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Abstract. A version of the one-dimensional Rayleigh gas is considered: a point
particle of mass M (molecule), confined to the unit interval [0,1], is surrounded by
an infinite ideal gas of point particles of mass 1 (atoms). The molecule interacts
with the atoms and with the walls via elastic collision. Central limit theorems are
proved for a wide class of additive functionals of this system (e.g. the number of
collisions with the walls and the total length of the molecular path).

1. Introduction

Since the discovery of Brownian motion, it is a great challenge to theoretical
physicists and mathematicians to understand its dynamical theory. The chaotic
behaviour of small particles in a liquid or in a gas seems to contradict the
deterministic laws of the mechanics. Though the mathematical model (Wiener
process) was constructed by Wiener and Levy quite a time ago, the connection
between the strict mathematical approach based on microscopic assumptions and
the physical reality is far from being completely understood.

The Rayleigh gas, consisting of a heavy Brownian particle (molecule) interact-
ing with an infinite ideal gas of light particles (atoms), seems to be a simple,
nonetheless technically quite difficult real mechanical model of the Brownian
motion. Here we summarize the known results on this and related models. The
common feature of these models is that the randomness of the system is due to the
ideal gas, while the possible recollisions give rise to a memory. The qualitative
approach of the problem aimed at the ergodic properties of the Rayleigh gas. The
simplest one-dimensional case was investigated in [5], where the molecule is
confined to a unit interval. This restriction essentially reduced the memory of the
system, and rendered possible the proof of the Bernoulli property.
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The same authors proved later a similar result for a model which contained N
molecules ([6]). [In the same paper they considered a two-dimensional model with
N hard squares (molecules) as well] A generalization of their methods to a
multidimensional system, where the molecule was a hard ball was obtained by the
present authors in [4].

Returning to the one-dimensional case, with the results of [5] at hand, the main
task was to remove the walls of the unit interval and let the molecule move on the
whole real line. Overcoming several technical difficulties, the authors of [2] could
prove the Bernoulliness of the system on the half line. Further generalizations were
made in [1], where a constant external force acted on the molecule. Soloveychik
has proved the Bernoulliness of the system on the whole real line but in his model
the molecule was subject to an external potential [10,11].

A more refined direction of research is aimed at quantitative results, including
the estimate of the mean square displacement of the molecule and the convergence
to the Wiener process. A good survey of the results and conjectures is found in
[15]. Unfortunately the most interesting case (when M is constant) is unsolved
(except for the case M = l, see [7,12]), only estimates are known on the mean
displacement (see [9,13]). In [14] the invariance principle is proved, but only for
the case when M grows fast enough with the scaling parameter (remark that the
larger M is, the less is the influence of the memory).

In the present paper we prove central limit theorems for the simplest one-
dimensional model. The memory is reduced in the same way as in [5], i.e. we
confine the molecule to the unit interval. We hope this restriction can be eliminated
by improvement of the method of Soloveychik et al. (see [2,10]). Their key
observation is that a.s. there are infinitely many so-called cluster times (by
definition: after these times the molecule does not recollide with any atom, with
which it collided before). In the model with the walls at 0 and 1 these cluster times
naturally arise when the molecule hits the wall 1. Therefore they can be treated
more definitely, while the proof of Soloveychik et al. contains some existence
arguments, which makes the direct generalization hard.

As in the majority of particle systems, the memory is so long range that there is
no exponential mixing and the Doeblin condition used in a suitable Markov
embedding is not uniform. Our main technical tool is a quantitative form of a non-
uniform Doeblin condition where we even have aimed at a possibly sharp
formation (cf. Sect. 3).

In Sect. 2 we give the formal description of the model and our results. Section 3
contains the basic ideals of our proof and we formulate abstract central limit
theorems for a certain class of Markov chains. These theorems are direct
generalizations of the classical CLT for Markov chains satisfying the Doeblin
condition. In Sects. 4 and 5 we prove that these theorems are applicable for the
present model.

2. The Model and the Results

Since we are working with the model introduced in [5], we outline its description
very briefly. We consider a one-dimensional dynamical system consisting of an
infinite number of point particles moving on the nonnegative half-line. A particle
of mass M> 1 (molecule) moves on the unit interval [0,1] and undergoes elastic
reflections with the walls at 0 and 1. The molecule is in contact (via elastic collision)
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with an ideal gas of point particles of mass 1 (atoms) situated to the right of the
molecule. The wall in 1 does not affect the atoms.

We suppose that the whole system is in equilibrium at temperature T=(kβ)~l

ana density ρ = l. Let j/=(Ω,μ,φt) denote our dynamical system, where Ω is the
phase space, μ is the appropriate Gibbs state and φt is the time evolution. A point
ω e Ω can be identified with the position and velocity of the molecule Yω = (Xω, Vω)
C [0, 1] x R and with the sequence [xn

ω, vn

ω}™= 1? in which the atoms are labelled in
order of increasing position and, for equal position, of increasing velocity (xn and vn

denote the position and the velocity of the nth atom).
Clearly the dynamics φt generates a stochastic process on Ω, where φt ω will be

identified with Yω(t) and [xn

ω(t\ vn

ω(t)}?= lβ For brevity, ω will be omitted if there is
no danger of confusion. (We should remark that φt is not well defined for all ω e Ω
due to the simultaneous collisions, but the set of the exceptional points has a
measure zero. For references see the footnote 1 in [5].)

