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Abstract. We prove holomorphy of the scattering matrix at fixed energy with
respect to c~2 for abstract Dirac operators. Relativistic corrections of order c~2

to the nonrelativistic limit scattering matrix (associated with an abstract Pauli
Hamiltonian) are explicitly determined. As applications of our abstract approach
we discuss concrete realizations of the Dirac operator in one and three dimensions
and explicitly compute relativistic corrections of order c~2 of the reflection and
transmission coefficients in one dimension and of the scattering matrix in three
dimensions. Moreover, we give a comparison between our approach and the first-
order relativistic corrections according to Foldy-Wouthuysen scattering theory
and show complete agreement of the two methods.

1. Introduction

We provide a general framework for the nonrelativistic limit of scattering theory
for general Dirac operators. Our treatment is based on an abstract approach
employed in [10, 11] to obtain explicit expressions for first order corrections of
bound state energies with respect to c~2.

Historically, the first rigorous treatment of the nonrelativistic limit of Dirac
Hamiltonians seems to go back Titchmarsh [36] who proved holomorphy of
the Dirac eigenvalues (rest energy subtracted) with respect to c~2 for spheri-
cally symmetric potentials and obtained explicit formulas for relativistic bound
state corrections of order O(c~2) (formally derived in [32]). Holomorphy of the
Dirac resolvent in three dimensions in c~x for electrostatic interactions were first
obtained by Veselic [38] and then extended to electromagnetic interactions by
Hunziker [16]. An entirely different approach, based on an abstract set up, has
been used in [6] to prove strong convergence of the unitary groups as c~ι —> oo.
Employing this abstract framework, holomorphy of the Dirac resolvent in c~x

under general conditions on the electromagnetic interaction potentials has been
obtained in [10,11]. Moreover, this approach led to the first rigorous derivation
of explicit formulas for relativistic corrections of order O(c~2) to bound state
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energies. (Earlier, a justification of the fact that formal perturbation theory ac-
cording to Foldy and Wouthuysen yields correct results has been given in terms
of spectral concentration in [12,37].) In the case of eigenvalue degeneracies of the
unperturbed Pauli Hamiltonian, an extension of the results in [10,11] appeared
in [41] (see also [14]). Relativistic corrections for energy bands and correspond-
ing corrections for impurity bound states for one-dimensional periodic systems
were treated in [5]. Convergence of solutions of the Dirac equation based on
semi-group methods have also been obtained in [31].

Much less activity has been devoted to the nonrelativistic limit of the Dirac
scattering theory. In fact, we are only aware of the proof of strong convergence
of wave and scattering operators as c~ι —• oo in [39] and [42] and a recent
treatment of the scattering amplitude in [14] based on a different approach.

In Sect. 2, based on the abstract approach of [6], we summarize the main
results of [10,11] concerning the holomorphy of the Dirac resolvent operator
with respect to c~2 near c~2 = 0. In Sect. 3 we review some of the results of
[22] on abstract scattering theory needed in Sects. 4 and 5. Our main result on
the holomorphic expansion of the abstract scattering matrix in c~2 around its
nonrelativistic counterpart at c~2 = 0 is established in Sect. 4. We also provide
an explicit formula for the correction term of order c~2 of the scattering matrix
in terms of nonrelativistic scattering quantities (see Theorem 4.2). Concrete
realizations of our abstract approach in Sect. 4 in one and three dimensions are
presented in Sect. 5. In particular, we explicitly compute relativistic corrections of
order c~2 of the reflection and transmission coefficients in one dimension and of
the scattering matrix in three dimensions. Finally we compare our approach and
the first order relativistic corrections according to Foldy-Wouthuysen scattering
theory and show complete agreement of the two methods in Appendix A.

2. The Abstract Approach

The aim of this section is to summarize the main results obtained in [10,11] (based
on the abstract approach of [6]) concerning holomorphy of the Dirac resolvent
operator with respect to c~2 near c~2 = 0. Let Jf ; , j = 1,2 be separable, complex
Hubert spaces and introduce self-adjoint operators α,β in ϊtf = Jf i Θ^f2 of the
type

( }

where A is a densely defined, closed operator from Jf i into J ^ Next, we
introduce the abstract free Dirac operator H°(c) by

H°(c) = coc + rnc2β, @(H°(c)) = 0(α), c e R\{0}, m > 0 (2.2)

and the interaction V by

where Vj denotes self-adjoint operators in ^f; , j = 1,2, respectively. Assuming

V\ (respectively Vι) to be bounded with respect to A (respectively A*), i.e.,

2(A) c ®(7i), ®(A*) c ®(V2), (2.4)

the abstract Dirac operator H(c) reads

H(c) = H°(c) + V, @{H{c)) = 0(α). (2.5)
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Obviously H(c) is self-adjoint for \c\ large enough. The corresponding self-adjoint
(free) Pauli operators in J-f;, j = 1,2 are then defind by

H? = (2m)"1 A* A, H$ = (2m)"1 AA*9 (2.6)

? = ®(A*A), (2.7)

= 9{AA*). (2.8)

Introducing in ̂ f the operator B(c) [16]

(2.9)
V" u /

we recall [10,11].

Theorem 2.1. Let H(c) be defined as above and fix z e (C\1R. Then
(i) (H(c) — me2 — z)~λ is holomorphic with respect to c" 1 around c"λ = 0,

(H(c) - me2 - zΓ1

0 (2mc)-ι(Hi -z)-^*(F2 - z) λ \"'
(2mc2)-1z(//2° - z)- ' (F 2 - z) y /

/ (iίi-z)"1 (2mcΓI(H1-z)-U*\
X \_ (2mc)-ιA{H°ι - z)- 1 (2mc2)-1z(H2° - z)" 1 y ' lZ> ψ

(ii) B(c) (H{c)—mc2~z)~ιB(c)~1 is holomorphic with respect to c~2 around c~~2 = 0,

B(c)(H(c)-mc2-:

_ / 1 /0 (2mc2Γ1(ίίi-z)"1^*(ί/2-z) \ \ !

