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Abstract. The criteria of integrability for the nonlinear Schrόdinger-type systems
are obtained. One-to-one correspondence between such integrable systems and
the Jordan pairs is established. It turns out that irreducible systems correspond to
simple Jordan pairs. An infinite series of generalized symmetries and local
conservation laws for such systems are completely described.

Introduction

Let us consider a nonlinear system of (N + M) equations:

u{ = uL + a}ΛmuVuw, i = l, ..., JV,

where u1, v1 depend on ί, x; ajfcm, ajfcm are constants which may be assumed such that

= =

without loss of generality. The number of u"s and v*'s may vary. In (0.1) and
everywhere below the summation on repeated indices is assumed.

In particular among the systems of the form (0.1) there is the system

(0.3)

which may be reduced to the well-known nonlinear Schrόdinger equation

The system (0.3) possesses an infinite series of generalized symmetries and local
conservation laws (see, for example, [1]). We'll call the systems (0.1) which have
similar properties the generalized Schrόdinger equations. There are examples of
such systems different from (0.3) (see [2-4]). A wide class of generalized
Schrόdinger equations is found in [4] by means of algebraic construction which
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assumes that the system possesses an (L-A)-pair of a special form. This
construction associates with each irreducible Hermitian symmetric space some
system of the form (0.1).

The goals of the paper are 1) to find the conditions on ajkm,ajfcm for (0.1) to
provide generalized symmetries or local conservation laws; 2) to describe
constructively all such remarkable systems. In contrast with [4] we don't make
initially any additional assumptions on the algebraic nature of the systems
considered.

The existence of generalized symmetries or local conservation laws yield
necessary and sufficient conditions which are found below. The conditions are the
set of polynomial relations on a}fcm, aj km, which one can easily check for every
particular system by means of computer algebra. For systems satisfying these
conditions the formal recursion operator is constructed.

The one-to-one correspondence between systems (0.1) having at least one
nondegenerate generalized symmetry or nondegenerate conservation law and
Jordan pairs (see [5]) is established. Moreover, we show that the most interesting
"non-triangle" systems correspond to simple Jordan pairs. An infinite series of
generalized symmetries and local conservation laws for such systems are
completely described.

1. The Algebraic Interpretation of Systems of the (0.1) Type. Jordan Pairs

It is naturally to expect that the system (0.1) has generalized symmetries or local
conservation laws only if a}fcm,a}km satisfy some algebraic equations. It is
convenient to choose right now the appropriate algebraic objects in terms of which
the conditions on constants are formulated in the most simple and clear way. Let V
and V be two vector spaces over C of dimensions N and M, respectively. We define
the trilinear multiplications T and T:

V x V x V-* V , T(x, y, z) - {xyz},

V χ V x V - > V , T(x,y,z) = {xyz},

We assume for any x, y e V, x, y e V the identities

{xxy} - {yxx}, {xxy} = {yxx}. (1.2)

to hold. We call the above algebraic object a "pair of vector spaces with triple
multiplication" and denote it by (V,V).

Let e1,e2, ...,eN and e l se2, ...,eM be bases of V and V, respectively. Then the
multiplication is given by

{e/efcem} - a}fcmef, {e7 ekem} - a} .̂ (1.3)

It follows from (1.2) that the structure constants a}fcm, a}fcm of the multiplication are
symmetric with respect to the first and the third subscripts.

Let us establish one-to-one correspondence between the pairs (V, V) and the
systems (0.1) by means of identifying the structure constants with the constants
from the right-hand side of a system. This correspondence is correctly defined.
Indeed the form of system (0.1) is invariant with respect to the transformations

uWjU 7', v^JjV, (1.4)
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where J and J are arbitrary nondegenerate constant N x N and M x M matrices.
In more detail the result of applying the transformation (1.4) to (0.1) is the system

", i=l,2,...,M,

where the constants Ajfcm, A}fcm are defined by the formulas

A/fcm

 = ( J )raϋsp Jj Jfc JJw >

ϊ« -ΠΓW FTSP> ' 'Ajkm — VJ Λ aϊtspJ./ JfcJ|iι

Two systems connected by the transformation (1.4) will be called equivalent. From
(1.6) it follows that in terms of the corresponding pair (V, V) the transformation
(1.4) of the system (0.1) is simply a changing of the basis E~ J/βj, £,- = J/e,-.

It may happen that as the result of the transformation (1.4) we obtain a
"triangle" system (1.5), i.e. a system with subsystem of the form

1 = 1,2,...,^,

", i=\,2,...,M, ,
where N1 + Mί < N + M. If some transformation (1.4) bringing the system (0.1) to
the form (1.7) exists, (0.1) will be called a reducible system, in the opposite case, a
nonreducible one. A completely reducible system is the reducible one which is
equivalent to a "splitted" system of the form

Ui _ T ji I A i T y vfcT Tm V* — V* X * V JT lk Vm

t—^)xx'T~AjkmL) V U 9 V ί— ~ Vχjc~A j fcmV U V »

W1 — Wf 4-^
t~ WxxlΉj

(for the sake of uniform notation we denote Ui+Nl = W if i=ί9...9N—Nl and
\i+Nι = Ziiϊi = l,...,M-Mί).