Now we are ready to define our Markov chain, which plays a key role in the
present paper. (In choosing the proper chain we were inspired by the approach
outlined in the Introduction of [5].) Let Σ denote the set of all possible paths
(history) of our system in a unit time-interval /. Since the dynamics is deterministic,
these paths are uniquely determined by the positions and velocities of particles
situated in [0, 1] at the beginning of/, and by those of atoms entered [0, 1] during
/. Therefore we can identify Σ with the following set:

C U U (([0,l]xR)x([0,l]xRrx([l,oo]xR_Γ).
«= 1 m= 1

Here Y and y corresponds to the molecule and atoms respectively at the
beginning of /, while y describes the atoms entering [0, 1] during / (conditions
xn+j> 1, xn+j+vn+j< 1 ensure that the corresponding atom enter [0, 1] in /). We
can order the particles lexicographically. Again we have to exclude those points
from Σ which correspond to any irregularity of the system (simultaneous collisions
or infinite number of collisions in finite time).

Since Σ is a factor space of Ω, it inherits a natural σ algebra and a measure μ
from (Ω, μ). (Σ can be considered as a set of equivalence classes.) Let S e Σ, then φtS
is well defined for t e [0, 1], since the evolution of the system in the time interval /
depends only on the information given by S.

For all ωeΩ we can define a sequence of random variables S0(ω), S1(ω),
S2(ω). . . E Σ, where S^ω) describes the system in [0, 1] in the time interval [i, f + 1]
more formally S^ω) is the equivalence class of those points of Ω which evolve in
[0, 1] in the same way from time / to time ί + 1, as ω evolves. Clearly S0, Sl9 S2, . . . is
a Markov chain with Σ as its state space and μ its stationary measure. The
Markovity follows from the property of the Gibbs state, i.e. the distribution of the
particles entering [0,1] in the time interval [i,i+l] does not depend on the
particles entered [0, 1] before.

Let / be an arbitrary non-constant measurable function on Σ satisfying

for a fixed positive δ.
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Now we can formulate our main theorem:

Theorem 1. // / satisfies ( 1), then the distribution of

Σ f(S,)-nm
i= 1 _

σ|A

approaches the standard normal one, with suitable constants m and σ>0.

As an easy consequence of our Theorem 1 we have central limit theorems for
several interesting additive functional of our chain. Here we mention four of them.
Let N(T), N0(T)9 Λ^CΓ) denote the number of collisions of the molecule with atoms
and with the wall 0 and 1, respectively, until T. Furthermore, let

Q(T)=]\V(t)\dt
o

denote the total length of the molecular path until T. (In all cases the initial particle
configuration in [0, 1] is distributed according to the stationary measure.)

Corollary 1. For the quantities N(T)9 N0(T)9 N^(T) and Q(T) defined above the
central limit theorem holds with usual norming.

In the sequel we consider very briefly the related two-sided infinite model. The
only alteration is that in this model the atoms are situated on the whole real line.
We do not give a formal description, since the state space, the equilibrium measure
and the dynamics are defined in a natural way. We can also take the corresponding
Markov chain {S$fL0 on an appropriate state space Σ'. Similar to the semi-infinite
case we have the following theorem and corollary.

Theorem 2. // /' : 27-^R is a non-constant measurable function with finite (4 -f- δ)th

moment with respect to the equilibrium measure, then the distribution of

Σ

σ ' ] n

approaches the standard normal one with suitable m' and σ' > 0.

Corollary 2. For the appropriate quantities N'(T\ N'0(T)9 N\(T) and Q'(T) defined
as in Corollary 1 the central limit theorem holds.

3. Generalization of Doeblin Condition

In the standard theory of Markov chains the Doeblin condition guarantees the
exponential decay of correlations and the CLT. The Doeblin condition requires
that the chain starting from any initial point get out from any "small" set (with
respect to a finite measure) after a fixed time with a probability greater than a fixed
positive ε. In a formal setting a Markov chain {Sjo* satisfies the Doeblin condition
if there exists a positive ε, an integer rc, and a nonzero finite measure φ on the state
space of the chain such that

Prob(SnφB SQ = x)>ε (2)
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holds for every subset B of the state space with φ(B) < ε (see [3, p. 192]). In our case
two phenomena warn us that this condition is not expected to hold. First, if the
initial molecular velocity is extremely large, then it cannot be essentially slowed
down in a fixed time with a probability greater than ε > 0. Second, if the initial
configuration contains extremely many slow atoms, then they cannot be "swept
out" quickly from the unit interval.

Fortunately, a theorem due to Orey (Theorem 5.1 in [8]) is applicable in our
case. For the proof and the background we refer to the original paper; here we
summarize only the key notions directly used in our proof.