\ + y 0 (2mc2)- ! [(2m)-ιA(Hι - z)~xA* - 1] (V2 - z) ) ]

X ' (2m)-ιA(Hi - z)"1 (2mc2)-' [(2m)-1A(Hι - z)~ιA* - 1] J ' ( 2 " U )

First order expansions in (2.10) and (2.11) yield

(H(c) - me2 - z)~ι

ι-z)-1 0\
o o)

z)" 1 0

(clearly illustrating the nonrelativistic limit \c\ —• oo) and

B(c) (H(c) - me2 - z)-{B{c)-γ

" 1 0\ /

-zΓ1 θj
c~4)0(c- 4 ), (2.13)

-2(ίfi - z ) " U * ( z - K2M(tfi - z ) - 1 ,

-'(H.-zΓ1^*,
(2.14)i?2i(z) = (2m)-2[(2mΓιA(H1-zΓ1A - 1] (z - F 2)^(iί 1 - z ) " 1 ,

R22(z) = (2m)-i[(2m)-χA(H1 - z)"1A* - 1].
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3. On Abstract Scattering Theory

In this section we summarize some of the results on abstract scattering theory
obtained by Kuroda [22] which are most relevant to us in Sects. 4 and 5. For
additional material on scattering theory in the present context we refer to [1-4,
7, 17, 19, 23-25, 28].

We define in the Hubert space Jf = Jfi ® Jf 2,

# i := H°(c) - me2, H2 := H(c) - me2 (3.1)

and introduce the following factorisation of V:

Vj=ή/2\Vj\1/2> .7 = U , (3.2)

where
v1/2 := t/ IF l1/2, \vj\V2 := \Vj\V2, j = 1,2 (3.3)

with Vj = Uj I Vj I the polar decomposition of Vj,

^ ( z ) := (H, - z Γ 1 , z G ρ(H7 ), 7 = 1,2. (3.6)

The following assumptions 3.1-3.3 and 3.5-3.8 are basic in the approach of [22]:

Assumption 3.1. Y and Z are closed operators from 2tf to another Hubert space
Jf = Jf i θ Jf 2 with @{Hχ) c ®(y) and ®(Hi) c ^ ( Z ) .
(This implies that YRι{z\ ZRγ{z) G ̂ (^f, Jf), see [18, p. 191].)

Assumption 3.2. Z ^ i ( z ) 7 * is closable and the closure of Z#i(z)Γ* e J*(JΓ) for
one (or equivalently for all) z G ρ(H\),

Qi(z,c) := [ZΛi(z)y*]W, d(z,c) := 1 + βi(z,c), (3.7)

where (α) denotes the closure.

Assumption 3.3. Let z G ρ(Hi) Πρ(H2). Then Gγ{z,c)-χ G «(J f ) and

Λ2(z) = Λi(z) - [Λ!(z)y ] βGi(zΓ 1ZΛ 1(z). (3.8)

Thus Propositions 2.6 and 2.7 in [22] hold: Define

Q2(z,c) := [ Z ^ 2 ( z ) 7 * ] ^ , G2(z,c) := 1 - β 2 ( z , c ) , z G ρ(H 2 ). (3.9)

Then
G2(z,c) = G ^ z ^ ) - 1 , z € ρ(H2). (3.10)

Remark 3.4. From our assumptions on H°(c) and F in Chapter 2 we infer that

(i) F 1 / 2 is H (c) bounded with bound 0 and hence Assumption 3.1 is fulfilled.
A 0

(ii) F 1 / / 2 is H (c)1/2 bounded implying that Assumption 3.2 is fulfilled,
(iii) The second resolvent equation gives

(1 + [ZR^Y*]®) (1 - [ZR2(z)Y*]M) = 1,

(1 - [ZR2(z)Y*]^) (1 + [ZKi(z)r*]<e>) = 1

(see e.g. [1, p. 369]) and thus Assumption 3.3 is fulfilled.
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Next let Ej denote the spectral measures associated with Hj, j = 1,2.

Assumption 3.5. There exists a Hubert space #, a non-empty open set / ^ R, and
a unitary operator F from E\(I)J^ onto L2(I;%>) such that for every Borel set
/' c / one has FE\(Γ)F~X = χΓ, where χΓ denotes the operator of multiplication
by the characteristic function of /'.

Assumption 3.6. There exist B(jf,^)-valued functions T(λ,c,Y) and T(Λ,c,Z),
l G / , such that
(i) T( ,c, Y) and JΓ( , c,Z) are locally Holder continuous in / with respect to the

operator norm.
(ii) There exist dense subsets D c ®(y*) and D' c ^ ( Z * ) such that for any
M G D and v e Dr one has

)(A),
for a.e. λ e I. (3.12)

)υ = (FE1(I)Z*υ)(λ)9

Assumption 3.7. For one (or equivalently all) z G ρ(H\) either

7Λi(z) G 5oo(^, Jf) or ZJRI(Z) G JBOO(^, J O .

Here ^ ( c ^ , Jf) denotes the set of compact operators from jj? to JC.

Assumption 3.8. The subspace generated by {Ej(Γ)Y*u \ u G @(Y*)9 Γ £ / a
Borel set} is dense in EJ{I)JJP9 j = 1,2.

Remark 3.9 [22]. Since J f is separable, Assumption 3.5 is equivalent to assuming
that Hi has absolutely continuous spectrum in / with constant multiplicity.
Moreover, # is determined uniquely up to unitary equivalence and F is uniquely
determined up to unitary equivalence with decomposable, unitary operators on

\

Since these assumptions are identical with the ones in [22] we have all the
results of [22, Sect. 3 and 4] at our disposal; e.g., the norm limits

G1±(λ, c):=n- l i m G,(A ± iε, c), Q1±(λ, c):=n- l im Qx(λ ± iε, c) (3.13)

exist (see [22, Theorem 3.9]) and introducing

e±(c) ={λel \ Gι±{λ,c) is not one to one}, e(c) := e+(c) U β-{c) (3.14)

(e(c) is a closed set of Lebesgue measure zero [22]) we get for λ G I\e+(c) the
existence of the boundary values

G2±(2,c) = n- l imG 2 (λ± ίε,c) (3.15)
ε|0

and
G2±(λ,c) = Gi±(λ9cr1 (3.16)

(see [22, Theorem 3.10]).
Also Theorems 3.11—3.13 and 6.3 of [22] are valid. In particular, we obtain

for the fibers of the scattering operator

Theorem 3.10 [22]. For λ e Γ\e(c) the scattering matrix S(λ, c) in <$ associated
with the pair (H2, H^) is given by

S(λ,c) = 1 - 2πiT(λ, c, Y)G2+{λ, c) T{λ, c, Zf . (3.17)

<S( , c) is unitary in Ή and locally Holder continuous on T\e(c) with respect to the
norm in
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4. Holomorphy of the Scattering Matrix in c~2 and Relativistic Corrections

In this section we combine Sects. 2 and 3 and establish a holomorphic expansion
of the abstract scattering matrix with respect to c~2 around its nonrelativistic
counterpart at c~~2 = 0. Moreover, we explicitly determine the first correction of
the scattering matrix of order c~2 in terms of nonrelativistic scattering quantities
in Theorem 4.2.

