9 Φn + l9 Ψ be

closed string bosonic fields, i.e. L2(μ)-functionals. Due to the Corollary 5 we can
split the ith closed string according to the partition S/(σ),

ωt = (ωj, *;.) = (ω;.(σ1? xJK)), . . , ωj(σk), x\(ok)\ (52)

k = |Sf(σ)|. We interpret (<&[(& j^xfoj)) as the range of the /h edge e^fieE^σ). For
the right-hand side we introduce the abbreviation ω^σ). To simplify the notation
we also use the symbol δ to denote

(53)

for μ-measurable functions F, and more general we write

δ(e - PE(e)r) = δUωϊfa), x^σ,)) - (r(ω'j(σ2)\ x'.(σ2))) (54)
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is the range of eeE(σ) and (ω^(σ2),Xj (σ2)) the range of PE(e). Also
we use the abbreviation

Fσi(ω(σi))dμLσ(ω(σi))
k

= Fσί(ω'Kιλ > ω/K*λ *'Kιλ - ' *K*)) Θ <^Lff, W(σt. ) <g> dx'faj)). (55)
7=1

where σt is the partition of the ith string according to the polyhedra (σ, PE). For
the definition of Fσ see Corollary 5.

Now we are prepared to define the general product. Let E(σ) a E(σ) be half of
all edges such that eeE(σ)=>PE(e) not in E(σ). It corresponds to the geometric
edges of the polyhedra. Then we define

(Φ^.^Φ^^n^-JΠ^X^K))^^^ Π δ(e-PE(eY)
i = 1 eeE(σ)

2)) (56)

and again we sum over all possible choices of putting a string on a face of the
polyhedra,

(*!,.. A+ι,ή.,=rA^ Σ (φι,. A+,A+2w. (57)
(H + 2J! permut.i

where Φn + 2= Ψ> An iterated application of the Cauchy Schwartz inequality shows

(58)
/

and by Riesz Theorem we get the definition of

[Φι,.A + ιL,σeL2(μLo) (59)

as the dual of the linear map in Ψ. It is easy to see that the map

(σ,P£)^[Φl5.,Φπ + 1]M (60)

is measurable w.r.t. λM. Therefore we can define

(61)
(σ,PE)eJfp(n + 2)

The resulting algebra is denoted by <stfb.

6. The Fermionic Part

Before continuing the discussion some remarks on the physical interpretation of
closed strings are in order. Looking at a closed string as a "closed" path in Rd,
i.e. as a geometrical object, one would suggest DiffS1 as the reparametrization
and thereby symmetry group of the theory. This point of view will be carried out
in this paragraph.

But in the operator formalism of string theory one interprets closed strings as
doubled open strings. One splits a closed string into left and right moving parts.
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The symmetry group one achieves this way is the direct product of the repara-
metrization groups for both parts. The slight changes we need in the construction
will be explained in the next section. Let us start with the geometrical interpretation
of closed strings as closed paths. In order to define things rigorously we split such
a path into a based part and the zero point localization, see Sect. 2. This restricts
the reparametrizations to those leaving the zero point fixed. We get Diff S1/S1 as
the symmetry group.

Let Φ be a closed string bosonic field, yεΌiKS1/S1. The action of y on Φ is
given by

y*(Φ)(ω):= Φ(ω°y~l\ ΦeL2(μ). (62)

We want to compute the action of y on a product of such fields, at least for the
moment formally.

Let [α, b] c [ — π, π] be an interval,

L[a,b] '•= \/-4v,[fl,6] + '[a,*] , (63)

where — ΔNt[θtb] is the Neumann Laplacian on L2([α,b]) without zero modes, I[a,b]

the identity on the kernel. We denote by Jtif( [α, b] ) the Sobolev space over L2( [α, b] )
with weight L~a\γ The eigenfunctions are explicitly given by

(64)
-a -a

rceZ, see Sect. 2.
Given a reparametrization y eDifΓSVS1 with y(ά) = c, y(b) = d, we get an induced

map

ωoy-^ ly'r172^-1). (65)

Let us look at the Gaussian measure μL[a b]. A formal substitution leads to the
expression

y*(μtu,tl)«det(y*[c,<f|)μileι(I]. (66)

It is well known that for general y this determinant is analytically not well defined.
As in the case of open string theory, [Wie2], we will interpret the determinant as
a Quillen determinant, [Se-Wi, Pr-Se].