Orey's paper deals with Markov chains {SjJ on a measurable space Σ
satisfying the following conditions:
(i) The Borel field of the state space is separable,

(ii) There exists a σ-finite measure m on the state space such that

Pτob(entering E at some time| S0 = x)= 1,

for all x e Σ and all measurable set E with m(E) > 0.
Our Markov chain clearly satisfies these conditions with w = μ, using the

ergodicity of the dynamical system Λ/ (see [5]).
Let AcΣ be a set of positive μ-measure. This set generates the "process on A"

SAQ, SAι,..., sorting out the elements belonging to A from the initial chain. (Clearly
we need the recurrence condition mentioned above for this notion to be well
defined.) The conditional measure μA = μ(. \ A) is a stationary measure for the new
chain.

The essential point is that choosing the set A in an appropriate way, the process
on A satisfies the Doeblin condition.

Let τ { be the ίth nonnegative integer τ such that Sτ e A and let Rt be the vector
(Sτ. +1? Sτ. + 2, , Sτ. + j) (i = 1,2,...). Rt is a Markov process on the natural state space

oo

IJ Σm. Any function / on Σ can be extended to this state space:
m = l

/*((S1,S2,...,SJ)=/(S1)+/(S2) + ...+/(SJ.

With these notations Theorem 5.1 of [8] asserts that if the process on A satisfies
the Doeblin condition, / is nonconstant and EA\f*(Rί)\2+δ< oo (for a fixed δ > 0)
then the distribution of

approaches the standard normal one. (Here AA and DA denote the expectation and
variance with respect to μA.)

Now we give two abstract generalizations of the Doeblin condition, which are
easy consequences of Orey's theorem, but this setting makes clear the connection
between them and enables us to use this machinery in the original problem. At the
same time these ideas might be useful in similar problems, where the Doeblin
condition is satisfied except for a small set. That is why we first formulate a weaker
generalization, which is not strong enough in our problem, but helps us to
understand the underlying idea.

Given a Markov chain Sk on Γ with transition probability P and stationary
measure μ, which is recurrent in the sense that for all x e Γ and E C Γ, with μ(E) > 0,
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there exists an integer n such that P(SneE\S0 = x)=l. (This condition holds if
the chain is ergodic.)

Let a function / on Γ be given, which has a finite (4 + δ')ih moment, i.e.
ί \f\4 + δ dμ< oo for a fixed δf>Q. Suppose that there is a decreasing sequence of
r
sets Γk in Γ such that

ΓDΓ1DΓ2D...,μ(Γk)->0,

and the measure of A: = Γ\ΓX is positive

Proposition 3.1. With the notations and assumptions above, the central limit theorem
n

holds for the sums of type £ f(St) with suitable norming if there exists anε>0 such
ι = l

that
,., , , const
(i)

(ii) P(S^eA\S0)^ —^ for a.e. S0φΓk,

(iii) the process on A satisfies the Doeblin condition.

For the application of this theorem in a concrete problem we have to define a
"critical order" of each point x e Γ measuring to what extent this point spoils the
uniformity in the inequality (2). The set Γk consists of points with critical order of at
least fe. The appropriate definition of Γk should come from analyzing the problem
and understanding which phenomena cause the failure of the original Doeblin
condition. Then we have to prove that

(i) the set of critical points of order at least k is small;
(ii) from any point of order smaller than k we have a relatively large chance to get

into the non-critical set (A = Γ\Γί) in the next step;
(iii) the set A is non-critical indeed, i.e., the process on A satisfies the Doeblin
condition.

This theorem can handle those problems, where there is essentially one type of
critical behaviour (and a corresponding sequence of critical sets) which prevents us
from using the original Doeblin condition. But as we mentioned before, in our
problem there are two different phenomena (large molecular velocity and many
atoms) which hinder the application of the Doeblin condition. Therefore we need
another theorem which involves two different sequences of critical sets. Suppose
that there are two decreasing sequence of sets, Γk and Λk in Γ, such that μ(/i)-»0,
μ(Ak)->0 and the measure of A: = Γ\(Γ1uA1) is positive. Then we have the
following proposition.

Proposition 3.2. The statement of Proposition 3.1 holds if there exist numbers εk, δk,
ak and ρk for each k and an ε > 0 such that for k large enough

a) - const

const
(n) μ(A)<-^6T7

(iii) μ(S1 e A \ S0) ̂  εk for a.e. S0 φ A1 \jΓk;
(iv) μ(SxkφΛl \S0)^δk for a.e. S0φΓkvΛk;

ί \ fΛ \0 ^ ίΛ ϊ(v) (1 - εtf* ^ -̂ TΓ, (1 - δ^

(vi) the process on A satisfies the Doeblin condition.
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/ /C
[Suppose that εk, δk tend to 0 and αk, ρfc, — tend to infinity as fc-»oo, αnrf αfc is
\ \ αfc

wtegerJ

Remark that Orey's theorem guarantees that the limiting variance is automati-
cally positive, which shows the strength of this method since in many statistical
physical problems the proof of the positivity of the diffusion constant requires
further efforts.