The described correspondence between the systems (0.1) and the pairs of vector
spaces with multiplication allows us to reformulate the concepts of nonreduci-
bility, reducibility, and complete reducibility in the invariant terms. To do this we
recall the definition of an ideal. Let (V, V) be the pair of vector spaces with
multiplication, W and W are the linear subspaces of V and V. The pair (W, W) is
called an ideal of the pair (V, V) if for any elements x, y e V, x, y e Ϋ, w e W, w e W
the conditions

{wxy}eW, (xwy}eW, {wxy}eW, {xwyjeW

hold. We shall call a pair of vector spaces (V, V) without ideals the simple one. It's
easy to prove the next statement.

Proposition 1.1. For the system (0.1) to be

a) irreducible,
b) reducible,
c) completely reducible,

it's necessary and sufficient that the respective pair of vector spaces with
multiplication

a) is simple,
b) has nontrivial ideal,
c) is the direct sum of its ideals. Π
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It is natural to expect that the algebraic properties of (0.1) such as the existence
of symmetries, conservation laws and so on are completely defined through the
structure of the corresponding pair of vector space (V, V). Let us demonstrate this
by an example. Consider the nonlinear Schrόdinger equation. It possesses the
third order symmetry

vτ3 - \xxx + 3vuvx. (1.8)

By straightforward computations one shows that the system (0.1) has a symmetry
of the form

+ w.χvχ', ^

if and only if the constants a}fcm, a}fcm satisfy the following constraints

α l αn _ α1' α" _α1' α" -Lα1' α" — ΠΛjknΛmsp ΛmsnΛjkp ΛnspΛjkm T" <*mnpΛkjs — U ,

These conditions mean that for any elements x, y, z e V, x, y, z e V the identities

{xyjyxz}} - {yx{xyz}} - {zx{xyy}} + {y{yxx}z} = 0 ,

{xy{yxz}} - {yxjxyz}} - {zx{xyy}} + {y{yxx}z} = 0 .

are fulfilled. A pair of vector space (V, V) with multiplication which satisfies (1.2)
and (1.1 1) is called a Jordan pair. This algebraic object is well known in the theory
of Jordan structures (see [6]). Evidently the name "Jordan pair" has been proposed
in [7] and was motivated by a close connection with Jordan algebras. One can find
the detailed and systematic presentation of Jordan pairs theory in [5].

To obtain the simplest example of Jordan pair one can choose the linear space
Mp>β(C) of p x q matrices over (C instead of V and V and define the multiplication
by the formula

x, (1.12)

where a superscript l means the transposition.
One can get the examples of Jordan pairs by means of the following

construction (see for instance [6]) associated with the graded expansions of Lie
algebras. Let G = G: + G0 + G_ ί be the Lie algebra with [Gt , G/] £ Gί+j. Then the
pair (G^G- L) of vector spaces with multiplication

{xyz} = [[x, y], z] , {xyz} = [[x, y], z] ,

where x,y,zeG 1 ? x ,y ,zeG_ 1 ? is a Jordan pair.
Any system (0.1) the constants a}fcm, a}fcm of which satisfy the relationship (1.10)

will be called a Jordan system. We shall show that all systems (0.1) with
nondegenerate generalized symmetries or conservation laws are exhausted by
Jordan systems.

2. The Necessary Condition for the Existence Generalized Symmetries

In this section we will obtain the conditions on the constants a^ fcm, aj km which are
necessary for the system (0.1) to have the generalized symmetries.
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Let the system (0.1) have the symmetry of the order n

v;n = u , v , . . . 5 u W J v π .

In accordance with the definition of the symmetry this yields the flows defined by
(0.1) and (2.1) to be commuting, i.e. Fj,, Fj, obeys the following system of equations:

= ,

o.
Linearizing (2.2), i.e. taking the Freshe derivative we get the equivalent operator
form of this system

[Λ D2 + Φ, L] - dt(L) + 3tn(Φ) = 0 . (2.3)

Here A and Φ are block matrices of the size (N + M) x (N + M)

.?« -V)
1N and IM are unit matrices of the sizes N x N and M x M, respectively, g, g, and h
matrices of the sizes NxN,MxM,NxM,MxN with the elements defined by
right-hand side of the system (0.1) according to the formulae

(B& = 2a}kwιι V , (ft = 2a}fcwv V ,

(h)^ = a}mfcuV, (E^^a^vV.