We want to split L2([α,fe]) into positive and negative parts. In the case of
periodic boundary conditions the splitting into left and right moving parts is quite

natural. We can define a square root of —Δ (periodic Laplacian) by i — with
dx

periodic boundary conditions. Then the splitting is just the splitting of the spectral
d

spaces of i — according to positive and negative eigenvalues. In the case of
dx

Neumann boundary conditions this is not possible. But we know from Lemma 3
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that both operators are close to each other. Therefore we will approximate such
a splitting.

Let

(67)

These vectors form an orthonormal basis in L2([β,b]). We define

) •- SPan {*l[a,b],k }k ϊ 0,fc < 0 - (68)

For another interval [c,d] c [-π,π] we identify 3?(\a,b~\) and Jff([c9d]) by

(69)

Obviously C7 is unitary.
Let yeDiff SVS1 with y(α) = c, y(fe) = d. Then the map

d]) (70)

is unitary. Furthermore one easily proves l/*y*el/respf) according to the above
splitting, see [Pr-Se]. We can define the Quillen determinant of that map. We
therefore suggest an interpretation of (66) by replacing the analytical determinant
by the Quillen determinant.

Since the Quillen determinant is not a number in C but a section of the Quillen
DET-bundle, see [Pr-Se], we have to work with an algebra of sections rather
than an algebra of functional, see [Wie2].

Take the holomorphic imbedding induced by (70)

ι:DiffS1/S1cL,Gr(JΠo, (72)

where Gr(^f)0 in the identity component of the universal Grassmannian, see
[Pr-Se, Mic]. We can pull back the holomorphic line bundle DET* over Gr(Jf)0,
also denoted by DET*. By abuse of language let stfb also denote the trivial bundle
over DiffSVS1 with the bosonic part stfb as fibre. The new algebra consists of
sections in

j/b (x) DET*

1 (73)

Next we want to lift the group action of DifΓS1/^1 to an action on the bundle,
thus modelling (71).

Let yeDiff SVS1 and ρ(γ) be the natural map of the DET-fibre over yeDiff SVS1

into the DET-fibre over yoy" 1 . We can lift the group action of y to a bundle
automorphism p*(y):

(p*(y)(Φ))(y):=p(y)((y* (Φ))(yoy-1)), (74)

where Φ is a section of the bundle and y* denotes the action of y in the j/b-fibre.
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(Notice that y^p(y) is not a group homomorphism but only a projective
representation, see below.)

In order to filter out the reparametrization invariant part we will mimick the
cross-product construction for C*-algebras. Since in our case there is no directly
defined product, we will use Riesz theorem as above to define it.

As in the open string case, [Wiel], we will restrict to holomorphic sections of
the above bundle. (Diff S17^1 as a flag manifold carries a natural complex structure;
the imbedding i into Gr (J^) is holomorphic, the pull back bundle i* (DET) is there-
fore a holomorphic bundle over DiffSYS1, see [Pr-Se].)

On Gr(Jf)0 we have a l/res(^f)-quasi-invariant measure μ0 constructed by
D. Pickrell, see [Pi].

Denote

[ ̂

the canonical projection. Take a measurable section

τ Gr (jff ypiffSY S1) -> Gr (tf )0

M^τ(M). (76)

We get a Borel map

Γ:Gr(jr)0-> Diff SYS1

g^Γ(g\ (77)

where Γ(g) is uniquely given by g = Γ(g)τ([g]\ Let μr be the induced quasi-
invariant measure on DiffSYS1. In the fiber of

j*b <χ) DET*

I (78)

we have a natural hermitian metric given by the canonical Quillen metric on
DET*, [Pr-Se], and the Hubert space structure on «s/ft, see Sect. 1. We define 3tf cl

to be the Hubert space of holomorphic L2(μr)-sections of the bundle (73).
The product structure on $tb obviously transfers to a product structure on this

fibre of the bundle. We will denote the associated multilinear forms also by (.,.., .)b σ

etc. Now fix a restricted (n + 2) polyhedra (σ, PE). We will use the notations of
Sect. 3.