Let I c ]R+ : = (0,oo) and define

/±o :={λ\λe I\e±(c~2 = 0)}, /0 = / + 0 Π 7_0. (4.1)

In addition we strengthen Assumptions 3.2 and 3.6 by introducing

Assumption 4.1. (i) For l e / , T(λ,c, Y) and T(λ,c,Z) are holomorphic in c~2

around c~2 = 0 and

(ii) for λ e 7+0

(λ + fe,c) (4.2)
εj.0

is holomorphic in c~~z around c~2 = 0.
Based on Theorem 2.1 we now turn to the expansion of G2+(λ,c), λ e /+o,

G2+(λ,c) = (Gι+(λ,c)Γι = (1 + Qι+(λ,c)Γι = lim (1 + ZR^λ + iε)YΨ)

: = Gfl(λ) + ±G%(λ) + O(c-4), (4.3)

where (n), n G No denotes the order of the expansion involved. [Since G2+(A,c) =
limG2(λ + iε,c) is continuous in z = λ + iε, and holomorphic in c~2 we may

interchange the limits.]
Next define

g2(z) := (1 + υ\l2(Hl - z)~l\vx\
l/2)-\ z = λ + iε,ε > 0,

g2±(λ):=\\mg2(λ±ίs).

We then get

l ) '

and
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with

+ g2(z)vl/2R12(z)\v2\^v1

2

/2 A (fl? -

υ\'2 A (tf° - Z)-1|t;iΓ

- v\'2R2l{z)\v,\l'2g2(z) - vf A (iί? - z)-Vil1/2g2(z) (4.7)

x v\>2Rn{z)\v2\V2v¥ A (fl? - z)-1|,1|
1/2g2(z)

= ^ / 2 A (H? - Zί-V!

where (cf. 2.14)

= (2m)-2z(/ί1

0 - zΓ'A*A{HΪ - z)~\

= (2mΓ1(H°-zΓlA*,

R21(z) = (2)22(H? ){A{Hl ) ~ \

Next we turn to the operators T(λ,c, Y) and T{λ,c,Z)*, λe I.We introduce
the abbreviations

(4.9)

I f λ e (λuλ2) = I, then kd(λ,c)e [

(Especially in the case / = (0, oo) we have 1 = 1 = 1 = (0, oo).)

By Assumption 3.5, α2 and hence A*A,AA* are absolutely continuous in 7
with constant multiplicity.

Now we consider the analogs UQ, M of F and T when A*A replaces Hi.

Let UQ be the unitary operator that diagonalizes A*A on 7 . For h e EQ(Ί )3#Ί
(where EQ( ) denotes the spectral measure for A*A) UQ yields

UQ : £o(72)^fi -+ L2il\ dμ; <g)9 (U0A* Ah) (μ) = μ(Uoh) (μ), μ e f . (4.10)

In addition we need the operator M(k,D) : $)(£)) -» <g9 where D : 9{D) -• J f i,
c j f x or JΓ2, D closed

= (UQE0(f)Dh)(k2\ he&(D)9 k : = ^ for a.e. & e 7 . (4.11)
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In concrete applications the closure of M(k,D) will be a Hubert Schmidt operator.
This closure is then denoted by M(k,D), too.

Now we are in position to construct the unitary operator F that diagonalizes
H°(c) - me2 on / c ]R+. For / € £i(/ ,c)Jf (where £i( ,c) denotes the spectral
measure for H°(c) — me2) F yields

F : Eι(I9c)J(r = Eι(I9c) p f i @ Jf 2 ) -> L2{I9dλ\<g)9

(Ff) (λ) = J ^ ((Uofi) + γd (U0A*f2)\ {{kd)\ •*•

c) - me2]/) (λ) = λ(F/) (A), A G / ς= R+. (4.13)

We note that on the subspace of positive energies the abstract Foldy-Wouthuysen
transformation coincides with the abstract spectral transformation (see [33, 34]).
The representation (4.12), (4.13) is due to the supersymmetric structure of α.

Given these facts we can now express T(λ,c,Y) : Jf —> #, λ e I in terms of
M from (4.11) in the form

(4.14)
T(λ,c, Y)f = J^- ΓM(fc*, N 1 / 2 )/ i + ^ M(kd,A*\v2\V2)f2] ,

For T(A,c,Z)* : * -• jf, A G /, we get

v]/2)*h \

Λ'vi"n) "•"*• < 4 1 5 )

Now we can expand T(λ,c, Y) and T(λ9c,Z)*, λ e I with respect to c~2 as
follows: Define

ks := Vϊmλ (4.16)

then, for \c~2\ small enough,

7=0

oo

,Z) = X c-2^T^{λ,Z)\ (4.18)

where

Y) = V2^(M(fes, l^l1/2) 0), (4.19)

/ M{ks,v\>2)* \

*\n I. ( 4 2 ° )
%2 ) /

i i 1 / 2) o)

l-M(ks,A*\v2\
1/2)) (4.21)
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where M'{k\\v\\1^2) denotes the derivative of M(/c, |fi |1 / 2) with respect to k at
k = ks and

(4.22)

We can now state the following result for the fibers of the scattering operator.