Here L is the differential operator

L= Σ Lp',
ί = 0

with the matrix coefficients Lf which are written in block form

L _ A sΛ
'~U T / '\Si 'i/

where l^T^s^Sj are matrices of the sizes NxN, MxM, J V x M , MxJV. Their
elements are defined by the right-hand side of the symmetry (2.1) in accordance
with the following formulae:

0,)*, = 0F*/dπΓ ,

Differentiation by t is made according to (0.1) while the differentiation by τn -
according to (2.1),

def π

5t(L) = Σ (̂ (L JD1.

It's easy to check that

[ΛD2 + Φ, L] - δt(L) + dτ (Φ) - "j
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where Mf are of the form

Mn = AΌ2(Ln) + 2ΛΌ(Ln _ ,) + [Λ, Ln _ 2] + [Φ, L J - dt(Ln)

and so on. Operator equation (2.3) is equivalent to the system of matrix equations
Mt. = 0 (ί = n + 2,n + l,...,l,0) with respect to the undefined coefficients of the
differential operator L. Let us show that matrices L; may be successively defined
and let us explain how the conditions for a* kln and a}km arise.

During the calculation it is convenient to use the block structure of matrices
Λ.L^Φ. From the equation M^ + 2^0 we get

sπ = 0, §„ = (). (2.7)

The equation Mn + ^ = 0 is equivalent to

8^=0, §„_.!=(), D(ln) = 0, D(X,) = 0. (2.8)

Therefore, ln andTn are the constant matrices. Let's denote !„ = K,TΠ = K. It's easy to
see that the matrices Lt may be recursively defined, namely each equation Mt = 0
with i ̂  2 is equivalent to

Si-2 = * i - 2 > §^2 = ̂ -2, (2.9)

D(l,._ !) = >/, ._ ! , D(£ί_1) = ̂ ._1, (2.10)

where κi_2,κi_2,ηi_^ήί_l are already known matrices with the elements
depending on u', v' and on their derivatives by x. It's clear that the equations of the
form D(X) = η are solvable not for any right-hand side η. Therefore, while solving
Eqs. (2.10) we, generally speaking, will obtain the conditions for the constant of the
system (0.1). The constants of integrations arising from the solving of the previous
equations have the same form.

Proposition 2.1. Each symmetry of the order n for (0.1) has the Jorm

fn

f(u, v, . .., u n _ 19 v π _ 0 ,

n _ _

where K}, K} are constants while functions Vn and \l

n are polynomials of all their
arguments.

Proof. The right-hand side of the symmetry may be reconstructed by the
coefficients of L with the help of (2.5). It's clear that if elements of all matrices Lέ are
polynomials then the right-hand side of the symmetry polynomially depends on all
of its arguments. Matrices Kt-2> ^;-2> Άi- i>tfi- 1 in (2.9) and (2.10) are polynomials
as they are obtained by differentiation and multiplication of polynomial matrices.
Therefore, all matrices Lf are polynomials of their arguments. The matter that the
symmetry has the form (2.11) is the consequence of formulae (2.7) and (2.8). Π

Let's call the symmetry nondegenerate if K and K are nondegenerate matrices.
The system (0.1) is homogeneous, i.e. it is invariant with respect to the one-

parameter scaling group Ωλ,

x = λx, t = λ2t, ύ^λu1, Ϋ^λv1. (2.12)
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Let's call the polynomial P(u, v, . . ., ufc, vfc) to be homogeneous if Ωλ(P(u, v, . . ., ufc, vfe))
= /!7P(u, v, . . ., uk, vfc). Here y is called the weight of P and denoted as y = ω(P). The
concept of homogenity may be generalized up to the case of differential operators
by letting ω(D) = 1. It's easy to check that

ω(u< ) = k + 1 , α>K) = k + 1 , ω(PQ) = ω(P) + ω(Q) ,

ω(D(P)) = ω(P) + l , ω(dt(P)) = ω(P) + 2 , (2.13)

for any homogeneous polynomials P and Q. Each non-homogeneous polynomial
is the sum of its homogeneous components, i.e. the polynomials with the fixed
weights.

Suppose the system (0.1) has the symmetry (2.1) with the polynomial right-hand
side. Let's consider the system u^ = Hf, v\ = &, where tί,ίΓ are the homogeneous
components of polynomials Fl and f11, respectively, with the same weights.
With the help of (2.13) one can find that such a system is also the symmetry. Sym-
metry with homogeneous right-hand side we will call the homogeneous sym-
metry. Obviously the homogeneous symmetry (2.11) is invariant with respect to
the one parameter scaling group Ωλ(ή)

while polynomials fn,ln are of weight n + 1. In what follows we can consider only
the homogeneous symmetries without loss of generality. In this case the matrix
elements of Lf are homogeneous polynomials with the weight n — i. Generally
speaking matrices ll?Tf with i<n are derived from (2.10) up to the additive
"constants of integration" being the constant matrices. Considering the homog-
eneous symmetry one should take them to be zero for the sake of simplicity.

