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Abstract. The Fourier inversion theorem is proved for a rank-one noncompact
homogeneous space, the hyperbolic superplane. The proof makes use of some
novel features of perfectly graded superspaces, which are not encountered in
classical geometric analysis. An application to quasi-one-dimensional disordered
one-electron systems is given.

0. Introduction

The theory of quantum transport and localization in disordered one-electron
systems distinguishes between three universality classes, each being described by
a statistical ensemble of Hamilton operators with local gauge invariance, which
is either orthogonal, or unitary, or symplectic. Avoiding the replica trick used in
the pioneering work of Wegner [15] and of Wegner and Schafer [11], Efetov [5]
showed how to calculate ensemble averages of products of Green's functions for
each universality class, by means of a mapping onto nonlinear σ models with super
coset spaces G/K for their target spaces. A fruitful advance in extracting physical
information from these models has recently been made by lida, Weidenmuller and
Zuk [8]. Starting from the Landauer-Bϋttiker formula for the conductance [12],
and using 5-matrix techniques developed in the context of statistical nuclear
reaction theory [9,13], they mapped the problem of calculating the average
conductance of a quasi-one-dimensional metallic system onto the problem
described in the next paragraph.

With e being the unit element of G, let o = eK denote the origin of the space
G/K that is associated with the disordered conductor under consideration. The

elements of G/K are left cosets gK (#eG), which are written g o = gK, the operator

"•" denoting the transitive action of G on G/K by left translation. Let G/K be
given its natural G-invariant geometry, let ΔG/K denote the Laplace-Beltrami
operator on G/K, and let f ( g o;s) be the solution of the heat equation

aj = ΔGlκf (o.i)
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for a certain initial condition f(g-o',ty = f0(g o\ which we do not specify here,
except to say that it is determined by the coupling of the disordered conductor
to external leads. The average conductance <c> is then given by

<c}= J Dgκ\f(g o',L/2ξ)\2, (0.2)
G/K

where Dgκ is the G-in variant Berezin measure on G/K, and L/ξ the length of the
system measured in units of a suitably defined correlation length ξ. Thus, in a
qualitative manner of speaking, quantum mechanical transport in an ensemble of
disordered conductors with orthogonal, unitary, or symplectic gauge symmetry,
is related to diffusion on the corresponding supermanifold G/K. The relation
becomes exact if the disordered system is described by the limit N-+OO of Wegner's
JV-orbital model [14]. Formulas of the type (0.2) exist not only for the mean value
of the conductance but for any of its moments.

What makes the above formulation superior to earlier approaches [5] based
on the Kubo formalism is the very high degree of group symmetry of Eq. (0.1).
Although the average conductance has so far been calculated only in the limits
L/ξ « 1 [8] and L/ξ » 1 [5], it is reasonable to believe that the solution to the
problem posed by Eqs. (0.1) and (0.2) can be obtained in exact and rather explicit
form for arbitrary values of L/ξ. Certainly, given the heat kernel W on G/K, we
have the formal solution

<c>= J Dgκ J Dhκf0(h o)W(g-*h;L/ξ)f0(gΌ). (0.3)
G/K G/K

(We mention in passing that heat kernels for a certain class of super Laplace
operators have been calculated by Aoki [2].) However, we can go even further
than in (0.3), by ijsing the Fourier transform f\->f and a generalization of the
Plancherel formula to functions on G/K, to write

<c>= f lDk\fQ(λM2-Llξ(^2^2)dμ(λ\ (0.4)
a + * \ K /

Here a + * is the dual of a positive Weyl chamber for G/K, Dk the invariant Berezin
measure on K, \p\2 + \λ\2 an eigenvalue of ΔG/K, and dμ(λ) the Plancherel measure.
It turns out that the calculation of the Fourier transform of /0 is quite simple for
realistic disordered samples with a large number of scattering channels contributing
to transport at the Fermi energy. Also, the integral over K is very easy to perform
since /0 is the component of a vector that transforms as the adjoint representation
of K. Therefore, from a purely practical point of view, the only difficult step in
this approach is the construction of the Plancherel measure dμ(λ). On a rigorous
level, however, one needs to justify the Plancherel formula, and this is a nonstandard
mathematical problem as we shall now explain briefly.

The base manifold of Efetov's super coset space G/K for each universality class
is obtained by forming the direct product of two symmetric spaces, one compact
and the other one noncompact. (The outer integral sign in (0.4) actually stands
for both integrations and summations.) The theory of Fourier analysis on symmetric
spaces has reached a highly developed level [6, 7] but, as a matter of fact, the
techniques used for spaces of the compact and noncompact type are rather different.
In the first case, one exploits the properties of roots and weights of a Cartan
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subalgebra, whereas in the second case one studies the asymptotic behavior of the
spherical functions and is led to the introduction of Harish-Chandra's c-function.
It is thus clear that a theory of Fourier analysis on Efetov's super coset spaces
requires not only the generalization to supermanifolds, but also a considerable
extension and unification, of classical theory.

Having established the general physical context, we now turn to the more
specific subject of the present paper. We will solve the problem analogous to, but
simpler than, (0.1) and (0.2) which is obtained by replacing Efetov's spaces by a
rank-one homogeneous space G/K, referred to as the "hyperbolic superplane."
This space shares with Efetov's spaces two prominent features: (i) perfect grading1

and (ii) noncompactness. From the author's experience, the nonlinear σ model
which has the hyperbolic superplane for its target space may in fact serve as a
useful "toy model" for .studying diffusion and localization in disordered one-
electron systems.