For (n + 2) sections Φ l 9 . . , Φn+ 19 ΨeJ^cl we define

(*!,.. ,Φ.+ 1,!P)σ:= f - f dftoj-dffa+j
Diff SVS1 Diff SVS1

1)W (79)
The reparametrization invariance is then reformulated as

(80)
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S1. Checking this equality we have to substitute /y/^7°7i in the integrals.
Now the measure μr is not left invariant but only quasi-invariant. The densities
were computed by D. Pickrell, [Pi]. They yield a project! ve representation of
DiffSV S1. The central charge of the associated central extension is c = —26.

On the other hand, as mentioned above, p* is not a representation of DίffS1/^1

as bundle automorphisms, but a projective representation. We can also compute
the associated charge as c = 2d, d the dimension of the target manifold of the
closed strings.

Putting these results together, we can perform the substitution. As the final
result we conclude the reparametrization in variance in d= 13.

In d = 13 we can use the invariance of the integrations. An iterated application
of Cauchy-Schwarz-inequality and the finiteness of the measure μr shows

Using Riesz' theorem we get the definition of the product

[Φι,..,Φ»+ιLeΛ%ι (82)

As in Sect. 4 we finally set

..9Φn+Jσ. (83)

7. The Closed String as a Doubled Open String

In the operator formalism of string theory one splits a closed string into left and
right moving parts.

Open strings are described by differentiable paths

As in Sect. 2 we split an open string into a based part and the localization at 0,

ω = (ωop,x) x = ω(o). (85)

The free dynamics of the based part is similar to the closed string case given by
(d = l9 otherwise take direct sums)

^=V-^.[o..] (86)

The vectors

\l/n(x)\= tA[0>π]>w(x) = cosnx, xe[0,π], neN\0 (87)

build an orthonormal basis of eigenvalues of based open strings in L2([0,π],dx).
Analogously we get

σn(x) = sin nx, γn(x) = cos nx (88)

rceN\0 as an orthonormal basis of eigenvectors of based closed strings in
L2([-π,π]).

The splitting of a closed string into left and right moving parts is depicted in
Fig. 2.
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Fig. 2.

Then

(σn + yn) moves to the right
72

(σn-yn) to the left
/2

neN\0. We therefore define the unitary map

f: *%,.fc-»fl.p.»θ *V» (89)

where ^fcli, = L2([— π,π],rfx)θspace{y0} and U is given by

nεN\0.
For a general based closed loop we get

(90)

(91)

and call ωr, ω' the right and left moving part. It is fairly obvious that

l/*(L;b

1φL-1)t/ = L-1 (92)

see Sect. 2. Denote
a

dμop:=@dμLop9 (93)
i = l

where μLop in the Gaussian measure with co variance Lop. The quantization of the
based open strings in the Schrόdinger picture is given by passing to the L2(μLop)-
functional, see Sect. 2. Using the above unitary equivalence of operators we get a
geometrical isomorphism

L2(μ) * L2(μLo) ® L2(Rd, dx) * L2(μLJ ® L2(μLJ ® L2(Rd, dx) (94)

see [Si], induced by U.
This is exactly the splitting of a closed string bosonic field into left and right

moving open string bosonic fields. The last factor in the above tensor product
reflects the common zero point localization. Viewed as a double open string field
the symmetry group of the closed string field theory could be expected as the
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direct product of two copies of the reparametrization group of the associated open
strings.

Let us define the bosonic part. Using the splitting U we get

the associated splitting of the Gaussian measures.
For an arbitrary restricted polyhedra (σ, PE) we have to replace the integration

measures μLj<Γ in a proper way. We need the splitting into the left and right moving
part of an arbitrary part of the closed string.

Assume ω to be closed on [α,b]. We split ω into left and right moving parts

- ,b ,ώl,ώr defined on

± «,* - x e , * . (96)

Γπ+ α π + f c Ί

L 2 ' 2 j

LP([α, *>]):= V-^,tα,W

1 1 . τ,rWe translate the parameter interval to - , - . We use the same notation

for the translated paths. Let

(97)

Then again we get the measure decomposition

to reduce the general decomposition of a closed string to the above case one
notices that by the Lemma 3

]) is absolutely continuous w.r.t. μLN([aM, (99)

LN([a9b']):= ^/ — Δ'NM]. Therefore we can replace the integration measure μLσ by
tensor product measures of the form

Instead of using the above isomorphism of spaces we will directly look at the
product. Using the symbolic notation of Sect. 5 we split

δ(e - PE(eY) = δ(eι - PE(e)\\δ(er - PE(e)r

r) (101)

into left and right parts as above. But now one notices that PE(e)\ corresponds
exactly to the right moving part of PE(e). We have to identify the left moving part
of the first string functional with the right moving part of the second.