Proposition 2.2. For the system (0.1) to have the symmetry (2.11) of the order n^.
ίfs necessary and sufficient for the equalities

O, (2.14)

jrmKj;=0. (2.15)

to be held for any indices i, j, k, m.

Proof. From the matrix equation Mn = 0 we get

sw_ 2 = l/2(Kh-h£), sπ_2 = l/2(£E-fiK), [K,g] = 0, [β,g] = 0.

The last two equalities are equivalent to (2.14). It's not too easy to get (2.15). Let's
introduce the matrices A( j, fc), A(;, fe), which are defined by

, k)t = a}wfc , (AU k)t = a}mk . (2.1 6)

Moreover, let's denote B(;,fc) = KA(;,/c)) — A(;,fe)K. In terms of such definitions
sπ _ 2 = l/2B(j, k)ujuk. Matrices sf which are recursively defined by equations Mf = 0
are the homogeneous polynomials. Let's denote via sf the quadratic part of these
matrices. From Mf = 0 one can get the recurrent formula for sf with i = n — 3, . . ., 0:
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It is easy to check using induction that this formula leads to

- 21-1 = - (iBα /c) -

+ D 2(φ n_ 2 i_ 1).

We will not interest in the explicit form of matrices φ7

depending on u' and on their derivatives by x. From M! =0 we obtain that sf
and s$ should obey the following condition:

)-D2(sί) = 0. (2.18)

Using (2.17) we get that if n = 2m then Eq. (2.18) can be rewritten in the form

This yields 2K A(j, k) — B(j, k) = 0 which in its turn is equivalent to the first
condition (2.15). If n = 2m+ 1 then Eq. (2.18) is written in the form

From here we get 6(7, fc) = 0 which is just so the other form of the first condition
(2.15). The necessity of the second condition (2.15) may be proved in the same
way. Π

Remark 2.1. One can check directly that the conditions (2.14) and (2.15) are
enough for the existence of the homogeneous symmetry of the first order having
the form

< = Kχ, < = K}vΐ. D (2.19)

Remark 2. 2. It's easy to see that conditions (2.14) and (2.15) hold for arbitrary
values of constants a}fcm, aj km if one takes K = IN, K = IM for the symmetries of odd
order and K = IN, K= — IM for the symmetries of even order. Π

Let's give the algebraic interpretation for the conditions obtained. Let K : V-> V
and K:V->V be the linear operators defined by Ke^K^, Ke,- = £}£;. Then
Eqs. (2.14) and (2.15) mean that for all x,y,ze V, x,y,zeV the equations

K{xyz} = {xyKz} , K{xyz} = {xyKz} , (2.20)

K{xyz}=(-ir+ 1{xKyz}, K{χyzM-l)" + 1{xKyz} (2.21)

hold.

Proposition 2.3. Each system (0.1) possessing the degenerate symmetry of the order
n ̂  1 is reducible.

Proof. Let the matrix K be degenerate and let V 0 e V be the eigenspace
corresponding to the zero eigenvalue. Then from (2.20) and (2.21) we get (V0, V) to
be the ideal, and hence according to Proposition 1.1 the corresponding system (0.1)
is reducible. Π

The conditions obtained though aren't enough for the system (0.1) to have the
generalized symmetries. Defining recursively the coefficients of the differential
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operator L we find that for the solvability of the equations Mπ _ 2 = 0, Mπ _ 3 = 0 it is
necessary to demand the existence of the solution σ1(u,v,uje,vjc), σ^u^u^vj,
σ2(u, v, ux, ¥„ uxx, vxx), σ2(u, v, ux, vx, uxx, \xx) of the system of matrix equations

K(δt(g) - DK)) = 0 , 8(3̂ 1) - Dfo)) = 0 , (2.22)

-D(σ2)) = 0. (2.23)

Note that the conditions (2.22) mean that each element of matrices Kg and βg
should be the conservation density for the system (0.1).

Proposition 2.4. Equations (2.22) and (2.23) are solvable if and only if the following
equations

^ay = 0 , (2.24)

WfyJVLp - *rmsn*
n

jkp - aL Am + *r

mnp*
nkjs) = 0 (2.25)

hold for all ί, 7, fe, m, s, p.

Proof. For the sake of brevity it's convenient to introduce the matrices
a(7, fc), a(y', fc) via the formulae

(at/, fc))L = a}fcm , (3(7, /c))L = ajkm . (2.26)

Then g = 2a(;, k)uj\k , g = 28(7, k)vjuk.
From the first Eq. (2.22) we get

Kσ! = 2Ka(7, fe)(vfeuΐ - u^) + KK: ,

where K is the solution of the following matrix equation:

KD(κ) = 2K(aJfcwa(n, 5) - a^a(m, n))u Vv V .