Theorem 4.2. For λ e /o, the scattering matrix S(λ,c) associated with the pair
(H(c) — me2, H°(c) — me2) is holomorphic in c~2 around c~2 = 0 and we get the

following expansion:

00

S(λ,c) = l-2ππ{λ,c, Y)G2+(λ,c)T(λ,c,Z)* =

= S°(λ) - \ 2πi{T{ι)(λ, Y)Gfl(λ)T{0)(λ9Z)m

+ T{0)(λ, Y)G{2l(λ)T{O)(λ,Z)* + T(0)(Λ Y)Gfl(λ)T{1)(λ,Z)*}

+ 0(c~4). (4.23)

We therefore get

S<®(λ) = l-2πi{2mM(ks,\v{\
i/2)g2+(λ)M(k\v{/2)*}, λ e J o , (4.24)

the scattering matrix for the associated pair ofPauli operators (Hi,H®) (illustrating
the non-relatίvίstic limit) and the explicit correction term of order c~2,

~M{ks,A*\v2\
l'2)[vfA{H^ - λ - iO)-ViΓ/2]g2+(A)Af (fc1.^

Zm

&M(k\\Vl\
ι'2)g2+(λ)M'(k\vl/2)* -

x [v\n{H°λ -λ - iO)-ιA*A{H°ι - λ - iO)-1|»i|1/2]g2+(A)M(* ί,»ί/2)

^ |»i|1 / 2)g2 +μ)[»ί/ 2(H? - λ - iϋ)-λ

- λ - iO)-Vi|1/2]g2+(A)M(/cs,t;1

1/2)*

λelo. (4.25)

Remark 4.3. Even though we may take Jf, = ^ , = 1,2, X = J f for the
applications we have in mind in Sect. 5, generalizations to singular interactions
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(of Yukawa-type) usually require the introduction of weighted L2-spaces or
certain Sobolev spaces, where jf,- % 2tfh j = 1,2 (see e.g. [2, 19, 20, 26]). For
completeness we included this generalization in Sects. 3 and 4.

Remark 4.4. Following the usual convention we have subtracted the rest energy
me2 from H°(c) and then studied / ^ R + . Similarly one could add the rest energy
and consider / £ (—oo,0).

Remark 4.5. For later purpose [see e.g. (5.40)] we note that Assumption 4.1 (ii)
implies that

v\'*iHo _ λ _ iOΓ 2 N 1 / 2 = j - χ v\'\l$ - λ - iOΓ1 W ! / 2 (4.26)

5. Applications

Finally, we illustrate the abstract result of Theorem 4.2 with the help of two
concrete realizations: One-dimensional Dirac operators in Sect.5.1 and three-
dimensional ones in Sect. 5.2. General references on relativistic spectral and
scattering theory relevant in the present context are [8, 15, 21, 25-27, 30, 34, 35,
39, 43].

5.1. The Dirac Operator in L 2 (R) 2

The free Dirac operator H°(c) in L 2 (R) 2 is defined by

H°(c) := cpσi + mc2σ3, m,c e R + , ®(H°(c)) = H2i(lR)\ (5.1)

0 l\ _ fO -ί\ _ /I 0

' ' (5.2)

σ i = I 1 0 ' σi = [i 0 > σ 3 = I 0 - 1

Let V be the maximal multiplication operator with the real-valued function
v = v(x), and for some α > 0 assume

^ i O G L ^ l n L 2 ^ ) . (5.3)

The Dirac operator H(c) in L2(1R)2 is then defined as

H(c) := H°(c) + V, 9(H(c)) = &(H°(c)). (5.4)

H(c) is self-adjoint and

σQSS(H(c)) = (-oo, -me2] U [me2, oo). (5.5)

In order to prove this statement we note that / e H21(JR) implies / G L ^ R )
and thus

ll^/lb < ll^lb ll/lloo < oo implying ® ( p ) £ 0 ( 7 ) . (5.6)

The integral kernel k(x9y) of V(H°(c) - z)~{ is given by (see e.g. [13])

fc(x,y) = v{x)e^-y\I ( ^ V
2c\sgn(x-y) k0 J' (5.7)

z e (C\{(-oo,-mc2] U [mc2,oo)},

ck(z) = (z2 - m2c4)K lmk(z) > 0, ko(z) = ^ ( z )

 2 . (5.8)
z + me1
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This integral kernel is in L 2 (R x R ) 2 and therefore the potential V is relatively
compact with respect to H°(c). WeyΓs theorem [29, p. 112] then yields (5.5).

Subtracting the rest energy according to (3.1) we therefore identify

A = A* = p = - i -^-,
ax

Y = 7 * = B{c)

V = v

\ι/2

+? e = 0, V

= # 2 1 ( R ) ,

1'2 = M1/2sgn(ι;)

= (C 2 ,

-ι\ Z =Z* = B(c)v 1/2

(5.9)

(5.10)

Then clearly Assumptions 3.1-3.3, 3.5, and 3.7 are satisfied. Assumption 3.6
follows from the explicit expression (5.18) and Assumption 3.7. Assumption 3.8
is clearly satisfied if Ran(|*;|1/2) is dense in L 2(R). This in turn is satisfied if
supp(M1 / 2) = R. If supp(M1/2) £ R one simply replaces \v\ι/2 by l^l1/2, where

\v(x)\1/2 := (5.12)

since then V = vι^2\v\1^2 = t;1/2!
R without loss of generality.

It remains to verify Assumption 4.1.
(i) Holomorphy of βi+(λ,c), λ > 0.

The integral kernel g(x,j;,/ί,c) of

ί M*)l1/2> x G supp(ι )

I e x , x <£ supp(ϋ),
1/2. Hence we always may assume suppflt l1/2) =

reads

- me2 - A - (5.13)

λ>0,

A, c) =

sgn(x - y)

x V»
( 5 1 4 )

Define the compact set M ^ C

M := ίc~2 <= C I \c~2\ < \CQ2\ < ^ and 2|:

Using

mlcol J
(5.15)

1 -
λ

2m\c2

0\ \ 2m\cl

-1/2
(5-16)
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and a matrix norm || || in (C2 we get for c~2 € M the bound

\\q(x,y,λ,c)\\ < const(/l,α) \v{x)\x/2\v(y)\x/2e^Ae^. (5.17)

For c~2 e M and fixed λ we have a family of uniformly bounded Hubert Schmidt
operators. Since the integral kernel q(x,y,λ,c) is a holomorphic function of c~2

around c~2 — 0 we get holomorphy of Qi+(λ,c) by (5.3) and (5.13).
(ii) Holomorphy of T(λ,c, Y), λ > 0.

The integral kernel t(x,λ,c) of T(λ,c, Y) : L2(R)2 -• (C2, is explicitly given by
(see [30] and (4.12))

/,-iΛ *° «,-*-* \
/ 1 (5.i 8 )

\\t(x,Kc)\\ < constμ,α)|t;(x)|1/2βt W. (5.19)

(We note that F maps L2(R)2 -• L2((0,oo);C2), see [30].)
For c~2 e M this is also a family of uniformly bounded Hubert Schmidt

operators, with integral kernel holomorphic in c~2 and therefore T(λ,c, Y) is
holomorphic in c~2 around c~2 = 0. The holomorphy of T(λ,c,Z)* follows
analogously.