Proof of Proposition 3.1. In order to apply Orey's theorem we have to prove that
Ί2

conditions (i) and (ii) imply EA Σ f(Si)\ < oo for an appropriate <5>0. Using

the Cauchy inequality several times we have

ί=l

2+δ

= Σ.

oo

^ Σ

^ Σk=l

2+δ

ί=l

l/2

l/2

Since ,„,.,_
we have, ha,

£|/|4»"

by the stationarity. So we get

t = l
Σ *"

1
? 5 + 3<5

and therefore it is enough to prove that μA(τ = fc+l)^const-

(Since we need a tail estimate, we deal only with large values of k.)
The following inequality is trivial

for

< since τ = k + 1The first summand can be estimated by 1
\

means that we have missed the chance to enter the set A at least k times. The second
one is smaller than

const 1 const
~ =

by the stationary. With the choice <5 = min( £',- 1 the Proposition is proved.
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Proof of Proposition 3.2. Following the previous proof, we have to prove that
const

: for a suitable δ > 0. It is clear that

_α f c

; = fc+l,#

const
The first two terms are estimated by 5 + £ as before. The third term is smaller than

/c

— - ΓfcΊ
(1 — δk)

ak k, since we have missed that chance to enter A0 at least — — ρk times
Lα/J

ΓfcΊ
of the possible times αfe, 2αfc, 3α f c,... | — | αΛ. The fourth term is smaller than

_α/c_

(1 — sk)
Qk, since τ = fc +1 means that being in Γ^Γ^A^ at least ρk different times, we

have missed the chance to enter Γ^Γ^A^). From these the proposition follows.
We remark that here we can multiply the estimates of the appropriate

probabilities (although the corresponding events are not independent) because (iii)
and (iv) give uniform estimates for a.e. S0 belonging to the corresponding set.

We also remark that similar propositions can be proved for the case of more
than two sequences of critical sets.

4. Proof of Theorem 1

Now we have to define the suitable sequences of sets Γk and Λk. They correspond to
the large molecular velocity and the large number of atoms in [0,1], respectively.
Let

Γk = {SeΣ:\V(S)\>ψk}
and

where V(S\ n(S\ and m(S) denote the molecular velocity, the number of atoms in
[0, 1] at the beginning of the unit time interval and the number of entering atoms,
respectively (remember that S corresponds to a specific history of the system
restricted to [0, 1] during a unit time interval, see Sect. 2). The number ψk and φk

will be determined later (φfc-> oo, φfc-> oo and φkeN are assumed), but remark that
their values for some small indices fc do not influence the conditions (i)-(iv), since
they are required to fulfill only for fc large enough. In the following proofs it will not
be emphasized but always assumed that all estimates are tail estimates, i.e., they are
valid only for fc large enough. Therefore it can be assumed that A = Γ\(ΓivAί)
consists of those points S e Σ for which n(S) = m(S) = 0 (there is no atom in [0, 1] in
the time interval I = [0, 1]), and | V(S)\ ^ K (K is a large constant to be determined
later). We remark that n(S) = m(S) = 0 guarantees that | V\ is constant in /. Clearly
μ(A) > 0. First we verify the condition (vi), since its proof makes transparent how
we can control the development of the system.
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Lemma 4.1 The process on A satisfies the Doeblin condition.

Proof. Let μ be the finite measure in the definition of Doeblin condition. Let S0 e A
be an arbitrary point and denote 7(1) = (X(l), F(l)) the position and velocity of the
molecule at time 1 (|F(1)| ̂ K, since the absolute value of the molecular velocity
remains unchanged if there is no atom). We prove that there exists a positive
ε = ε(K) (depending only on K\ such that for every BcA, μ(B)^s(K) S1φA and
S2 e A\B with probability at least ε(K). This would mean that the process on A
satisfies the Doeblin condition with ε = ε(K), n = \ and φ = μ, since SAQ = S09

SA1 = S2 and Prob(Sxl φB \ SAO)>ε(K). (By the strong Markov property we can
replace the random indices by deterministic ones on a suitable subset.)

Let an atom α enter [0, 1] at time ί, 1 ̂ ί^2, with velocity ι;<0, and no other
atom enter [0,1] in the time interval [1,3]. Clearly S1φA, and for S2εA it is
enough to guarantee that α leave [0, 1] before time 2, and that \V(2)\^K.

For a given 7(1) we have a map

Φ y ( 1 ):[l,2]xR_^»[0,l]xR,

where

denotes the molecular position and velocity at time 2 if α enters [0, 1] only.
Notation 7(1 )uα indicates that only 7(1) and α have influence on the molecular
position and velocity at time 2. We would like to ensure "sufficient spreading" of
7(2) for any given 7(1). The randomness is in α and its parameters (t,υ) have
positive (separated from zero) density. Therefore if Φy(1) is not close to a singular
transformation then we get a positive (moreover separated from zero) density for
7(2) on a large set. Thus the distribution of 7(2) cannot be concentrated on a small
set. Since S2 is uniquely determined by 7(2), this will give the result.

We distinguish two cases.