To construct the hyperbolic superplane, we start from its base manifold, which
is the noncompact symmetric space H2 = S0(2, 1)/S0(2). H2 may be viewed as a
real manifold with dimension two or, alternatively, as a complex manifold with
(complex) dimension one. In either view, there exists a natural way of adding two
real anticommuting coordinates (respectively one complex anticommuting
coordinate) to extend H 2 to a perfectly graded supermanifold. The two spaces so
obtained differ from each other in their natural geometry, which is defined by the
requirement of in variance under the corresponding extension of SO (2, 1) to a Lie
supergroup. The space called the hyperbolic superplane and analyzed in the present
paper is the first of these, i.e. the one obtained by viewing H2 as a real manifold.
Being a homogeneous space with invariant geometry, it has constant curvature,
as is anticipated by the title of the paper. It turns out that the second space,
obtained by viewing H2 as a complex manifold, is not a suitable prototype for
the study of disordered systems, as it has vanishing scalar curvature and therefore
does not lead to "exponential localization" in the limit of strong disorder.

As the hyperbolic superplane has a noncompact symmetric space for its base
manifold, one may try to develop its Fourier analysis by direct generalization of
classical theory. Such an approach is indeed viable. However, in the process of
making the proofs rigorous, the author discovered an independent and simpler
proof of the Fourier inversion theorem, which takes advantage of two properties
that are due to perfect grading. As is discussed in more detail in Sect. 6, these are:
(i) the appearance of a boundary term in the formula for changing to polar
integration variables, and (ii) the scale invariance of the Plancherel measure dμ(λ)
at infinity.

To complete this introduction, we state the result that is obtained by using
the hyperbolic superplane as a toy model for <c>, see Eq. (5.3):

<c> = 2 e-(

o

An easy computation shows that <c> ̂  ξ/L for L« ξ and

In the present paper the word "graded" means "Z2-graded"
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for L » ξ. The first result is Ohm's law for quasi-one-dimensional systems, and the
second corresponds to exponential localization. The corrections to Ohmic behavior
("weak localization") are similar to those for Efetov's model I, describing disordered
one-electron systems with potential scattering only (orthogonal universality class).

The material of the present paper is organized as follows. In Sect. 1, the
hyperbolic superplane is introduced as a quotient space G/K, G being a connected
noncompact semisimple Lie group and K a maximal compact subgroup. Section 2
contains Theorem 1, which states the correct formula for transforming to the
integration variables suggested by the Cartan decomposition for G. The spherical
functions for the hyperbolic superplane are introduced, and some of their properties
are established, in Sect. 3. The heart of the paper is Sect. 4, where the invertibility
of the Fourier transform on G/K is proved. The Fourier inversion theorem is then
used in Sect. 5 to calculate the average conductance of an ensemble of disordered
wires. A discussion is given in Sect. 6; some readers might benefit from reading
this section prior to the body of the paper.

1. Hyperbolic Superplane

The notation used in the present paper is what the author considers a reasonable
synthesis of Berezin's notations in the context of superanalysis [3] and the notation
used in Helgason's latest volume on classical geometric analysis [7]. Since Berezin's
notational conventions are perhaps not too familiar, a glossary is given in the
Appendix.

We introduce the hyperbolic superplane and discuss various geometric concepts
associated with it. The construction uses two matrices θ and τeGMat(3,2|y\),

having the properties θ2 = 15 and τ2 = jtf. Given these, we define a connected
noncompact semisimple Lie group G c GMat(3,2|/l) by

where τg = τgτ~1;θg = θgθ~1',gab with a,b taking the values 0,1,2,3,4 are the
elements of the supermatrix g\ and multiplication is the usual matrix multiplication
in GMat(3,2|Λ). Let K be the subgroup of θ-stable elements of G:

Then by the term "hyperbolic superplane" we will mean the quotient space G/K
consisting of the left cosets #K (geG). e. will denote the unit element of G, and
o = eK the origin of G/K.

Taking G to act on G/K by left translation in the usual manner, we endow
G/K with its natural G-invariant geometry, given by the unique (within normaliza-
tion) G-invariant metric tensor, ds2. We anticipate that in this geometry G/K is
proper Riemannian in the sense that m(ds2(u,u)) ^ 0 for any vector field u.

There exist various equivalent ways of representing G/K, of which we mention
two.
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(1) G/K as a submanifold of G. If Π maps geG onto Π(g) = g(θg)~l = gg\
then Π(G) is a submanifold of G and may be identified with G/K.

(2) G/K as a super Poincare disk. Consider the (nonlinear) space of supervectors
ve<C2'2(Λ) whose components va (a = 1,2,3,4) satisfy the reality constraints ϋί=vί9

v2 = v2, v3 = v4, v4 = —v3 and the condition m(vl + v2

2) < 1. Turn this space into
a Riemannian supermanifold, D, by endowing it with the metric tensor

4

(1 — v^v)~l ^ dϋa(l — ^)~1

ajjdvb. (l l)
a,b=l

(The dyadic product ι;ι;teMat(2J2|Λ) has matrix elements (vv^)ab = vavb9 and we
define Λ = γjvava.) D is called the Poincare model of the hyperbolic superplane

and is mapped diffeomorphically onto G/K by T^rD

_Λ Γ ι/2 ^(i.^-i^x
IK, (1.2)

l — y ' f ) 1; (1 — υvΊ) ' J

the expression (1.1) being the pullback of the G-invariant metric on G/K by
TD. It is evident from (1.2) in combination with the definition of D that G/K is
perfectly graded: dim (G/K) = dim (D) = (2,2).