So we are left with the symmetry part. The reparametrization group for open
string is given by Diff[0,π]. Stretching the parameter interval we can take
Diff [-π,π]. Now we again use Lemma 3 to get rid of the Neumann boundary
conditions. In the string field case we replace them by periodic boundary condi-
tions. Therefore, without loss of generality, we can take DiffS1/^1 as the symmetry
group of open bosonic strings.
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On the other hand the splitting into left and right moving parts yields

® L2(Rd, dx) (102)

with X,p = L2(μLop), see (94). Let us only sketch how to perform the final
construction. As in Sect. 6 we notice that a substitution in μLop according to a
reparametrization is not analytically defined but categorically. As shown there we
split the Hubert space of open strings into a positive and negative part. Repara-
metrizing a path yields an imbedding

DiffSVS'^GrPΠo (103)

See (70). Pulling back the DET*-bundle and denoting by abuse of language the
trivial bundle with fibre j/op also by £/op we get a holomorphic bundle

I ® I (104)

S1 x DiffSYS1.

Again we have a canonical hermitian metric on that bundle. The algebra consists
of ίΛholomorphic sections of that bundle w.r.t. the measure μr®μr. Let
yieΌiϊϊSl/S1. Using the description of j^op with periodic boundary conditions,
see Corollary 5, we get a natural action y* on ,s/op. Again we can lift the group
action of γί to a bundle automorphism of

DET* ® <p

I (105)

denoted by P*(}Ί). Similarly we get a bundle lift of y2eΌiffS1/S1 to the second
bundle, denoted by p*(y2)

 an(i thereby a lift

P*(yιxy 2):=P?(7ι)xPΪ(y2) (106)

to the total bundle. One easily transcripts the definition of products in Sect. 6 to
this doubled case. Again, by the same methods one proves the symmetry invariance
for d = 26. It is a matter of routine to fill in the details.

The symmetry S1 of translating the common zero point localization causes no
trouble. It is a compact group and integration w.r.t. the Haar measure yields the
final results above.

8. The sh-Lie-AIgebra-Structure

Let us reformulate the theory of closed string fields in more familiar terms. Instead
of working with Gaussian processes on path space we isomorphically could work
with processes on Fock space, [Si].

Let us look at the bosonic part L2(μLo). As it is well known this part is
isomorphic in a natural way to the closed string Fock space generated by the
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creation and annihilation operators (αj,)* respectively (α°) i = 1, . . . , 13, neZ\0,

[«)*,(βi)] = ̂ Λ-lπl
CK),(^)] = [(<)*> (<)*]= 0. (107)

To incorporate the L2(R13, dx)-factor we decompose
13)= J L2(μLo)(p)dp, (108)

where p is the momentum variable, conjugate to the midpoint localization, and
L2(μLo)(p) is the Fockspace with the additional operator (a^)* = αj, ί = 1, . , 13,

(<)*ββl = jtocl (109)

where peR13, Ω 1 the vacuum of the Fockspace. We denote this representation

For the fermiomc part we need the lollowing slight extension.
We pulled back the DET*-bundle from Gr(Jf)0 to Diff S1^1. But we should

better work on Gr (3? )0 directly. A proper interpretation for this is given as follows.
There is a whole family of complex structures on Diff S1/S1 parametrized by the
way one splits the tangent space into positive respectively negative, i.e. holomorphic
and antiholomorphic parts, see [Wiel]. In this way one should think of Grpf)0

as a space of such splittings and Gr (Jf )0/Diff S1/^1 is a parameter space of complex
structures on ΌiffS1/S1. Grpf)0 is a proper analog of a twistor space, [Pen]. The
Borel isomorphism

(110)

yields a natural groupoid structure on Gr(J f):

0ιl02:=([0ι],Π0ι)0Π02)), (HI)

with [0J = [#2], and a natural groupoid action on j f b :

g(Φ):=Γ(g)*(Φ) (112)