First case. \ F(l)| < 5. In this case one can find a time tλ such that 1 .3 ̂  ί x ̂  1 .5, and
the molecule would more freely (without any collision) between times tί and
t1 +0.1 if there were no atom α. (The bounds 1.3 and 1.5 guarantee that α should
have entered [0,1] after time 1, and it leaves this interval before time 2.)
Elementary calculations show that if K is large enough then there exist two
positive constants, cΐ and c2, depending on K, such that if cl < — v<c2 and α hits
the molecule between ίx and ̂  +0.1, then the post-collision velocity of the atom is
so large that it leaves [0, 1] before time 2, it does not recollide with the molecule
(since cl < — v and |F(1)| <5), and the post-collision molecular velocity is smaller
than K in absolute value (due to — v < c2). Moreover, c^ can be chosen so large that
α should enter [0, 1] after time 1.

The condition that α hits the molecule between t1 and ̂  +0.1 gives an interval
of length 0.1 for the choice of t for any v satisfying c1 < — v < c2. The set of all (ί, v)
satisfying these conditions is obviously a subset H0 = Hy(1) C [1, 2] x R_ of positive
v measure (v is the conditional measure on [l,2]xR_ inherited from the
distribution of the ideal gas under the condition that only α entered [0, 1] in the
time interval [1,3]). Remark that v(H0) does not depend on 7(1).

It follows from the construction above that Φy(1) is piecewise differentiable on H
since the curves Φy(J)(0, •) and ΦjΓ(J)(l, ) divide H0 into finitely many pieces on
which Φy(1) is differentiable. Let H be one of these pieces of positive measure.
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Moreover, by elementary calculation, its Jacobian is uniformly separated from
zero: \JacΦY(1}\^cκ>Q. The bound cκ does not depend on 7(1) and cκ<\ can be
assumed.

The points of [0, 1] x R can be identified by those points of Σ which contain no
atoms (fc = w = 0). Therefore ΦY(ί)(H) can be identified with a subset of Σ
[moreover ΦY(1)(H)cA], and the condition on the Jacobian guarantees that
μA(ΦY(i}(H))>0 uniformly. Moreover, μy4,α(Φy(ι)(H)) is also uniformly positive,
where βA>Λ denotes the conditional measure derived from μA under the condition
that only one atom (α) entered [0, l]_between times 1 and 3. By the way, for any
HcHwe have that v(H) = μA Λ(ΦY(l}(H)\ since Φy(1) is bijective and both measures
derive from the same Gibbs state.

Now if we choose ε(K)<^cκ min(μA α(Φy(1)(ί/)), v(H)), then for any subset
A0cA, μA(A0)<ε(K), the v measure of its pre-image Φγ({)(A0) will be smaller than

Therefore starting from any 7(1) we get out of any fixed set A0 of measure smaller
than ε(K) with probability greater than

Second case. |F(1)|^5. In this case there exists a time ί2 such that I . l^f 2 :gl .7
and X(t2) = 0 if no atom entered. (The bounds 1 . 1 and 1 .7 stand for the same reason
as in the first case.) This guarantees that the molecule would move freely between

times t2 and ί2 -\ -- , and this time interval should be taken for the collision with α.
K

Again elementary calculations show that the parameters (ί, v) of α can be chosen
in such a way that
- α should not enter [0, 1] before time 1
- α leaves [0, 1] before time 2
- the post-collision molecular velocity is smaller than K in absolute value.

The first requirement involves that —v^ 10, the second one is automatic and
the third one involves an upper bound for — v depending on K.

Similarly to the first case, there exists a set H C [1, 2] x R_ of positive v measure
such that if (ί, v) e H then these conditions are satisfied. From this point the proof is
analogous to that of the first case.

Now we go on verifying the conditions of Proposition 3.2. Numbers ψk will be
determined in such a way that (i) be satisfied. For this purpose we need the
following lemma.

Lemma 4.2. // at time 1 only the molecule were in [0, 1] and \V(l)\^K, and if for
any i \ V(ί)\ ^ψk>K, then there was an atom of velocity greater than ψk (in absolute
value) entering [0, 1] between times 1 and i.

This lemma points out an essential property of the physical system. Namely, it
asserts that it is impossible to speed up the molecule by many, but relatively show
atoms.

Consider the collision when the molecule first gains its greatest velocity |F|max

(in absolute value) between 1 and i. It should be a collision with an atom. Denote
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with v-,v+, V-, and V+ the pre- and postcollision velocities of the atom and the
molecule, respectively (|F+| = |F|max). The collision equations are the following:

u+ = -fcι?_+(l+ιc)7_, (3)

/ M-l\
where κ = ——- .V M+iy

From these it follows that |7+|^max(|7_|, |t;_|). Clearly |F_|<|7+|, therefore
|ϋ_|^|7+|^|7(i)|^φ* Since before the collision the molecular velocity was
smaller than | V+ \ ̂  |t;_ |, the molecule never collided with this atom before (between
any two recollisions the molecular path is longer than the path of the atom).
Therefore this atom arrived from outside with a negative velocity ί;_ greater than
ψk in absolute value.