The operator UQ that diagonalizes A*A = p2 is given by UQ : L2(R) —•
2 2

/ e ί / ( ] R ) , (5.20)

with

(UFf) (k) := s - Hrr̂  ί dxe~ikxf{x\ f G L2(R) (5.21)

the Fourier transform in L2(R). Thus we get M(kd, \v\ι/2) : L2(R) -^ C2,

where
Voy ik\ x) := e&ίkd\ ε := (-1)^+1, = 1,2, (5.23)

( , •) denotes the scalar product in L2(R), and M(k^9A*\υ\^2) : L2(R) -^ C2,

/ € L ( R ) , (5.24)

For the adjoint operators we get M(kd,v1/2)* : C2 - • L2(R),

, v1/2)*h) (x) = (kdΓί/2 -4= v(x)1/2(e^xhi + ^ Λ / z 2 ) (5.25)
V4π
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and M(kd,A*vί/2)* : (C2 -> L 2(R),

{M{kd,A*v"2)*h) (x) = {kdγ'2 4 = v{xγ'2{Jkdχh - e~ikdχh2),

(5.26)

The physical solutions ψs

+j of the Schrodinger equation are defined by the
Fredholm (respectively Lippmann-Schwinger) equation

:= g 2 ± ( V Ή >

where g2+(Λ) has been defined in (4.4). From Jost function techniques we know
that e± = 0, implying that g2±(λ) in invertible for all λ e 1R+ (see e.g. [9, 28]).

For the nonrelativistic limit we get from (4.24) the well known formula

) ? S ( ί ) ) = 1 - 2πί2mM(ks, \v\^2)g2+(λ)M(k\ v

2m 1 / 2

λ>09 (5.28)

where T / ( 0 ), Rι^°\ T r ( 0 ) , i^r(0), denote the transmission and reflection coefficients
from the left respectively right incidence.

We note that ψs

+1 = T(0)fs

+i ψ
s

+2 = T^fs_, where fs

± are the Jost solutions in
the notation of [9]. We also note that ψs_2(ks,x) = ψs

+i(—k\x) and xps_{(ks,x) =
ψs

+2(—ks,x). One has e.g.,

R

(5.29)

R

Calculating the remaining terms on the right-hand side of (4.25) yields:

2n d term

16m \(\v\1/2Ψ(n(WW2Ψ+ι(V))

(ks)2 f -(x\v\^2ψs

ol(k%v^2ψs

+1(ks)) -(x\v\^2ψs

Oi(ks),v^2ψs

+2(ks)) \
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3 r d term

- i / (lυl^ψ^kηy^pψ^ikη) (\v\V2ψs

m(ks),υV2pψs

+2(ks))

Am \-(\v\^V

s

O2(ks),v^W+l(ks)) - ( M '

We remark that the integral kernel of v1/2A(H^ - λ - iθ)-ι\v\^2 is given by

ζ - λ - IΌ)- 1 | Ϊ ; | 1 / 2 (X,X') = l- ϋ(x) 1 / 2 sgn(x-x')e m x ~ A \v(x ')\ 1 ' 2 . (5.32)

4 t h term

_ _ ( ca
Am \-{\v\ι'2ψs

02(ks),vV2ψs

01(ks)) (\v\V2ψs

O2(ks),vV2ψs

O2(ks)))

5 t h term

16m

+ 8m

6 th term

where

' (5.36)
m2i = {\υ\±/*ψL2(l?)9v

ί/''(Hΐ — λ — n;'~ ~

m22 = (\v\ι/2ψL2(^)9υ
ι/2(H^-λ-iC

7 t h term
—i

4mks V n2i ^22

where

"12 = (\v\1/2p(ψU(ks) - Ψoi(ks)), v1/2p(Ψ

s

+2(ks) ~ Ψs

02(ks))),

"21 = (|^ | 1 / 2p(vl 2(fc s) - Ψso2(ks))y'2p(ψs

+1(ks) - ψs

m(ks))),

n 2 2 = (\v\1/2

P(ψL2{ks) -ψso2(ks)),v^2p(ψs

+2(ks) - ψs

02(ks))),

8 t h term

4^{(\v\1/2p(ψs-2(ks)-
(5.39)
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Using (4.26) we get

iks{\v\ι/2ψs_γ^% [v1/2(HΪ - λ - ίθ)-2\v\1/2]v1/2xps

+1(ks))

= -m{\υ\V\U{V)9xΌll\h{W

- iks j-λ (\v\ι/2ψs

m(ks), v^ψ^ik8)) • (5.40)

Summing up we get for the first order correction term of order c~2 of the
scattering matrix (in terms of transmission and reflection coefficients)

(ks)4 dS<®(λ)

5.2. The Dirac Operator in L 2 (R 3 ) 4

The free Dirac operator H°(c) in L 2 (R 3 ) 4 is defined by:

H°(c) := cap + βmc2, m,c<= M+, 9{H°{c)) = H2 ι(K3)4, (5.42)

where

0 ί\ ίθ -i\ ίl 0σ 2 = \ i o

σ = (σ\9 σi, 03), α = (αi, α2, α3),

p := - iV, 0 (p) = if2*1 (R 3 ) .

Define (cf. e.g. [40, p. 305])

Mp«(x) := < / d3y\v(y)\2 \x — y\ρ~3 > , ι> measurable, ρ < 3,

v/l<i J ( 5 ' 4 4 )

M ρ (R 3 ) := {1; I Mυ>ρ(') bounded},

Nυ(x) := <j / d3j |y(y)|2 > , for all x G R 3 , and v G Lfoc(R3), (5.45):=l j
Ί*-yl<

and let V be the maximal operator of multiplication with the real-valued function
υ = v (x) where

υ G M ρ (R 3 ) for some ρ < 2. (5.46)

D G Φ 3 ) . (5.47)

t>eαN fullfills (5.46) and (5.47) for some α > 0. (5.48)
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The Dirac operator H(c) in L 2 (R 3 ) 4 is now defined as

H{c) := H°(c) + V, ®(H{c)) = @{H°{c)). (5.49)

The hypotheses (5.46)-(5.48) then imply
(i) V is H°(c) bounded with relative bound 0 by (5.46) (see [40, Theorem 10.18]).