The generating elements of the closed string field algebra are tentatively given
as the holomorphic L2(μ0)-sections of

s/b ® DET*

I (113)

In defining the products we need some slight changes. The symmetry group
DiffSVS1 is replaced by the groupoid Gr(J f). This is achieved by the following
substitutions
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7 = 2

It is not difficult to carry out the details.
The closed string fields are as remarked tentatively given by the holomorphic

L2(μ0)-sections of the above bundle. The bundle jtfb is trivial and we can rewrite
this Hubert space as a tensor product of s/b with the Hubert space Λ* of
holomorphic L2(μ0)-sections of the DET*-bundle. Using the isomorphism of
D. Pickrell, [Pi], this later Hubert space can be identified with the fermionic string
Fock space. Let {Ln} be the usual basis of the Witt algebra

[Lπ,LJ=(m-n)Lm+n m,neZ (115)

which is the well known complexified Lie-algebra of Diff SVS1. Defining the Ln

as an orthonormal basis we get a Hubert space decomposition

j^0 Jf _ =span{Lπ}π<0. (116)

The splitting corresponds obviously to the various splittings into positive and
negative spectral parts used above. The fermionic Hubert space in string theory
is defined as

*=:&#, (117)

see [Pr-Se, F-G-Z]. We define the fermionic creation and annihilation operator,

b*(n):= Ln Λ n ̂  0 (exterior multiplication with LJ

b( — n):= L* n Λ n < 0 (exterior multiplication with L_ r t) (118)

and by the adjoint on Λ*Jf + Λ (Λ*J(f _)*

b*(-n):=(b(-n))* n>o9

b(n):=(b(n))* n^O. (119)

These are bounded operators on Λ*JV + Λ (Λ*Jίf _)*. We define

deg(6*)=l, deg(6)=-l. (120)

In this way we get a Z-graded Hubert space. This grading is called the ghost
number. D. Pickrell defined an explicit isomorphism, [Pi, Wiel]

ΛJs(Λ*jr+Λ(Λ*jr.)*)0, (121)

where the 0 denotes the zero graded subspace. Therefore our space of closed fields
consists only of the physical closed string fields with zero ghost number. How to
enlarge the space in order to get all physical fields is not difficult, [Wiel]. We
sketch it in the Appendix.

Let us present the essentials. The final Hubert space will be naturally isomorphic
to
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Denote Ω the vacuum. The subspace J% of finitely many excitations is then given
by the algebraic space of vectors

Ψ = Π β-.4® Λ LSi Λ Λ L*rι Λ Ω (123)
ί=l i = 1 i = 1

with fc,/,meN, vt e {!,.., 26}9nl9 ΓieN\{0}, steN.
It is a dense subspace of J^i®^/,. The symmetry action of DifΓSYS1 on the

Hubert space sίb leads to an infinitesimal action on ̂ 0 given by

π(LM):= Σ ΣCόX-m®1^ (124)
meZ ί = 1

the symmetry action on (Λ*tf+ Λ (Λ*Jf_)*)0 to an action

p(LB):= W Λ l ® f £ (m - n):b*(m)b(m + n)A (125)
V m e Z /

with : : the usual wick ordering.
From [Wiel] we infer

Theorem 6. Let

d:= Σ π(Ln)b*(n) + Σ (m ~ n)' b(m + n)b*(m)6*(n): (126)
neZ m<«

on ^0. Then d is closable. We define

Q:= closure of d. (127)

For the proof see [Wiel]. Q is nothing but the BRST-operator in physics.
Mathematically one would think of Q as a Lie-coboundary of the Witt-algebra
with values in the module j^, see below.

Now we can formulate the main

Theorem?. Let Φ^..,ΦN+le^Q. Then [Φ l f.., ΦN+1^ED(Q). For Φ, with fixed
ghost numbers we get

- Σ (-l^LΦi— βΦ^-»ΦN+ι]-0, (128)

ί=l

Before proving this theorem we need some preparations.
We use the picture of closed string fields given as sections of the bundle (73).