This equation is solvable if and only if its right-hand side is zero, i.e. constants
satisfy the following constraint:

K(a?kma(rc, s) + a?sma(n, fc) - a ŝa(m, n) - aj^ϋ, n)) = 0 , (2.27)

as we are considering the homogeneous symmetry K = 0.
From the first Eq. (2.23) we get

Kσ2 = 2Ka(7,

where the matrix K satisfies the equation KD(κ) = H with

H = 2K(2a^ma(n, s) + a"kmsa(j, n) - a .̂

+ [a(m, k), a(;,

+ *"jsma(n, k) - nn

jkmφ, s) + [a(m, k), Λ(J, s)])uJumvVx .

This equation is solvable if and only if for all indices j, k the following conditions
hold:

d2H/dujduk

x =
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One can check that they are equivalent to the constraints

K[a(;, k), a(m, s)] + K[a(;, 5), a(m, fc)]

= aL5Ka(;, ή) - a^sKa(m, n) , (2.28)

K[aU k), a(m, s)] - K[a(j, s), a(m, k)]

= a^mKa(n,s)-a?smKa(n,/c), (2.29)

K[a(;, /c), a(m, s)] = a^mKa(n, s) - a^,Ka(m, n) (2.30)

for the constants. Writing the matrix equation (2.30) in its components we get
(2.24). Equations (2.27)-(2.29) are its consequences. This follows from the matrix
form of (2.30).

Necessity and sufficiency of (2.25) is proved in the same way. Π

Remark 2.3. Equations (2.24) and (2.25) were obtained supposing the system (0.1)
to have a symmetry of the order n ̂  4. One may check by direct calculations that
conditions (2.14), (2.1 5), (2.24), (2.25) are necessary and sufficient for the system (0.1)
to have the symmetry of the order n = 3. The homogeneous symmetry of the third
order has the form

U^KXJCJC + 3KχfcmuVu-,

v^KX_+3K^.kmvVv-

[compare with (1.9)]. Π

In terms of vector spaces with triple multiplication the constraints (24) and (25)
may be rewritten in the form

K({xy{yxz}} - {yx{xyz}} - {zx{xyy}} + {y{yxx}z}) = 0 ,

K({xy{yxz}} - {yx{xyz}} - {zx{xyy}} + {y{yxx}z}) = 0 .

For nondegenerate operators K and K (1.11) follows from (2.32), i.e. the
appropriate system is the Jordan system. In the opposite case from (2.20) and (2.21)
we find the pair (KerK, KerK) to be the ideal in the pair (V, V). Then from (2.32) we
obtain that the factor pair (V, V)/(KerK, KerK) is the Jordan system. Thus we
proved the main statement of this chapter.

Theorem 2.1. Systems (0.1) with the nondegenerate generalized symmetry are
exhausted by Jordan systems. System (0.1) with the degenerate symmetry is reducible,
the factor pair (V, V)/(KerK, KerK) being the Jordan system. Π

3. The Necessary Condition for the Existence Conservation Laws

Let's recall that the local conservation law of the system (0.1) is the equation

D(σ), (3.1)

where ρ, σ are functions of ul, v1 and the finite number of their derivatives by x. The
function ρ is usually called the density, σ is called the flux. Let's investigate the
question of what the constants should be to make the system (0.1) have the
conservation laws. As in the case of symmetries we find it convenient to transfer by
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the usual way from (3.1) to the equivalent operator equation. Let's define the
variational derivatives δρ/δu\ δρ/δ\l in the following way:

k k

Then the vector-function

P = (δρ/δu\ . . ., δρ/δuN, δρ/δy\ . . ., δρ/δvM)τ

obey the equation
0, (3.2)

where Φτ is a transposition of Φ while A and Φ are defined by (2.4). Linearizing
(3.2) we get the operator equation

dt(R) + R(ΛD2 + Φ) + (AΌ2 + Φτ)R - S = 0 . (3.3)

Let's explain the notations: R is a differential operator -

R= Σ Rί>',
i = 0

with the matrix coefficients written in the block form

Pi

with the matrices rt, f (, p(, p"; being of the sizes NxN,MxM,NxM,MxN. Their
elements are defined by the density of the conservation law ρ as follows:

, ,
(3.4)

(Mί, =

Here S is the differential operator of zero degree, i.e. simply the matrix the explicit
form of which doesn't matter in what follows.

The degree of the differential operator R with the coefficients defined by (3.4) is
called the degree of the conservation law with the density ρ. Note that R satisfy the
relationship

RΓ-(-l)mR = 0, (3.5)

as a consequence of its definition. Here Rτ is a formally adjoint operator

Rτ= Σ (-l)'Dl'RJ.
i = 0

Let's call the conservation law with the density ρ to be the polynomial law if the
coefficients of the appropriate operator R are the polynomials of u1, vl and their
derivatives by x. Using (3.4) one can check that the density of polynomial
conservation law may be taken to be the polynomial without the loss of generality.
Generally speaking the density of conservation law is defined up to the addition of
the function D(f ) for arbitrary function f of u1, V and their derivatives by x.