(ii) Since v £ M ρ (R 3 ) with ρ < 2 it follows that v1/2 e M σ (R 3 ) with σ < 1 and
Mσ(JR3) c M ρ (R 3 ), σ < ρ.

Since υ1/2 € L2(R3) we have Nvι/i(x) -• 0 for |x| -> oo.
Thus V1/2 is H°(c) compact (cf. [40, Auxiliary Theorem 10.24 and Theorem

10.21]).
Subtracting the rest energy according to (3.1) we therefore identify:

j f ! = J4?2 = Jfi = X 2 = L 2 (R 3 ) 2 ,

/ = R + , / ± 0 = I\e±(c~2 = 0), if = L 2(5 2) 2,

U + ' Λ -* y (551)

F i = V2 = V, V = v1/2\v\1/2

9 vι<2 = lϋl 1/ 2 sgn(i;),

y = y* = BίcΓVl172, Z = Z* = 5(c)ι;1/2.

(Here S2 denotes the unit sphere in R3.) Due to our hypothesis (5.48), e(c) is a
discrete set [26].

Clearly Assumptions 3.1-3.3, 3.5 and 3.7 are satisfied. Assumption 3.6 follows
from the explicit expression (5.60) and Assumption 3.7. Assumption 3.8 can be
dealt with in exactly the same way as in Sect. 5.1. It remains to verify Assumption
4.1.
(i) Holomorphy of βi+(λ,c), λ e /+o

The integral kernel q(x,y9λ,c) of

βi+(/l,c) = v1/2B(c) (H°(c) -me2 -λ- iO)-ιB{c)-χ\υ\ι/1 (5.53)

is given by

'011 012

, 041 042

a n =a22 = -+2m a33 = α 4 4 = - ai2 = a21 = a34 = α 4 3 = 0

c2 c 2 '

a a

023 = -J [( x l —yi) + ί(χ2 — y2)] 024 = J (*3 ~~ ^ 3 ^

03i = 0(^3 — 3̂ 3)? 032 = 0 [ (^ i — yi) — i{x2 — ^2)]?

041 = 0 [ (^ i — yi) ~ί~ ί{χ2 — yi)]) 0 4 2 = = — 0(^3 — ^3)?

1/2

1 , ks = Vϊmλ,
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where

a(x9y) :=\x-yΓ2(kd\x-y\+ί), x9y G R3, xφy. (5.56)

Define the compact set M ^ C

M := (c~2 G (C \c~2\ < \CQ2\ < ^ and 2| Im^(/l,c)| < ks - ^ < A. (5.57)
I λ rn\co\ J

Using

/ i \ 1 / 2

(5.58)

and a matrix norm || || in C 4 we get for c~2 e M the bound (cf. [8])

\\q(x,y,λ,c)\\ < GθΏSt(λ,φ(x)\ι/2\v(y)\ι/2eWeW (—L_ + r-^—Λ. (5.59)
\\χ y\ \χ y\ j

For c~2 e M and fixed λ we have a family of uniformly bounded operators (using
[40, Theorem 6.24], the fact that vι/2e^ e M σ, σ < 1 and vl/2e~2^ e L 2(R 3)).
Since the integral kernel q(x,y,λ,c) is a holomorphic function of c~2 around
c~2 = 0 we get holomorphy of Qi+(Λ,,c).
(ii) Holomorphy of T(λ,c, 7), /I > 0.

The integral kernel t(x,λ,c9ω) of T(λ,c, Y) : L 2 (R 3 ) 4 -^ L 2 (5 2 ) 2 is given by
(see [34] and (4.12))

|l/2

1

0

0

I /Co

c

c
(ωi

ω 3

fco
c

)

ω e s 2 ( 5 6 0 )

(We note that F maps L 2 (R 3 ) 4 -^ L2((0,oo);L2(S2)2) (see [34]).) For λ e I we get

||ί(ω,x,λ,c)|| < const(λ,φ(x)\i/2eϊw. (5.61)

For c~2 G M this is also a family of uniformly bounded Hubert Schmidt operators
(since vea^ G L^R 3 ) , with integral kernel holomorphic in c~2 and therefore

Λ,c, Y) is holomorphic in c~2 around c~2 = 0.
The holomorphy of T(λ,c,Z)* follows similarly.
In particular, S(λ,c) — 1 is a trace class operator, i.e.,

[S(λ,c) - 1] E ^ i(L 2 (5 2 ) 2 ), λ e I\e+(c). (5.62)

The operator UQ that diagonalizes A* A is given by l/o :L 2 (R 3 ) 2 —•
2 2 2 2

7 = 1,2, ω G ^ 2 , / G L 2 ( R 3 ) 2 , (5.63)
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with

(UFf) (kω) := s - Hm̂  ί d3xe-ίkωxf(x),

\x\<R

f G L2(R3), k = y/μ9 k> 0, (5.64)

the Fourier transform in L 2 (R 3 ).
Thus we get M(kd, |ι;|1/2) : L 2 (R 3 ) 2 -+ L 2(S 2) 2,

(M(kd,\v\1/2)f)(ω)j

= -L(kd)V2(UF\v\1/2fj)(kdω)

= -^=(kd)1/2(2πΓV2 Id3xe-iki(OX\v(x)\l/2fj(x)
v2 J

= -L (kd)V2(2πΓV2{\v\V2ψ0(kdω),fi), fj € L2(R3), = 1,2, (5.65)

where ψo(kdω,x) := eika<ox and ( , •) now denotes the scalar product in L 2 (R 3 ).
Similarly we have M(kd,A*\v\ιl2) : L2{β})2 -> L 2(5 2) 2,

(M(kd,A*\v\ι'2)f)(ω)

2 ( ωJ. ωί-iω

ι + ιω2 - ω 3

For the corresponding adjoint operators we obtain M{kd,υγ^2γ :L2(S2)2

L 2 (R 3 ) 2 ,

J
s 2

(5.67)