The elements in ̂ 0 correspond to holomorphic sections of the bundle (73) with
values in the polynomial algebra over path space. Using either the Fock space
picture or the section picture it is obvious that these vectors are in the domain of
Qn for all neN. In particular the set of infinitely differentiable (w.r.t. the groupoid
action) sections is dense in ^^\%3Fg^ To proceed further, we need a more detailed
description of Q acting on sections. ,

Fix a parametrization θ of S1. We have a global section — in the tangent
7 dθ

bundle. Let υ = v(θ) — be a C°° -vector field on S1. It can be viewed as a Lie-algebra
dθ
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element of DifΓS1/^1* [Mil]. The exponentiation yields the one parameter group

S1 (129)

uniquely defined through

^Ύv(0),e=o = v, y,(0)=l. (130)

Restricting on vector fields with v(l) = 0 we get a one parameter group in DiffSYS1.
The later group is identified with the subgroup of Diff S1/S1 fixing the leS1.

Using this geometrical point of view we can describe Q as follows. Given such
a vector field v and a section

(131)

is well defined, see Sect. 6. In this picture Q is a map

Q'.T, DiffSYS1 (̂J%,̂ o), (132)

where &(&& ̂ o) denotes the space of linear maps. Explicitly

Q(υ)(Φ):=-^P*(y.mΦ),,-0. (133)
αc/

In the Fock space picture this can be identified with

v_nb*(-n)QΦ (134)
neN neN\0

with

,, _ y ,. r r _ Λnβ Λ

^ - L Vn^n> L n-e ~
Λ6N «0

yn = f v(θ)einθdθ. (135)
s1

From the geometrical point of view it is now easy to see

Lemma 8. Let Φl9 . . , ΦN+ 1 e^0. Then for a C™ -vector field v as above

= - (136)
uu

is well defined.

Proof. A simple application of Lebesgue-Theorem of majorized convergence. Π

For Φe^o we easily get by explicit calculation

(137)
πeZ

In order to prove [Φι,..,Φjv+ι]eD(Q) one would like to have an estimation

\\2£ Σ l»J2 const. (138)
weZ
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Then one would get the well defined expression

πeN

+ Σ fc(-n)Φ(Ln)([Φ1,..,ΦiV+1])e^cl(χ)^9A. (139)
«eN\0

We will not prove such an estimate directly. Instead we will work with Q(υ) and
prove an equation analogous to the one in Theorem 7. From this equation one
easily gets such an estimate and also the final proof of the theorem.

Theorem 9. Let v be a C°° -vector field on S1 as above, Φ1,..,ΦN + 1 closed string
fields in J 0̂ with fixed ghost numbers. Then one gets

N+l

- Σ (-l)"α>[Φι,..,β(f)ΦJ,..,Φ1v+ι]=0. (140)

Corollary 10. For Φ1,..,ΦN+le^0 we get [Φ1?.., ΦN+1^D(Q).

Proof. From the above equation and estimation (137) one gets easily an estimation
of the form (138). The above remarks show Corollary 10. Π

Proof of Theorem 9. Let Ψe^0. We will prove
N+l

<[Φ1,.. )ΦN+1,ρ(r)f]>= £ (-l)«ω<[Φ1,..,β(l;)ΦJ,..,ΦJV+1],f>. (141)
J = l

From this equation Theorem 9 follows.
To prove Eq. (140) let (σ, PE) be a restricted polyhedra. From the discussion

in Sect. 5 we know that

)σ, (142)

We get

)a, (143)

and taking derivatives
N + l

(Φί,..,ΦN+l,Q(v)Ψ)= Σ (-l)"ω(Φ1,..,β(r)ΦJ,..,ΦJV+1,f) (144)
i = l

from which (140) follows. Π

Let us pass to the physical interpretation of a closed string as a doubled open
string.

As remarked in Sect. 6 the symmetry group in this case is Diff S1/S1 x
DifΓSVS1 x S1. The DiffSV-S1 -parts are managed as above. But due to the third
factor we get additional terms.

Let us introduce the Fockspace notations. The open string bosonic Fockspace
is generated by the operators (αj,)*, a\, i = 1, . . , 26, neN with the same commutation
relations as in the closed string case. To distinguish between the left and right
moving parts we mark the creation and annihilation operators of the second by
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(αj,)*, (αj,). The constraint of equal zero point localization means α^ = α'0, i = 1, . . , 26.
The fermionic or symmetry Fock space is also doubled and we mark the different
parts also by a~ . But we have an additional ^-symmetry generated by L0 -L0.
Therefore in this case the BRST-operator is slightly changed.