It's easy to check that

dt(R) + R(ΛD2 + Φ) + (AD2 + Φτ)R - S = *£ MtO
l ,
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with the matrices Mt of the form

and so on. The operator equation (3.3) yields the system of m + 3 matrix equations
M; = 0 with respect to the unknown Rt . From the equation Mm + 2 = 0 we get rm = 0,
f m = 0. The equation Mw + 2 = 0 is equivalent to f m _ 1 = 0, D(pm) = 0, D(p J = 0. Let's
denote pm = Q, where Q is a constant matrix with elements Qtj. Then from (3.5) we

get *„, = (- 1ΓQ1.
We may define the matrices r^2 and r ί _ 2 explicitly from each of the equations

Me = 0 with z^2. The matrices p;^ and p^^ are defined from the equations
D(p ί_1) = ι/ ί _ 1 , D(p ί_1) = / y ί _ 1 , where i_i9ήi,ί are already known matrices with
the elements depending on u\\l and their derivatives by x. The technique for
obtaining the solvability conditions for (3.3) is the same as that of the previous
part. Applying the same procedure as in the case of symmetries we conclude that
all the conservation laws are polynomials. So we may restrict our consideration to
the conservation laws with homogeneous densities (for brevity we call them the
homogeneous conservation laws). Similar to Propositions 2.1 and 2.2 we have the
following statements.

Proposition 3.1. The density of homogeneous conservation law of the order m = 2k,
k ̂  0 has the form

Q2k = QiXVί + Φ> V> - - •> Ufc- 1> V/c- l) > (3 6)

where K is the homogeneous polynomial with the weight 2k + 2. The density of the
homogeneous conservation law of the order w = 2k + l, fe^O has the form

QijK+Λ-UkVJk + ι) + Φ,v> ''>Uk-ι>Vk-ι), (3.7)

where K is the homogeneous polynomial of the weight 2k + 3. Π

Proposition 3.2. In order to have the conservation law of the order m ̂  1 with the
density (3.6) or (3.7) for the system (0.1) it is necessary to have the relationship

Qifikm-QnJίji = <) (3.8)

to be true for all indices /, j, k, m. Π

Remark 3.1. The condition (3.8) is not only necessary but also sufficient one for the
existence of the conservation laws of first and second order. The homogeneous
densities may be written in the form

eι = Q^i-u^)> (3-9)

Q2 = QyuX - l/2QrfcaίMJ.u VvV . (3.10)

In order for (0.1) to have the conservation law of zero order of the system (0.1) with
the density ρ0 = Qf7 uV it is necessary and sufficient that the relationship

Qifikm + Q A, - QmAjk - QrXmk = 0 (3.11)

holds for all indices ΐ, 7, k, m. The identity (3.1 1) is the consequence of (3.8), but the
reverse statement is not true.

We shall give the algebraic interpretation for the relationship (3.8). The matrix
Q defining the main part of the conservation law determines the bilinear form Q
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on the appropriate pair of vector spaces (V,V): Q(eI5 e,-) = Qtj. Then (3.8) is
equivalent to the identity

Q(x,{xyy}) = Q({χyy},χ), (3.12)

for all x,yeV, x,yeV. This means that Q is an invariant bilinear form. The
following chain of equalities:

Q(x, {xyy}) = Q(y, {xxy}) = Q({xyy}, x) = Q({xxy}, y) (3.13)

is a consequence of (3.12) and the symmetry of the multiplication with respect to
the exterior arguments. Let V0 and V0 be the linear subspaces in V and V such that

V0

d= {xeV, Q(x,y) = 0 for all yeV},

V0

 d= {xeV, Q(y,x) = 0 for all yeV} .

Let's define KerQ= f (V0,Ϋ0) Fro™ (3.13) we get that KerQ is an ideal.

The conservation law with the density defined principally by the invariant
bilinear form will be called nondegenerate if KerQ = 0. Since KerQ is an ideal the
following statement holds.

Proposition 3.3. Each system (0.1) possessing the degenerate conservation law of the
order m §; 1 is reducible. Q

Obviously the system (0.1) may have the nondegenerate conservation law only
if ΛΓ = M.

Proposition 3.4. The system (0.1) with nondegenerate conservation law of the order
m ̂  1 is a hamiltonian system.