Next, we introduce the Lie algebra of G:

g = {XeMat(3,2|Λ)|τAX = X, X^ = -ΘX}.

(g is a "Lie algebra with Grassmann structure" in the terminology of Berezin [3].)
It is instructive to contemplate the explicit form of an element Xeg:

ί°ί
b

X

V I

t

0

φ
n
ή

b
-φ

0

K

K

ϊ
-ή

— K

id

z

-χ\
η

K

— z

-id)

X= b φ 0 -K K . (1.3)

By the definition of g, the variables t,b,φ and d are real elements of °/l, ze°Λ is
complex, and χ, χ, η, ή, K, and K are element of 1Λ. With Δd(g)X = gXg~l being the
adjoint action of G on g, we introduce an Ad(G)-invariant symmetric form < v>
on g by <Jf, 7> = ̂ str XY. Also, let g = k + p be the Cartan decomposition fixed
by the Cartan involution θ. Then it follows on general grounds, and it is also evident
from (1.3), that <X, Xy is positive on m(p). Since the restriction of < , > to p induces
the G-invariant metric on G/K via the exponential mapping, G/K is proper
Riemannian as stated earlier.

An important concept in the analysis on G/K is that of a maximal abelian
subgroup A c 77(G) d G. In the present case A has dimension one and, to be
definite, we take it to be the group of matrices

//coshί sinhΛ \ 0( ,13 , ί6°Λίreal.
\\s inhi coshί/ /

A + is defined as the subset of elements α,eA with m(t) > 0. The Lie algebra a of
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A consists of the multiples tH0, with ίe°Λ real, of the generator

Roots and root vectors of the pair (a,g) are defined by the equation
ad(tH0)XΛ = θί(t)XΛ. There exists a single non vanishing positive root α(ί) = ί, the
general element of the corresponding root space being

\

0 0 b χ -χ\

0 0 b χ -χ

b -b 0 0 0

χ -x o o o
χ -I o o o

(1.4)

Here, be°/l, b real, and χ,χeVl. It is useful to assign to each root a multiplicity
wα. In the case of Lie algebras with Grassmann structure, we define mα as the
difference of the (real) dimensions of the even and odd subspaces of the root space
corresponding to α. Thus, the multiplicity is 1 — 2 = — 1 for the above root. The
linear space of elements of the form (1.4) is a nilpotent Lie algebra, denoted by n.
The nilpotent subgroup of G that has n for its Lie algebra is denoted by N.

2. Integral Formula for the Cartan Decomposition

In this section, and at the beginning of the next one, we present, largely without
proof, a number of results that will be used in developing the Fourier transform
on G/K in Sect. 4. Some of them have been proved by Berezin [3], others, since
G is a connected noncompact semisimple Lie group (albeit with Grassmann
structure) and K a maximal compact subgroup, follow rather directly by
generalization from classical geometric analysis [7]. However, one especially
important result, Theorem 1, has no counterpart in classical analysis, and in this
case a detailed proof will be given.

Let us agree that the integration domain for the commuting integration
variables in any Berezin integral written J ... is m(P), to keep the notation simple.

p
Let us further agree that for a supermanifold P of dimension (p,q), the term
"function on P" abbreviates "Λ^-valued function on the /^-dimensional base
manifold of P." With this terminology, we denote by @(G/K) the space of compactly
supported C°° -functions on G/K. There exists a G-invariant Berezin integral

ί £0K/(0o0'0)= ί Dgκf(g o)9
G/K G/K

which is well-defined and has a coordinate-independent meaning for
[3]. A natural normalization is provided by the proof of Theorem 1 below.

Given the Iwasawa decomposition G = NAK [7] in the form

g = n(g)a(g)k(g), a(g) = exp (t(g)HQ\ (2.1)

the relations
k(mg} = mk(g\ t(mg) = t(g) (2.2)
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are true if m is an element of M, the centralizer of A in K. Let p be half the sum
of a set of positive roots,

It is stated in Proposition 3.8 in Chap. II of ref. [7] that, when N acts on G/K,
the radial part of ΔG/K for the transversal submanifold A o is given by

*MA*~P-|PI2, (2.3)

where ZlA is the (Euclidean) Laplacian on A o, ep denotes the function a o\-^ep(t(a)}

on A o and, in the present case, \p\2 = 1/4.
Our next subject is an integral formula for functions on G/K which is related

to the Cartan decomposition G = KA+K [7]. Let da denote the Euclidean measure
on A. (Measures written with a capital D are genuine Berezin measures, whereas
da is an ordinary measure not involving any anticommuting variables.) The
mapping (/cM,α)ι— >/cαK is a difleomorphism of (K/M) x A+ onto the set of regular
elements of G/K. Therefore, denoting by DkM the K-in variant Berezin measure on
K/M, and introducing

(5(exprtf0) = Π (sinhα(r))m

α > 0

we might expect that J Dgκf(g o) equals
G/K

ί ( ί DkMf(ka o)}δ(a)da,
A+ \ K / M /

by the analogy with classical geometric analysis; see Theorem 5.8 in Chap. I of
ref. [7]. However, it is the following, modified statement that is true. Let the
normalization of the measures Dgκ, DkM and da be fixed by Eq. (2.7) and the text
preceding it.