Explicit computation shows that the probability of the occurrence of an atom
with velocity greater than ψk (in absolute value) between 1 and k +1 is smaller than

~β~
—- J e 2 dv^const-k-e 2

2π Vlc

This quantity is smaller than const y^n if ψk ̂  |/ " ' ' ~" |/ln/c. Let us fix ε = 1

ι/ 1 6

and then \p1[= \/ —

For the definition of φk we use condition (ii). For large fc, the event Λk is highly
unlikely since μ is inherited from the stationary Gibbs state which strongly
suppresses the particle condensation (due to the fast decaying tail of the Poisson
distribution). Clearly both n(S) and m(S) have Poisson distribution, therefore

μ(Ak) = μ(SeΣ: n(S) + m(s) > φk)

const

const
which is smaller than 7 if φk^ const- In k for any positive constant. Let us

rC

choose φk = [cQ lnfc], where the constant c0>0 will be specified later.
For the condition (iii) we give a good lower estimate for the following

probability:
(5)

if K<\V(S0)\<ψk and n(S0) = 0. (εk will be of order ^-mmfc-mmin^
Let ί0 denote the first molecular collision time with the wall 0 after time 0, and

let ίj be the first collision time with the wall 1 after ί0 if there were no entering

atoms. Since |F(S0)|>K>10 we have that t1<ί + Q3. Clearly tl — t0 =
A *

> — . Let ίi = ί0 H -- , then ΐ± ̂  ίx. Between times ί0 and tί we direct n atoms to the
Ψk Ψk

unit interval with negative velocities v ί9 v2, . . ., vn ̂  — 1 (the labelling corresponds
to the order of collisions). Let Fί = |F(S0)|, F2, V3,...9Vn denote the molecular
velocities before the collisions, and let FΠ + 1 denote the final molecular velocity
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The number of atoms and their velocities will be chosen in such a way that Vn + ί

is the first molecular velocity smaller than K in absolute value, F1? F2, ..., Vn is
positive and the atoms leave [0, 1] before time i + 1 without any recollision.

Iterating the collision equation Vi+ί = κVi-\-(\ —K)vt we have

If we choose n so large that κnV1<K, i.e. n — - - - - + 1, then clearly
L ln* J

FΠ + 1<K, and

would hold. Therefore - - - - + 1 is an upper estimate for n.
L In ic J

Moreover, if K is large enough (K>\\ then the post-collision velocities of the
atoms (vf) are greater than K [since v* = — Kvt + (l +K)Vt and |J^|>K, u f<0,
|i;t.| ̂  1], therefore they leave [0, 1] before time i + 1. Easy calculation shows that no
recollision occurs between times i and i+1. So the probability in (5) can be
estimated by the probability of that event that exactly n atoms enter [0, 1] in the

time interval [ί0, Fj of length — , their velocities are between 0 and — 1, and except
Ψk

for these atoms no other atom enters [0, 1] between times 0 and 2 (this needs to
guarantee S^ eA).

λn

Direct computation shows that this probability is e~λ — e~(2~λ\ where

^ const2dv=-7=. (6)

Clearly this probability decreases as n increases, therefore the worst case is
when V1 = ψk and n is equal to its upper bound given above (supposing that

λn°
ιpk> 2K). Then the uniform lower estimate for μ(St eA S0) is εk = e~2 —-, where

no = — , + 1 < const-Inln/c.
L -lnκ J

Now we choose ρk so that the first inequality of (v) be satisfied. Elementary

calculations show that (1 -εk)
βk^const ~ if ρk^e2(lnlnk}\ Fix ρk = e2(lnlnk}\

κ>
Remark that ρk tends to infinity slower than any power of k.

Finally we have to specify αk and δk for the estimate (iv). Let αfc = 2φk and δk = caf,
where c0 is fixed. Easy calculation shows that if c0 is small enough depending on CQ,
then the second inequality in (v) is also satisfied.

In the sequel we concentrate on the estimate (iv). Denote with Ω[0,1] the state
space of all configurations of particles in [0,1] with the natural measure μA

inherited from the Gibbs state μA. Let Z(z)eΏ[0,1] describe the positions and
velocities of particles in [0,1] at time L This is clearly Markovian. Let the function
n: £2[0,1]->N count the number of atoms in [0,1] that is n(Z(ί)) = n(Si) with our
previous notation.
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Suppose that all particles in [0, 1] have a small velocity. Then a not too fast
outside atom pushes the molecule against the wall at 0, and flies away from [0,1].
After the reflection, the molecule obtains a positive velocity. With this velocity it
can push out some atoms from [0,1], and, at the same time, it slows down quickly.
This can happen during a time interval of length 1 with a constant probability. If

this happens in y time intervals of length 1 between 0 and αfe, then the number of
αfcatoms in [0, 1] decreases by at least φk= — , i.e. this number becomes zero.

Now let us fix a configuration Z(0) in [0, 1] at time 0 with n(Z(0)) ̂  φk. Let E be
the following event:
- For each i = 0, 1,2, ...,φfc + l exactly one atom entered [0,1] with a negative

/ -ΛO ^6\

velocity smaller than mini — 20(1 + jc), — - - , -- ) in the time interval (F-fΐ,
\ 1 — K K J

F+ι + 0.4), where t=*φk — 2.
- No other atom entered [0, 1] between times 0 and ock.
Clearly

where c0 = min(c2, c3). Constants c2 and c3 depend only on β and M. We prove that
on the event E we have n(Z(otk)) = 0 if n(Z(0)) g φk, i,e. δk = cΛf is a suitable estimate
for (iv).