Proof. If the conservation law is nondegenerate if its matrix Q may be converted
P = Q~i. The bilinear form Q satisfies the identity (3.8) providing the existence of
the conservation law of the first order with the density (3.10) because of the
Remark 3.1 . This density plays the very thing for the role of hamiltonian if we take
the antisymmetric matrix

-
as a hamiltonian operator. It's easy to check up that because of (3.8) the system
(0.1) may be represented as

uj= -Pirδρ2/δvr, \l

t = Pίrδρ2/δur . Π (3.15)

Let's turn back to Eq. (3.3). One can check that for the solvability of the
equations M f = 0, i = ra, . . ., m — 3 it is necessary and sufficient to have the following
equalities:

* r * n = 0 ,

They provide the factor pair (V, V)/KerQ to be a Jordan pair. The relationships
(3.16) were derived under the suggestion that the system has the conservation law
of the order m^4. One can check that for the existence of the third order
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conservation law it is necessary and sufficient to have the conditions (3.8) and
(3.16). Thus we have:

Theorem 3.1. The systems (0.1) with the nondegenerate conservation laws of the
order m^3 are exhausted by the Jordan systems. The system (0.1) having the
degenerate conservation law of the order m^3 is reducible, the factor-pair
(V, V)/KerQ being correspondent to the Jordan system. Π

4. Generalized Symmetries and Conservation Laws for Jordan Systems.
Irreducible Jordan Systems

In this chapter the questions dealing with the generalized symmetries and the
conservation laws for Jordan systems are discussed. The formal recursion operator
is constructed. The particular emphasis is made on the irreducible systems. The
symmetric algebra and the infinite series of conservation laws for them are
completely described.

Let's recall that the system (0.1) is called integrable (see [1, 8]) if the solution L
of the following formal operator equation:

= 0, (4.1)
n

exists [compare with (2.3)]. Here L = £ L fD
l is the formal series with the matrix

coefficients Lf depending on u', \l and the finite number of their derivatives by x.
The multiplication of the formal series is defined by

D*Dm = D* + m, D fef= £ C*Dm(f)D*-w, (4.2)
m = 0

for all fe,m where Ck

m = k(k-l)...(k-m + l)/m\.
It is well known (see [1]) that nonlinear Schrόdinger equation (0.3) is integrable.

The following formal recursion operator is given for it the solution of (4.1),

-vD S -D-vD"1!!/'

The analogous operator does exist for any Jordan system.

Theorem 4.1. Any Jordan system (0.1) is integrable and has its own formal recursion
operator.

Proof. Here we give the explicit form of the formal recursion operator - the so-
called "reduced" formal series

(4.4)
\^21 ^227

where blocks Ltj are given by

Lu=IND + aO ,fc)uΉ-V, L12 = A(Λ/cy'D-V,

L22=-IMD-aθ;/c)vΉ-V, L21 = -lα,feyD-V.

We do not specify the way it has been obtained. Using (4.2) one can check up
directly that (4.4) satisfies the operator equation (4.1) with respect to (1.10). Π
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By means of formal recursion operator (4.4) it seems to be possible to construct
the symmetry for any Jordan system (0.1) of any higher order. Nowadays the
author does not know the proof of this fact restricting himself with the statement
of the hypothesis below.

Hypothesis. Each Jordan system (0.1) has the generalized symmetries of arbitrary
order. The right-hand side of the homogeneous symmetry u\n = Fj,, ujM = Hj, may be
found by means of the recurrent formula

H< = -

where F\ =oi,H\=vi. D

It is proved directly by means of (4.6) that the symmetries of orders n = 3, 4, 5 may
be obtained. In order to prove that the right-hand side of (4.6) defines the
symmetry of nth order it is sufficient to show that all components of a(y, fc)uV,
a(7*,fc)vAιfe are the densities for the conservation laws of the order n — l and the
right-hand sides of them are obtained by that recurrent formula.

Now let's proceed with conservation laws of Jordan systems. It is known (see
[8]) that whenever the formal series satisfy Eq. (4.1) the function tr(res(L)) with

res ί £ sίD
ί 1 =fs_ ^ is the density for the conservation law (though it may be

for the trivial one). We managed to construct the homogeneous formal series of the
first order (4.4) with the matrix A being the coefficient of D. Along with it there
exists the formal series of the first order with the unit coefficient of D satisfying
Eq. (4.1). To obtain it one should find the square root of the series (4.4). Each
product of entire powers of such series will also satisfy Eq. (4.1). Thus for any m we
have two homogeneous formal series Lm and £m, one of which begins with the
matrix A and the other begins with the unit matrix. One may check that

tr (res(L2fc + *)) = (tr (a(j, r)) - tr (a(r, /))o& + κ ,

tr (res(L2fc + *)) = (tr (a(;? r)) + tr (a(r, j))uW + k ,

= (tr^^

(tr(a^

where K, k, φ, $ are the homogeneous polynomials of u', v* and their derivatives by
x with the orders lower or equal to k — 1 . Thus we obtain two series of conservation
laws (usually they are called the canonic series). The densities for them are of the
form (3.6) and (3.7) with Qtj = tr(a(f, /)) for the first seria and Qfj = tr(aθ; i)). If at
least one of these bilinear forms is nonzero then the system (0.1) has the nontrivial
conservation law of the order m.