Theorem 1. For any

ί Dgκf(g o)=f(o)+ J J DkMf(ka o))δ(a)da.
G/K A + \ K / M

(2.4)

Proof. We will prove the theorem by explicitly writing out both sides in suitable
coordinates and carefully performing the relevant variable changes. Consider the
map

(r, φ, ή, η)}r-> Tc(r, φ, η, η) = exp

/o
0

0

0

VO

0

0

φ
0

0

0

-φ
0

0

0

0

0

0

0

0

o\
0

0

0

o/
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exp
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0
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0

0

0

η
n

0

0

0

0

0

0

-n
0

0

0

°1
n
0

0

o/

exp(rH0)K. (2.5)

Here, r subject to m(r) > 0 parametrizes A + by ri—>expr/f0, while φ,η and 77 serve
as coordinates of K/M. By evaluating the square root of the superdeterminant of
the G-invariant metric tensor, the components of which are given by

(dr)2 + (sinh2 r)(l - 2ήη)(dφ)2 + 2(sinh2 r)(l - ήη)dήdη (2.6)

in these coordinates, we find T*(Dg κ ) = const x (sinhr)~ ldrdφd ήd η, where
dη = d/dη. Here, and throughout the paper, we fix the normalization of Dgκ by
taking the constant to be (2π)~1. Normalizing the measure DkMδ(a)da accordingly,
we have the result

f J )
1 2π

^ (2.7)
2π o \ o /

On the left-hand side of (2.4) we use the coordinates (1.2), writing

.

The image of Dgκ under the inverse of TD is given by

T$(Dgκ) = Dv(l - v^vΓ 1/2, where Dv = (Iπ

as follows from the expression for the G-invariant metric on D, Eq. (1.1). Setting

F0(x, y, f, 0 = (1 - x2 - y2 - 2ζζΓ1/2f(TD(v(x, y, C, 0)), (2.8)
we obtain

ί Dgκf(g o) = ±- j d-ζdζF0(x,y,ζ,ζ)dxdy.
G/K 2πx2+y2<1

By comparing (1.2) with (2.5), we see that the coordinates (x,y,ζ,ζ) and (r,φ,ή,η)
are related in the following way:

- = tanh r (2.9)

/ cos φ^/l — 2ηη \

sinφ^/l —2ήη

n
n

We will now change integration variables in three steps. First, we introduce polar
coordinates according to x — u cos φ, y = u sin φ, ζ = uή, and ζ = uη, which leads to

ί
G/K
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where F^(u, φ, ή, η) = F0(u cos φ, u sin φ, uή, uη). In the second step, we set

u = w^/1 — 2ήη = w — ήη w, (2. 10)

all other variables remaining unchanged. It is known from [3], and has been
further elaborated upon in [10], that a variable transformation involving the shift
of an even Variable by nilpotent terms may give rise to boundary contributions.
The extra term f(o) in (2.4) is precisely such a boundary term, being generated
by the change of variable (2.10). To see how this comes about, consider

_ _
— Π j F-ήη^φ9ή9ηφ w
2πo\o

* 1 /2π / β \ \

= — Π f dήdη( F^φ^ri-ήηu — F^φΛty }dφ liT1*!,
2 π o \ o \ du J J

where we have expanded F1 with respect to the nilpotent quantity in its first
argument. The total derivative term can be integrated and yields, since the
contribution from the upper boundary vanishes by the assumption of compact
support for /, the result -F^O, -,-,•)= - F0(0, 0, 0, 0) = -f(o). Hence,

ί D9κf(9'θ) = f(o) + ±-$( j dJnF2(^φ^η)dφ\^d^ (2.11)
G/K 2π o \ o /

where F2(w, φ, ή, η) = F^vv^l — 2ήη, φ, ή, η). In the final step, we recall Eq. (2.8)
and set w = tanhr, F3(r, φ, ή,η) = (cosh r)~1F2(tanhr, φ,/y,^), thereby turning Eq.
(2. 11) into

ί
G/K 2π o \ o /

This last integral is nothing but the second term on the right-hand side of Eq. (2.4)
since F3 = /°TC, as is seen by recalling Eqs. (2.7) and (2.9) and forming the
composition of the three variable transformations given.

Corollary. It is evident from the above proof that
2π

J DkM = (2πΓi $(dήdη l)dφ = 0. (2.12)
K/M 0

3. Spherical Functions

A central role in the Fourier analysis on G/K is played by the so-called spherical
functions on G/K, introduced in the present section.

Taking t(g) to be the coordinate appearing in the Iwasawa decomposition (2.1),
we define for λe<C functions φλ on G by (Harish-Chandra)

Φλ(9)= ί D/CMexpU-l^ + αX/c-1^)). (3.1)
K/M

This definition makes sense since t(Mg) = t(g\ see relations (2.2). Clearly, φλ is
bi-invariant under K, which is to say that φλ satisfies φλ(k1gk2) = φλ(g) for fcl5 /c2eK.
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We may therefore regard φλ as a K-radial function on G/K (i.e. as a function on
G/K left-invariant under K) and, since the Laplace-Beltrami operator ΔG/K

commutes with left translations and has the radial part given in (2.3), φλ is an
eigenfunction of ΔG/K, the eigenvalue being —(λ2 + £). We will call the functions φλ

the spherical functions on G/K, by a natural extension of classical terminology
[7]. Notice one important feature: φλ vanishes at the origin since, by Eqs. (3.1)
and (2.12),

ΦM = ί D*M = 0.
K/M

This means that one cannot fix the normalization of the spherical functions by
requiring φλ(e) = 1 as in the classical case. A natural normalization is that given
by Eq. (3.1), with DkM normalized as implied by the first equality in (2.12).