Let

(145)

and Jfphys^o the subspace of finite excitations, see above. On ^phys,o we define

<W= d + d + I(π(L0) + p(L0) - π(L0) - p(L0)). (146)

The last summand is the generator of the S Asymmetry. As in [Wiel] we get

Lemma 11. The operator dphys is closable. Denote Qphys the closure.

Now we can prove the sh-Lie-algebra-structure of the algebra.

Theorem 12. Let Φί9.., ΦN+leJephySt0. Then [Φi9..,ΦN+ίeD(QphyΛ). Assume now
that the Φt have fixed ghost numbers de(i\ dr(i)for left and right moving parts. Then

N+l

βphys[φ,,..,φN+ι]- Σ (-i)*Λ[Φι, . ,βPhΛ .,φw+ι:ι
7 = 1

= Σ Σ (-^(ίJ)\(b(o)-b(δ})({\.Φίί,...,Φίm-\,Φjί,...,ΦjJ),
m + n = N,m^n partitions i,j ^

(147)

7i

where σ(ij) = s/(i)sr(7)» n ( j ) — Σ de(k) + dr(/c) αnίί s/5 sr are computed as the s-value
k=l

(158) in the appendix w.r.t. the ghost numbers of the left and right parts.

Proof. From Theorem 7 one gets for Q:= βphys - |(π(L0) - p(L0) - π(L0) + p(L0)),

(148)

(149)
7=1

So the difference in the formula (147) w.r.t. (140) results from the Sl symmetry.
We are left with the computation of

(π(L0) + p(L0)^π(LQ)-p(L0))(lΦl9..9ΦM + ̂ ) (150)

For this we have to look at the action of S1 on the moduli space MP(N + 2) of
restricted polyhedra. But his action is induced by the translations in S1. The
infinitesimal action of S1 leads therefore to an exterior derivation w.r.t. to the
σ-variable. Now we can use Stoke's theorem. We know from the very definition
of the moduli space JtP(N + 2) that the boundary dJt is piecewise affϊne. We get
for the additional part

(151)

The boundary of the moduli space consists of glueing patterns, where at least one
edge of a restricted polyhedra passes to 0 or π; see Fig. 3.
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Fig. 3.

By Stoke's theorem the additional term results from the patterns with only
one edge passing to an extremal. Such a pattern can be described as follows. One
splits the configuration into the restricted polyhedra which are glued along one
face: see Fig. 4.

Fig. 4.

We get for the additional term

Σ Σ ( - ir(U)

m + n = N,m^n partition ί,j ^
iί9. . , ΦJm}9 Φh9. . , Φ,w]), (152)

where σ(ij) results from different orderings in the product. Therefore we get the
final proof. Π

9. Appendix

In this appendix we will show how to enlarge the string algebra in order to
incorporate fields with nonzero ghost numbers.

Let Lπ, tf etc. be as in Sect. 6. We define the shift operator

5 . τj£> ,,;/? (\ CO'V
.JC-+JC \1J3)

given by S(Ln):= Ln+1. Let Gr(^f )„ be the connectivity component of Gr(^f) with
index n, neN. Then one maps holomorphically

Sn:= Grpf )0 -»Gr(Jf )„. (154)

We can pull back the DET*-bundle over Gr(^f )n to a bundle DET* over Gr(Jί^).
As the final elements of our algebra we take holomorphic L2-sections in

m=Z

(155)I
Gr(Jf).

This Hilbertspace is isomorphic via the Pickrell map to 2Fgh. We defined the product
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for zero charged sections. Using the shift operator S we can identify the bundles
DET* ̂  DET* over Gτ(3Jf). Especially for sections Φ{ with charge deg(Φf) = d(i)
we can define the product

(Φi9..,ΦN+2)b .., (156)

where (•)&> denotes the product without summing over all possibilities for putting
the strings on some face of the polyhedra, see Sect. 5.

Now we take care of the degree. We define

\™ T £)• permutations j

with

s ( j ) = ± ΐ (158)

computed in the following way. For j the transposition (i, i + 1) one puts s( j) = 1
for d(i) mod 2 and d(i + 1) mod 2 both 1, s(j) = 0 otherwise. On products of permuta-
tions 5 is defined as the product of the values on the factors. It is not hard to
prove that s is well defined. This definition replaces the special one in Sect. 5.
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