= ^-(kd)V2(2πΓ3/2v(xΫ/2 [dωeikdωxhj(ωl
V2 J

and M(k*9A*ΌV2)* : L 2 (5 2 ) 2 -* L 2 (R 3 ) 2 ,

I

-3/2 / \l/2 / J i ^ 3 (^1 — ^ 2 ) 1
l^(XJ / WCO I / _ι_ \ I

xfί^ίV^ fc^W. (5-68)
\h2(ω)J ' v v

The physical solutions φ̂ _ of the Schrodinger (Pauli) equation are defined by the
Fredholm (respectively Lϊppmann-Schwinger) equation (see e.g. [1, 28])

v1/2ψs

±(ksω) := g2±(V/2V>o(*sω), ψs

0(ksω,x) = ^ ω \

ks = y/ϊmλ, λ G /-to, ω G 5 2 . (5.69)
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For the nonrelativistic limit S^(λ) we get from (4.24) the well known result [1,
3, 4, 22, 24, 28]

(Si0\λ)h) (ω)j = ([1 - 2πi2mM{k\ \v\^2)g2+{λ)M{k\ v^2γ]h) (ω)j

= hj (ω) - 2πi y 2m(2π)-3 / d3xe~ikSωx\υ(x)\1/2

R3

x g 2 + ( V / 2 ( ) fdω'<Fω'%(ω')
s2

= hj(ω) — ίmks(2π)~2 / dω'hj(ω')(\v[

s2

hj e L2(S2), j = 1,2, a.e. λ e I. (5.70)

Calculating the remaining terms on the right-hand side of (4.25) yields :

2nd term

- ~ - (2π)-2^ω/(|ι;|1/2^(/c sω),ι;1/V( f c S ω /))ft;(ω0

- ^ - (2πΓ2 Jdω'(\v\V2(ω - x)ψs

0(ksω)y/2ψs

+(ksω'))hj(ωf\ j = 1,2.

s2

3 r d term s 2

—.— (2π)~ / dcof I i / ' /\ I , (5.72)
Am J yu2(co,(o) J

s2

where

- ψs

+(ksω'))h(ω') + (p! - ip2) (ψs

0(ksω') - ψs

+(ksω'))h2(ω')])

+ ( M 1 / 2

V o ( k s ω ) , ( ω i - iω2)vίl2[(Pι + ip2) (ψs

0(ksω')

c V ) - ψs

+{ksω'))h2{ω')]),

b2(ω,ω') = {\v\ι'2

Ψ'0(k ω), ( ω , + i ω 2 ) » 1 / 2 [ ( ( * ί ' )

of) + (Pi ~ ipi) (Ψo(ksωf) - ψs

+{ksωr))h2{ωf)})

,cθ3t;1/2[(pi + ip2) (ψs

0(ksω')

of) — pi(ψQ(ksωf) — ψs

+(ksω'))h2(ωf)]).

4 t h term

iίks\3 _2 Γ f 1/2 s s f

J o ? o

[ + ίCD2) (D^(cθ[ — ΪCO2) — (Cύ\ — i(U2)ω2>

Am
s2

I (ωi + ίω2)ω'3 — ωi(ω[ + ίωf

2) (co\ + iωi) (ω[ — iωf

2)
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5 t h term

ί(ksy n χ_2 r A ,
——— (2π) dω

16m J
s2

]- (2πΓ2Jdωf(\v\ι/2ψs_(ksω),vι/2(ω' - x)ψs

0(ksωf))hj(ω% j = 1,2.
8m

s2

6 t h term

^ (2πΓ2Jdω'(\v\V2(ψs

0(ksω) -ψs_{ksω))^2ψs

+{ksωr)

s2

& (2π)~2 J dωf(\v\^2ψL{klω)9 [^(ff? - λ - iO)-2\v\^2]

s2

xv1/2ιps

+(ksω'))hj(ω% 7 = 1,2.

7 t h term

— — (2π) / dω / ; / , (5.77)

s2

where

- t/ +ίfcWjJΛiίω') 4- (pi - Φ2) ( ^ o ί ^ ^ O ~~ V + C ^ ^ ' ) ) ^ ^ ) ] )

+ (M 1 / 2 (Pi + Φ2) (ψo(ksω) — ψs_(ksω)),vι/2[(pι + Φ2) (ψo(ksωr)

- i/;+(fcW))fti(a/) — p?>(\ps

0(ksω') — ψs

+(ksωf))h2{ωf)]}, ,^ - „ ,

d2{ω,ω') = (\v\1/2(Pl - ίp2) (Ψo(ksω) ~ Ψ-(ksω)\vι/2[p3(ψs

0(ksω')

- tp;(/cV))/ii(ω') + (pi - φ 2 ) ( Ψ o ( ^ ω / ) - K ( ^ ω / ) ) / i 2 ( ω / ) ] )

- (\v\1/2pi(xps

0(ksω) ~ ψLik'ω^y^ip, + ip2) (tpg(fcV)

- φ + ^ ω ^ Λ i ί ω ' ) — p3(ψQ(ksω') — ψs

+(ksωf))h2(ωf)]}.

In order to simplify (5.78) one can use

where

α n ( ω , ω ' ) = <|»|1

+ <M 1 / 2(Pi + ipi)ψs-{ksω), v1/2(pι + iP2)ψs

+(ksω')), (5.80)

an(ω,ω') = {\v\1/2p3ψ
s_(ksω),vι/2(Pl - ip2)ψs

+(ksω'))

- (\v\υ2(Pl + ip2)ψL(ksω),υ^2

P3ψ
s

+(ksω')), (5.81)

a2l(ω,ω') = ( M 1 / 2 ( p i - ip2)ψs_(ksω),vι/2p3ψ
s

+(ksω'))

- (\υ\1/2p3Ψ

s_(ksω), vι'2{Pι + iP2)ψs

+(ksω')), (5.82)

a22(ω,ω') = (|z;|1 / 2(pi - ip2)ψs_(ksω),υ1/2(Pl - iP2)ψs

+(ksω'))
1 / 2 1 / 2 ) ) , (5.83)
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8 th term

i(ks)2

(2πΓ2 fdω'
Am

s2

,

- ipi) (Ψo(ksω) - ψL(ksω)),v1/2ψf)(ksω'))[ω'3h1(ω') + (ω[ - iω'2

( (\v\ι/2(Pi + in) (Ψo(kS(0) -ψi(fc sω)),ϋ1 / 2φδ(^ω'))[(ωί + iω'2)hx{ω') -ω'^ω1)] \ j

(5.84)

Summing up we get for the first order correction term in c~2 of the scattering
matrix

(2πΓ2Jdω'
s2

a.e. A € / , ω € 52, A = f M G L2(S2)2. (5.85)

The analogous expansion of the scattering amplitude up to order O(c~2) can be
found in Appendix A.
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Appendix A. Comparison with the Foldy-Wouthuysen Method

In this appendix we compare our approach with the Foldy-Wouthuysen (F-W)
method. The F-W-expansion is in principle a formal expansion of the unbounded
Dirac operator in c~2 which is used by physicists to compute relativistic cor-
rections. (It became popular since the terms in (A. 7) have a nice physical inter-
pretation.) Since the perturbations become more and more singular it is quite
remarkable that this expansion (interpreted appropriately) yields formally correct
results (see e.g. [10,12]).