In the proof of the Fourier inversion theorem we will use the identity (Lemma
4.4 in Chap. IVofre f . [7])

φλ(g~1h)= j DkMe(-1/2-iλ)t(k-^e(-1/2 + ίλ}t(k-lh\ (3.2)
K/M

Setting in this relation h = e, we find φλ(g~l) = φ-λ(g), and, because
0-1 = 00 = 000-1 andfleK,

ΦJfl) = Φ-jfl-1) = Φ-λ(a) = φλ(a-*). (3,3)

The study of the behavior of φλ for large values of r leads to the introduction
of Harish-Chandra's c-function, defined for Re(ΐλ) > 0 by

c(A)= lim e(-1/2-iλ)rφλ(exprHQ). (3.4)
r-* + oo

The most economical way of evaluating c(λ) is provided by Theorem 6.14 in Chap.
IV of ref. [7], stating that

where Dn isjhe (suitably normalized) invariant Berezin measure of the tiilpotent
group N = ΘN. Parametrizing N through its Lie algebra, and using Theorem 3.8,
Chap. IX, and Corollary 4.4, Chap. VI, of ref. [6], we obtain for c(λ) the integral

+ 2χχ)l/2-iλ)db9

which in fact converges for Re(zλ) > 0. Evaluation gives

. (3.5)

This result for c(λ) can be extended to a meromorphic function on the entire
complex /l-plane. For real λ in particular,

, (3.6)
A 4

by standard identities for the Gamma-function [1].
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We now derive the series expansion for φλ in terms of exponential functions.
From expression (2.6) for the G-invariant metric, we know that the K-radial part
of the Laplace-Beltrami operator ΛG/K is given by (sinhr)δr(sinhr)~1δl.. Writing
it in the form (drdr — coth r dr\ we see that φλ(exprH0) satisfies the differential
equation

(drdr - coth r dr + (λ2 + 1/4)) F(r) = 0. (3.7)

In the limit r-> + oo this equation contracts to (drdr - dr + (λ2 + l/4))F(r) = 0,
which is solved by the functions e

(1/2±iλ}r. The hyperbolic cotangent has the series
expansion

00

c o t h r = l + 2 £ e~2n\
n= 1

which converges for r > 0. This leads us to seek a solution of Eq. (3.7) in the form

Hr, (3.8)

where we take γ0(λ)= 1. Inserting (3.8) into (3.7), and comparing the coefficients
of the functions ^1/2 + iA~2")r for n= 1,2,..., we obtain the recursion relation

γn(λ) = - (n(n - iλ))^ (n - / - 1/4 - a/2)yn_^\ (3.9)
1 = 1

which defines yn(λ) as a rational function of λ. To decide whether (3.8) with γn(λ)
determined by (3.9) in fact provides a solution of (3.7) for r > 0, we must investigate
the convergence properties of the sum over n. Although this sum can be shown
to converge for all complex iλφtί, it will suffice for our purposes to prove a
weaker statement.

Lemma 1. \yn(λ)\ ^ 1 for complex λ with Re(U) ̂  1/2.

Proof. Taking the absolute value on both sides of (3.9), we get the inequality

1=1 nn-ι

Let us set λ = --- h a + ib with a, b real and b ̂  0. Then

\n(n-iλ)\ n

1 "
The inequality \yn(λ)\^- Σ \yn-ιW\ thus holds for Re(U)g|, and the lemma

nι = ι
follows by induction on n.

Lemma 2. Let y0(λ)= I and define yn(λ) (n= 1,2,...) recursively through Eq. (3.9).
Then (i) the function Φλ(r) defined for r > 0 by
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is holomorphic in λfor Re(//l)^ 1/2, and (ii)

</>λ(exp r//0) = cμy 1/2 + iλ}rΦλ(r) + c( - λ)e(112 ~ iλ)rΦ_ λ(r)

holds for anyr>Q and |Re(U)| ̂  1/2.

Proof. It is seen from Eq. (3.9) that the functions yn(λ) are holomorphic for iλφN.
Statement (i) is thus clear since, by Lemma 1, the series for Φλ converges absolutely
and uniformly in λ in the designated range. Turning to statement (ii), we first
observe that, owing to the absolute convergence of the series for Φλ(r\ the function
F+(r) = e(1/2 + iλ)rΦλ(r) indeed solves Eq. (3.7) for r > 0 and Re(U) ̂  1/2. The same
holds true for the function F_(r) = e(ίl2-iλ)rΦ_λ(r) for r>0 and Re(U)^ -1/2.
Because they are linearly independent functions of r, F+ and F_ constitute a
fundamental system of solutions to the second-order ordinary differential equation
(3.7). The spherical functions φλ must therefore be expressible as

φλ(exprH0) = a1(λ)e(1/2 + iλ)rΦλ(r) + a2(λ)e(1/2-iλ)rΦ_λ(r)

for r > 0 and |Re(U)| g 1/2. The coefficients a±(λ) and a2(λ) are determined by the
requirement φλ = φ_λ (Eq. (3.3)) and the asymptotic behavior (3.4)

Remark. The condition on the range of Re(U) is imposed for convenience and is
more restrictive than is necessary for the validity of the lemma.