We need the following elementary propositions to formalize the idea outlined
above. Since the proofs consist of elementary calculations, we omit them.

Proposition 4.1. // there is no atom in [0, 1] at some time ί, then any atom entering
[0,1] at time t with absolute velocity greater than 20(1 +κ) leaves [0,1] before
t-{-0.4, supposing that no other atom enters until ί + 0.3.

The next proposition describes the situation in [0, 1] at time ΐ=φk — 2 on the
event E. Clearly Z(t) contains at most φk atoms.

Proposition 4.2. On the event E at least one of the following assertions holds for
Z(t): _
(A) Z(t) contains no atom;
(B) each particle in Z(t) has a velocity smaller than 8 in absolute value.

Proposition 4.3. Suppose that at some time t we have n(Z(ί))^l, |F(ί)|^8 and no
atoms in [0, 1] have a negative velocity greater than 8 in absolute value. Assume that
between t and t + 1 no outside atom entered [0, 1] except for y, which entered between

ί 98 ^fi\
times t and t-f 0.4 with a negative velocity smaller than mini — - - , -- I. Then

\ 1—κ K)
n(Z(ί + l))^n(Z(ί))-l, ana at time ί + 1 either |F(£ + 1)|^8 and no atoms in [0,1]
have a negative velocity greater than 8 in absolute value, or there remains no atom
m[0,l].

Now suppose that n(Z(0)) ̂  -y = φk, and we prove that n(Z(αfc)) = 0 on the event

E. By Proposition 4.2 (A) or (B) holds.
If (A) holds, then by Proposition 4.1 each_atom entering between t + i and

H- ϊ -I- 0.4 (/ = 0, 1 , . . . , φk + 1 ) leaves [0, 1 ] before F+. / + 1 . Therefore there is no atom
in [0, 1] at integer times after ί, thus n(Z(αk)) = 0.
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If (B) holds then iterating Proposition 4.3 and using Proposition 4.1 we have
that

n(Z(t + 0) ̂  max(0, n(Z(t)) - ϊ) .

Since n(Z(t))^n(Z(Q))^φk, we get

n(Z(ak)) ^ n(Z(t + φk + l))^ max(0, φk-(φk + l)) = 0.

This accomplishes the proof of Theorem 1.

5. Moment Estimations

In this section we prove that the fifth moment of the random variables N(l), JV0(1),
Λ/Ί(1) and β(l) are finite, i.e. we prove Corollary 1 (for notations see Sect. 2).

Let R denote the number of atoms entering [0, 1] between times 0 and 1.

Lemma 5.1. With the notations above the following inequalities hold:
(i)

(ii)
(iii)

Proof, (i) Let γ an atom entering [0,1]. Clearly it can collide with the molecule
several times. The key observation is that y can change the sign of the molecular
velocity only at most one. It is due to the fact that, if 7 changes the sign of molecular
velocity, then it has a negative pre- and a positive post-collision velocity, and
clearly the velocity of y cannot decrease. Thus the inequality (i) follows, since
between two collisions with the wall 0 there should happen a change in the sign of
the molecular velocity, i.e. a collision with the wall 1 or with an atom.
(ii) This inequality is the consequence of the fact that between two collisions with

the same atom, the molecule should collide with the wall 0.
(iii) Trivial.

Since the distribution of R is Poisson, its moments are finite. Using Holder and
Cauchy inequalities several times and the previous lemma, for the finiteness of the
fifth moment of JV(1), N 0 ( ί ) , Λ^(l) and 2(1) it is enough to prove that
£(<2(l))10<oo. For this purpose we prove that the distribution of β(l) has an
exponentially decaying tail. If β(l)^c, then at some time between 0 and 1 the
molecular velocity has to be greater than c (in absolute value). But using the idea of
Lemma 4.2, we have that it is impossible, unless the molecular velocity at time 0
were greater than c, or an atom faster than c entered [0,1]. But obviously both
events have exponentially small probability with respect to the equilibrium
distribution.

6. Outline of the Proof of Theorem 2 and its Corollary

Since the proofs for the one- and two-sided models are essentially the same, we
only point out the nontrivial alterations.

In the proof of Lemma 5.1 we constructed a set of suitable outside environments
in the time interval [1, 3]. Now we should add to this construction the requirement
that no atom enter [0, 1] in this time interval from the left. The measure of the
suitable set becomes smaller but remains positive.

The same trick works in the construction of environments for the estimations of
(iii) and (iv); we take a supplementary condition that no atom entered from the left.
It modifies the constants by a factor corresponding to the probability that no atom
entered from left, but it does not change the estimates.
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The inequality (i) of Lemma 4.1 remains valid if we denote with R the number of
all entering atoms. Instead of inequalities (ii) and (iii) the following ones are true:
(ii)' N'M^N

(iiiy Ni(l) +
These inequalities also imply the necessary moment estimates.