Let f(λ,c~2,ω,ωf) be the Dirac scattering amplitude

f(λ,c-2,ω,ωf) := -2πi-p(S(λ) - 1) (ω,ω7), a.e. λel, ω,ω' € S2. (A.I)
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Then we get by (5.85) the following expansion:

where

2

\λ2

J
R3

dλ

λ,ω,ω') = -2πi i

2m f

R3

(x)v(x)

(A.2)

(A.3)

This expansion of the scattering amplitude f(λ,c~2,ω,ω') coincides with the
expansion of the scattering amplitude t(λ9 c~~2, ω, ω') of [14] after multiplying

kd

t(λ,c~2,ω,ω') by a factor - 2 π 2 — = -2π 2 2m(l + λ{2mc2)~ι) and expanding the
CKQ

function e(λ9 c~2) = λ(l + λ(2mc2)~{) with respect to c~2. (We do not average over
spin states in order to keep greater generality.)

Next define the Pauli operators #?, H{ in L 2 (R 3 ) 2 (see e.g. [12, 34])

where we assume that V is the maximal multiplication operator by the real-
valued function v(x) with v G CQ°(R 3) for simplicity. (Here we suppress the trivial
spin dependence in H®9 H\) Then

σess(H1

o) = σac(H1°) = [O,cx)). (A.5)

The first order F-W operators in L 2 (R 3 ) 2 are now defined by (see e.g. [10,12])

where

We have

where

(c) =

σ e s s ( i ί £ w ( C ) ) =

= H 2 4 ( R 3 ) 2 ,

= ( - oo, ^ me 2 ] ,

, x) =

(A.7)

Before we compare the results of our approach and the F-W-method in
connection with scattering theory, let us briefly recall the corresponding facts
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for eigenvalues. For simplicity assume Eo to be a nondegenerate bound state
of Hu i.e., Hiψo = Eoψo for some ψ0 e #2'2(1R3)2, ||ipo|| = 1. Then the first-
order correction term E\ to the corresponding eigenvalue of the Dirac operator

cap + {β — \)mc2 + V is given by Eo + -j £1 with [10,11],

El = i ( σ p v ; o ' ( κ " £o)σpi/;o) (A 10)

In contrast to this simple formula the F-W method has some conceptual difficul-
ties since for negative energies there exist no bound states. Nevertheless a formal
perturbation calculation yields

One can show that (A.10) and (A.ll) are equal if e.g. dXjdXιV £ C2(R3)nL°°(R3),
1 < j9 I < 3. The result can be explained in terms of spectral concentration as
shown in [12]. However, we emphasize that expression (A.10) is simpler than the
traditional F-W-formula (A.ll) and at the same time it is based on an analytic
expansion of the Dirac eigenvalue (rest energy subtracted) with respect to c~2 as
opposed to the somewhat artificial spectral concentration approach. Moreover,
(A.ll) requires much more smoothness of the potential V than (A. 10) and, in
particular, excludes Coulomb-type singularities (which are included in [10,11]).

Now we turn to scattering theory. Since we are interested in relativistic
corrections to nonrelativistic scattering quantities for a fixed λ > 0, we consider
λ e (0, \ me2) and choose c large enough. According to our conventions the F-W
scattering amplitude few{λ,c~2,ω,ω') for a.e. λ e (0, \ me2) is defined by

2,ω,ω;) :=-—g(λ,c 2) d

x W(c)[1 - ( H F W - λ - ί0)-ιW(c)]eik™ω'{'\

ω , ω ' £ S 2 ,

Expanding (A. 12) in powers of c~2 gives

/ p w α c"2, ω, ωf) = ffl(λ, ω, ωf) + c" 2 /^(A, ω, ωr) + O(e~4), (A. 13)

where

/ ^ μ , ω , ω ' ) = - ^ ίd3xe-ikSωx(V [1 - (Hi - λ - iO)'1 V] e ί 7 c W ( )) (x)

R3

= " ΊΓ ί ^ ^ ' ^ M ^ ^ ^ ' 1 ) = /(0)&ω,ω') (A.14)
R 3

by (A.3) and

2m dλ 4π J
R3
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with

λ λ2

-V(l-R1V) + —
m 2m

= 4^2 (1 - VRi) [\ΔV +σ(VK) Λp] (1 -Rtf) - ^

/?i := (Hi-λ-iOΓ1, ψs+(ksω,x) = ((l-(Hί-λ±i0Γ1V)eikSω{))(x). (A. 16)

We note that

[σp, F]σp = σpFσp — V(σp)2,

(d3xψt(ksω,x) ([\ΔV +σ(VV)Λr>]ψs

+(ksω)) (x)
& (A17)

= Jd3xψs_(ksω,x) ([σp, V] σpψs

+(ksω)) (x)

since
[d3xψs_(ksω,x) ([A, V]ψs

+(ksω)) (x) = 0. (A. 18)

Using (A. 17) and (A. 8) we finally obtain

f 3 -iksωx iksω'( )

J
= ίd3xe-ikSωxί f - ^ - j (1 - VRi) [\ΔV + σ(VK) Λ p] (1 - RγV)

-V(lRιV) + $
m 2m

= Jd3xe~ikSωx( ( ^ (1 - VRO [σp, F] σp(l - ^ F)

R3

^ V{ί - RiK) + ̂  VR2vλ e

ikW(-]\ (x)

= έ ί^xe~ik'ωX{^{ - VR^ V{1 - RiV))eikWe} (x)

R3
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and hence (A. 15) coincides with (A.2). However, in analogy to the bound state
case mentioned before, (A.2) is much simpler than (A. 15) and requires less
smoothness properties of V. [In order to speed up our treatment we did not
factor V into v1/2\v\1/2 and symmetrize the expressions in (A.12)-(A.19). This can
be done as in Sect. 5 and we omit the details.]
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