4. The Fourier Transform and Its Inverse

Mathematical experience [7] suggests that the spherical functions φλ for λ real
and positive should in some sense be an orthogonal and complete set of functions.
More specifically, we expect that the integral J φλdμ(λ), with dμ(λ) proportional

R +

to \c(λ)\~2dλ and |c(/l)|~2 given by Eq. (3.6), has the properties of a Dirac
(5-distribution. We will prove that such is indeed the case. We begin with the
following

Lemma 3. Let dμ(λ) = (4π) ~ 1 1 c(/l) |" 2dλ. Then for all r > 0,
B

lim J 0λ(exp rHo)dμ(λ) = — 1.
β->oo o

Proof. We will make use of the decomposition of φλ given by Lemma 2. Consider
thus the integral

+ B Λ +B

f cμ)e<
1/2 + '^ΦΛ(r)(ίμ(A) = -Γ J (cί-^ΓV1'™ Σ 7nWe-2nrdλ. (4.1)

-B

By Eqs. (3.5, 3.9) and Lemma 1, the integrand is continuous and bounded in λ.
We first establish the existence of the limit B -> oo by discussing the asymptotic
behavior of the integrand. In the limit λ -> + oo the functions yn(λ) tend to definite

1 "
values given recursively by γ0(oo)= l,yM(oo)= -- £ yM_z(oo). Furthermore,

lim (-iλ
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by a standard result for the Gamma-function [1]. Similar formulas hold for
λ -» — oo. Now, since

f λ~ ί}2eίλrdλ = iB-l'2r-leiBr - - J A' 3/Vλr<U,
B 2r B

it follows that the expression (4.1) tends to a definite limit as B-> oo. The integral
J (c(-λ))~1e(1/2+iλ)rΦλ(r)dλ is conveniently evaluated by closing the integration
R
contour around the upper half of the complex /ί-plane and using Cauchy's Theorem.
According to Lemma 2, Φλ(r) is holomorphic in a domain including the upper
half-plane, for r>0. The singularities of (c( — Λ,))"1 all lie in the lower half-plane,
except for a simple pole at λ = i/2, see Eq. (3.5). At the point λ = ί/2 the functions
yn(λ) all vanish for n^ 1, as follows immediately from (3.9). Calculating the residue,
we easily find J c(λ)e(ll2+ίλ}rΦλ(r)dμ(λ) = - 1, and thus, by (3.3), Lemma 2, and

R
the invariance of J φλdμ(λ) under AH* — λ,

R

J φλ(Qxp rH0)dμ(λ) = - J <£Λ(exp rHQ)dμ(λ)
R+ L R

Remark. The convergence of the limit B -> oo cannot be uniform in the vicinity of
B

r = 0 since φλ(e) = Q trivially implies lim f φλ(e)dμ(λ) = 0. Of course, this
B->oo o

non-uniformity is to be expected since a "<5-function singularity" resides at r = 0.
Next, we define a kernel δR:f\-^>δRf acting on functions fe2(G/K) by

(δRf)(h o)= lim if J Dgκ<i>λ(g-ih)f(g o)\dμ(λ). (4.2)
B-*°° o V G / K /

Let ®0(G/K) c ®(G/K) denote the subspace of functions / with vanishing
Berezin-integral J Dgκf(g o).

G/K

Lemma 4. £Λ/ = //or all fe@0(G/K).

Proof. By using the G-invariance of Dgκ and Theorem 1, we get

ί D9κΦλ(g-lh)f(g o)= j
G/K G/K

= ί ί Dfc
A + \ K / M

Changing integration variables does not generate any extra term here since
φλ(e) — 0. In the next step, we insert (4.3) into (4.2). Having done this we observe that

J DkMf(hke\prH0'θ) J x δ(exprH0)
K/M /

tends to a definite limit as r-»0 since the first factor vanishes (at least) linearly
with r, thereby cancelling the simple pole singularity of the second one. Therefore,
in spite of the non-uniformity of the limit B-> oo, we may take B to infinity before
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integrating over A + :

(δRf)(g'θ)= J I lim \φλ(a~l)dμ(λ)\( J DkMf(gka-o)\δ(a}da.

We now use (3.3) and Lemma 3, and we add and subtract f(h-o):

( ί \ 1
(δRf)(h o) = f(h'θ)-<f(h'θ)+ M J DkMf(hkaΌ)}δ(a)da\. (4.4)

I A + V K / M / J

By Theorem 1, the expression in brackets equals J Dgκf(hg-o) = J Dgκf(g-o),
G/K G/K

which vanishes by assumption. This proves the lemma.

Corollary. When J Dgκf(g o)^Q, Eq. (4.4) shows that
G/K

,G/K

where 1 is the constant function with value unity.

With these preparations, we have at hand all the tools needed to formulate
the Fourier transform and prove it invertibility. For /e^(G/K) let the Fourier
transform /(->/ be defined by

f(λ,k)= j Dg^-w-w-^fte o). (4.5)
G/K

Note that because of t(Mg) = t(g), f ( λ , ) satisfies f(λ, kM) = f(λ, k) and is thus a
function on K/M.

Theorem 2. The Fourier transform (4.5) is invertibleforfe^^G/K) and

f(g-o)= j ί DkMf(λ9k)e^^ + iλ^-ldμ(λ). (4.6)
R+ \K/M /

Proof. The theorem follows immediately from Lemma 4 in combination with the
property (3.2) of the spherical functions φλ:

) = (δRf)(h o)=lim l J Dgκφλ(g-ih)f(g o)dμ(λ)
B-"*> 0 \G/K /

•= ί ( I MMe(-1/2+ίA)t('I-I'')Y j Dgκe
(-ll2-ίλ)t(k-^f(g o)]dμ(λ)

R+ V K / M / V G / K /

K/M

Corollary. B^ ί/ie corollary to Lemma 4, the theorem extends to

o)= J Dgκf(hg o)+ I J
G/K E+ \K/M
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5, Application to Disordered Wires