7. Some Remarks on the Multidimensional Case

Consider the multidimensional equivalent of the present system, which is
described and investigated in [4]. In this model we confine the molecule, which is a
hard ball (with positive radius), to a convex compact domain with a smooth
boundary. This boundary serves as a semipermeable barrier, i.e. it does not affect
the motion of the point particles of the multidimensional ideal gas, but it reflects
the molecule. As the investigations on the Bernoulli property of the one-
dimensional model of [5] has led to the multidimensional generalization, the
question naturally arises how one should modify the present proof to obtain a
similar central limit theorem for the multidimensional model.

Attentively reading this proof, one can easily define a suitable set A (no atoms in
the domain and bounded molecular velocity) and prove that the process on A
satisfies the Doeblin condition. For this purpose one can use the idea of Lemma 3
in [4], i.e. to compute that collisions with two suitably entering atoms yield a full
rank perturbation in the phase point of the molecule. Since the precollision
molecular velocity is bounded, it can be proved that the Jacobian of this
perturbation is uniformly bounded away from zero. This yields a sufficient uniform
perturbation for the phase point of the molecule, which assures the Doeblin
condition (see Lemma 4.1).

Qualitative examinations show that in the multidimensional case not only two
but three phenomena appear which hinder the Doeblin condition. Besides the
large molecular velocity and the large quantity of atoms in the bounded domain,
any configuration containing a slow atom very close to the boundary of the
domain also involves a long memory decay. In this case the problem comes from
the geometry of the system: it is very unlikely to hit an atom close to the boundary
by a relatively large ball, since the ball gets reflected from the wall before it would
reach the atom. This reasoning supports the idea that the state space should be
divided by three different sequences of sets. At the present time we are able to give
effective estimates only for the sets describing the large molecular velocity [similar
to (iii)], and we cannot treat effectively the other two phenomena, but we are
convinced that this can be done (the higher the dimension, the smaller the chance
of recollisions, which should reduce the memory). Until this progress is not made,
there is no point in giving more technical details about the previous steps outlined
above.

Acknowledgements. The authors are very grateful to D. Szasz and A. Kramli for valuable
discussions and their encouragement. We are also indebted to D. Dϋrr for his comments and
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Communicated by J. L. Lebowitz

Note added in proof. Misha Soloveychik has pointed out that the positivity of the limiting variance σ in
Theorem 1 is not necessarily true. It turned out that Orey's theorem (Theorem 5.1 in [8]) we were using was
incomplete. Orey used the usual CLT for Markov chains satisfying the Doeblin condition, but seemingly he did
not check the positivity of the limiting variance of the sum. Therefore an extra condition is needed in his
theorem. This mistake has the consequence that in our Theorems 1 and 2 the positivity of σ and σ' does not
follow automatically. We expect that it is true for all functions except for some trivial counterexamples where the
sum £ /(Sj) remains bounded (e.g. if / denotes the signed molecular displacement - the counterexample given by
Soloveychik).

We can show this positivity for a certain class of functions including the total molecular path Q(T] and the
numbers of collisions N0(T) and N^T). In the sequel we outline briefly the argument and the necessary changes
in the setup. We omit all technical and formal details.

First we have to modify the Markov chain. So far an element of the chain described the history of the system
in [0,1] in a unit time interval, i.e. we cut the time axis into pieces of length 1 at points tn = n(n is integer). Now we
modify this sequence of cuts tn: if the molecular velocity is larger than 4 in absolute value and there is no atom in
[0,1] during the time interval [tn, £„ + !], then we put the next cut ίn +1 at the last point on the time axis when the
molecule reached the wall at 1 before ίn + l.

It can be easily checked that this modification does not essentially effect Sect. 4. The CLT for this new chain

gives asymptotic normality with norming j/ή, although the corresponding norming should be j/ίjj" considering
the time up to the nth step. But the ergodicity of the chain guarantees that tn/n converges almost surely to a

positive number which proves the asymptotic normality with the norming ]/ί̂ , too.
Finally, for the positivity of the variance one has to prove that

l iminf-Wj; f(
n V = l

Let B denote the following subset of the new state space: B = {there is no atom in [0,1], \V\^4, the molecule
starts at the wall at 1}. According to the modification, all paths corresponding to an element in B end at the wall
at 1, and it is also clear that μ(B) > 0. The key observation is that if S, e B and no atom enters [0,1] in the next unit
of time then Si + 1 = Si. On the other hand, the number Nj of consecutive elements of the chain falling into B at the
/h occasion is totally independent of the history of the chain before and the ideal gas, so Nj is a Poisson random
variable and D2(N/)>0.

Easy calculation shows that

lim inf - D2 ( £ /(S,)) £ const Dj(/(S)) D2(NJ μ(B),
n \, = ι /

where D\ denotes the variance with respect to the stationary measure restricted to the set B. Therefore the
positivity of the limiting variance is proved if D|(/(S)) > 0, and it is easy to see that this is the case for the
functions N0(T), Nt(T) and Q(T) in Corollaries 1 and 2.

We want to express our gratitude to Detlef Dϋrr who was helpful in finding the error in Orey's paper and
encouraged us to correct our proof and to Misha Soloveychik for his careful reading of our paper.