Note that bilinear forms defining the quadratic parts of densities for canonic
conservation laws are canonic also from an algebraic point of view. Let the linear
operator M(x,y): V-*V be defined by M(x,y)(z) = {xyz}. Then the bilinear form
Q(x, y) = tr(M(x, y)) is invariant, i.e. the identity (3.12) holds for it. Analogously one
can define the second invariant form Q(x,y) = tr($L(y,x)), where the linear
operator M(y,x):V->Ϋ is defined by $I(y,x)(z) = {yxz}.

The above considerations leads us to the following statement.
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Theorem 4.2. The system (0.1) corresponding to the Jordan pair which has at least
one nonzero bilinear form tr(M(x,y)) or tr(M(x, y)) has the infinite series of
nontrivial canonic conservation laws. Π

Let's consider in more detail the irreducible Jordan systems (0.1). First of all
note that the existence of classification for simple Jordan pairs over (C enables us to
classify all the irreducible generalized Schrδdinger equations and then describe
them constructively. Now we present the list of simple Jordan pairs which consists
of four infinite series and two special Jordan pairs. In each case V and V have the
same dimensions as vector spaces, i.e. Jordan pairs correspond to the irreducible
systems (0.1) of 2N equations.

Every simple Jordan pair over (C is contained in the following list (see [5]):

lptq. (Mpfβ(C),Mpϊβ(C)), pxq matrices over (C, where 1 ̂ p^q. The dimension of
corresponding Jordan system (0.1) is pq xpq.
lln. (AΠ((C), AW(C))9 alternating n x n matrices over (C, where n ̂  5. The dimension of
corresponding Jordan system (0.1) is n(n + l)/2 + n(n+l)/2.
III,,. (HΠ((C), HΠ((C)), symmetric n x n matrices over C, where n ̂  2. The dimension
of corresponding Jordan system (0.1) is (n(n + l)/2 + n(n+1)/2.
In these three cases, the Jordan pair structure is given by

{xyz} = x ?y z + z 'y x.

IVΠ. (<CW, (CM), where n ̂  4, the Jordan pair structure is given by standard quadratic
form on (C". The dimension of corresponding Jordan system (0.1) is n + n.
V. (M1>2(C),M1)2(Co;7)), 1 x 2 matrices over the Cayley algebra C over (C. The
dimension of the corresponding Jordan system (0.1) is 16 + 16.
VI. (H3(C), H3(C)), the Jordan pair associated with the exceptional Jordan algebra
of 3 x 3 Hermitian matrices over C. The dimension of the corresponding Jordan
system (0.1) is 27 + 27.

The following statement provides the full description of the structure of the set
of local conservation laws and generalized symmetries of the irreducible systems
(0.1).

Theorem 4.3. The homogeneous local conservation laws of the order m ̂  1 of the
irreducible Jordan systems (0.1) are exhausted by the canonical series of nondegene-
rate conservation laws with the densities of the form

v , . . . , u f c _ 1 , v k _ 1 ) ,
(4.7)

k + ι) + ̂ ^ ' ^k-ι^k-ί)'

The homogeneous generalized symmetries are exhausted by the symmetries written in
the hamiltonian form

u'n - - Pirδρn/δvr, < - Pirδρn/δur, (4.8)

where Pιr are elements of the matrix P, inverse with respect to the matrix of invariant
bilinear form Qij = tr(a(i,j)) and ρn are the densities (4.7).

Proof. For each simple Jordan pair the bilinear forms tr(M(x, y)) and tr(M(x, y))
mentioned above are nondegenerate and proportional each other (see [5]).
Therefore, for the irreducible Jordan systems (0.1) both canonical seria coincide
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and their densities has the form (4.7). Now we have only to check up the absence of
the homogeneous conservation laws of the order m ̂  1 different from the canonical
ones. In order to do this one may show that the invariant bilinear form Q(x, y)
defining the quadratic part of the density for any conservation law should be
proportional to the canonical invariant form tr(M(x,y)). If it is not the case then
there exists the conservation law defined by the degenerate but nonzero bilinear
form. This leads to the contradiction with Proposition 3.3 and the irreducibility of
the systems (0.1).

Thanks to the presence of the nondegenerate conservation law of the second
order each irreducible Jordan system (0.1) is a hamiltonian one and can be written
as (3.15). It is well known (see for' example [9]) that if ρ is the density of
conservation law for the system (3.15) then

u< = - Pίrδρ/δvr , 4 y[ = Pίrδρ/δur

is the symmetry of that system. We have only to show that irreducible systems
can't have the homogeneous generalized symmetries different from (4.8). The
presence of the additional generalized symmetry leads to the existence of the
degenerate linear operator K (or K) satisfying the equalities (2.20), (2.21) which in
turn contradicts to irreducibility. Π

For the conclusion note that all irreducible generalized Schrόdinger equations
perhaps may be obtained by means of the construction from [4], too.
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