As was stated in the introduction, the problem of calculating the average
conductance <c> of a quasi-one-dimensional disordered conductor can be mapped
onto the problem posed by Eqs. (0.1) and (0.2). We are now in a position to solve
the analogous but simpler problem that is obtained by taking for G/K the
hyperbolic superplane. More precisely, our goal is to solve the following problem
[16]. Let y be a positive real parameter. Then, given the initial condition

fy(g o;s = 0) = 21/2y(^t)ιoβ-y(str^-1)/4) (5 la)

we wish to solve the differential equation (0. 1) and evaluate the correlation function

<c>=lim J Dgκfy(g o 90)f7(g oιβ). (5.1b)
y^°° G/K

Here β is the length of the disordered conductor measured in units of the
localization length, and the limit γ -» oo corresponds to_the (realistic) case of a
large number of scattering channels [8]. Note also that fy = fr

The problem is solved by using the Fourier transform (4.5) and its inverse (4.6).
Strictly speaking, the application of Theorem 2 to fy is not rigorous since, as it
stands, the theorem has been proved only for functions with compact support.
Without proof we will assume that, just as in classical analysis, the theorem can
be extended to functions with sufficiently rapid decay at infinity. The function
/y(0 o;0) defined in (5. la) surely belongs to this class of functions, and ri satisfies

f Dgκfγ(9'o:>ty — 0> since it is odd under the Cartan involution gΌ\-^θg-o.
G/K

Expressing fy(g-o',Q>) in terms of its Fourier transform,

Λfo o;0)= f J DkMfy(λ,k^-V2 + iλ™-ldμ(λ\ (5.2)
R + \ K / M /

inserting (5.2) into (5.1b), and performing the integral over G/K, we obtain

<c>=lim f ( I DkMfy(λ,k;Q)fy(-λ,k;β)]dμ(λ).
y->oo JR+ \ K / M /

Equation (0.1) is trivially solved by transforming to Fourier space and, in particular,

We must now evaluate

fy(λ,k ϋ)=
G/K

def
To do that we introduce, in addition to f y t i ( g m o ) = fy(g'o;0)9 the functions

fy,a(g'θ) = 21/2y(ggϊ)a0e-y(stτ™'-1) for α = 2,3,4. These transform as the funda-
mental representation of K, and we thus get

G/K α = l

where kla are the elements in the first row of the matrix /c, which are invariant
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under multiplication of k from the right with M, as they should be. The functions
fy,a(λ,e) tend to a definite limit as y->oo. By expressing gg^ in terms of the,
coordinates (1.2),

we find

lim f,,a(λ,e)= lim 23/2y J
- ' -y->oo

Using the coordinates φ, ή, and 77 introduced in the proof of Theorem 1, we finally
evaluate the integral over K/M,

ί D*M(*ιι)2 = ̂  f 3A(cos2 φ)(l-2ήη)dφ = 1,
K/M ^π o

and thus obtain
00

<c> = 2 J e-β{λ2 + i/4\λ2 + l/4)dμ(λ) = 2 $ e-β(λ2 + 1/4)λtanh(πλ)dλ. (5.3)
R+ 0

This is the result quoted in the introduction, where a discussion of the limits β -» 0
and /? -> oo was given.

6. Discussion

In this work the Fourier transform for a rank-one noncompact homogeneous
perfectly graded superspace G/K, the hyperbolic superplane, has been described.
Our main result is Theorem 2 which, together with the corollary following it,
establishes the invertibility of the Fourier transform for functions/e^(G/K). While
admittedly concerning a rather special supermanifold, the theorem and its proof
are, in the author's opinion, likely to be generalizable to Efetov's super coset spaces,
thereby bringing within reach a variety of rigorous applications to quasi-one-
dimensional disordered systems.

It is instructive to compare the Fourier transform for the hyperbolic superplane
with that of its classical partners, the hyperbolic spaces H2p + ι for p = 1/2,3/2,5/2,
etc. It turns out that many results for the hyperbolic superplane can be guessed
by simply performing an analytical continuation to p = — 1/2. (This is not
unexpected since H2p + ι has dimension 2p + 1 and a perfectly graded supermanifold
behaves in many respects as a space of "effective" dimension zero.) For our
purposes, the most important example is the formula for Harish-Chandra's
c-function on the spaces H2p+ι [7],

Γ(iλ)

valid for p = 1/2,1,3/2, etc. Equation (3.5) can be obtained from this classical result
by dropping the normalization factor Γ(p -f 1/2) and then setting p = — 1/2. Of
course, in the process of doing so, one has to abandon the standard normalization



Fourier Analysis on a Hyperbolic Supermanifold 519

convention c( — ϊ'p)=l, since now c(— ip)\p=-lf2 = c(i/2) = 0, by the pole of
Γ(- 1/2 + α) at λ = ί/2. The zero of c(/l) at /I = ΐ/2 reflects the fact that

J i>fcM = 0, (6.1)
K/M

instead of being normalizable to unity. Another immediate consequence forced by
(6.1) is the vanishing of the spherical functions φλ at the origin:

φλ(e) = 0. (6.2)

This gives rise to several modifications in comparison with the theory of the Fourier
transform for the classical spaces H2p + ί. The most substantial of these occurs in
the proof of the analog of Theorem 2 where, for H2p + ί, one first shows [7] that
the identity

/(')= ί fWφλ(e)dμ(λ)
R +

holds for K-radial functions fe@(H2p + 1 ) . For the hyperbolic superplane, however,
this equation is correct only if f(ό) = 0, in which case it is downgraded by (6.2) to
a triviality from which nothing can be deduced. A novel strategy in the proof of
the Fourier inversion theorem is therefore called for, and the author has explored
two alternatives.

One possibility is to continue to work with K-radial / and take a sufficient
number of derivatives of Eq. (4.6) before setting g = e. Such an approach is
eventually successful, but it involves manipulations with the kernel of the inverse
of the Laplace-Beltrami operator and is somewhat indirect. The second approach,
presented here, is much better adapted in that it takes advantage of two of the
features of the hyperbolic superplane that have no counterpart in classical
geometric analysis. These are:

(A) Theorem 1, concerning the change of integration variables which is suggested
by the diffeomorphism taking (K/M) x A + to G/K;

B

(B) the fact that lim J φλ(exprH0)dμ(λ) exists and has a well-defined meaning as
β->oo o

an ordinary function (rather than as a distribution) for r φ 0.

The integral for B -> oo was evaluated by closing the integration contour and using
Cauchy's Theorem. The result is nonzero because c(A), instead of being regular in
the entire lower half of the complex A-plane, has a simple zero at λ = — ί/2. All
other ingredients used in the proof of Theorem 2, such as formula (3.2) and the
expansion of the spherical functions in exponential functions, are standard.

Imagine now a more general homogeneous superspace G/K, still with the
property that its base manifold is either a noncompact symmetric space, or a
compact symmetric space, or the direct product of two such spaces as is the case
for the super coset spaces of Efetov. Both (A) and (B) have generalizations to at
least some supermanifolds of this kind, the crucial requirements being that they
be perfectly graded and have no K-stable points other than the origin o = eK. (This
is what fuels the author's optimism concerning the validity of a more general
version of Theorem 2.) In fact, although it is not evident from the proof, which
was intended to be as "down-to-earth" as possible, the additional term f ( o ) on
the right-hand side of (2.4) is a consequence of no more than the K-stability of o
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and the fact that its tangent space has "effective" dimension p — q = 0. Specializing
to the case of K-radial /, and combining Theorem 1 with the rules of Berezin
integration, we immediately conclude

ί Dgκf{g o) = f(o), (6.3)
G/K

since f(ka-ό) = f(a-ό) does not contain any dependence on the anticommuting
coordinates. Integral identities for invariant functions of this kind have been called
the "Parisi-Sourlas-Wegner supersymmetric integral formula" in ref. [4]. As for
(B), we observe that the Plancherel measure dμ(λ) given by Lemma 3 together with
(3.6) contracts to the scale-invariant form λ~ldλ as λ-*ao. Scale in variance at
infinity is expected to hold for perfectly graded supermanifolds of the specified
kind in general, for "large wave numbers probe short distances only." Simply put,
dμ(λ) is λ~ldλ at λ=oo because δ(QxprH0)dr is r~^dr at r = 0. Given the

B

scale-invariant asymptotic form of dμ(λ\ the integral J φλ(QxprH0)dμ(λ) for r > 0
o

is rendered conditionally convergent in the limit B -> oo by the asymptotic behavior
~ λ1/2eiλr of the spherical functions φλatλ= oo. Clearly, similar statements should
also apply to compact homogeneous spaces, Plancherel integrals now being
replaced by Plancherel sums.

Let us finally turn to the heat kernel, W, for the hyperbolic superplane. Although
the application given in Sect. 5 does not make any direct use of W, for other
purposes one may wish to know it in explicit form. It is easy to guess the spherical
expansion of W from the results of Sect. 4. Consider the function W± defined on
A + x R + b y

(6.4)

Extending W^ s) to a function on G bi-invariant under K, we know that for any
def

geG the function f(h-o;s)= W^g'^h'.s) is a solution of the heat equation (0.1),

owing to the ίnvariance of 4G/K under left translations in G. We claim that Wγ

coincides with the heat kernel W, by the following argument. It is reasonable to
assume that the kernel δ'R which acts on functions /e^(G/K) by

ί ( ί
R + \G/:G/K

is identical with the kernel δR introduced in (4.2). The corollary to Lemma 4 then
asserts that

lim J DgκWl(g-lh s)f(9Ό) = f(h o\
si° G/K

and hence the function f(h'o;s)= J DgκWί(g~1h;s)f0(g'θ) solves the Cauchy
G/K

problem (0.1) with initial condition f(g o;ty = f0(9'θ). Therefore, W1 = W. We
conclude with the remark that (6.4) can be brought into the form

Sίnhw

2πs r osh u — cosh r

by a sequence of transformations not here presented.
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Appendix

We give a glossary of symbols.

(Cp'q: the graded complex linear space of dimension (/?, q).

s/: the parity operator fixing the grading of <Cp'q.
Mat(p, q): the (associative) algebra of complex (p + q) x (p + q) matrices representing

linear transformations of <Cp'q.
Λ2N± the Grassmann algebra generated by 2N anticommuting variables

ξί9 ξl9 . . . , ξN9 ξN over C. (The index 2N is usually omitted.)

A: the even part of A.
1Λ: the odd part of A.
<Cp'q(A): the Grassmann envelope of Cp'**. (It is the even part of the tensor product

of <Cp>q with A)

Mat(p9q\Λ): the Grassmann envelope of Mat(p,#).
str: the supertrace.
sdet: the superdeterminant.
GM*t(p9q\Λ): the group of elements XeMat(p9q\Λ) satisfying sdetJf ^0.
m: the operator that projects onto the numerical part (or "body") of an element

ze°/i or, more generally, of an element XeMat(p9q\Λ).

We use an adjoint of the second kind,

for elements of 1Λ. (Please note that this differs from Berezin's definition [3] in

that the ordering of a product of elements remains unchanged when the adjoint is
taken!) We use a standard representation of (Cp'q by complex vectors with p + q

components in which $# acts as the diagonal matrix s$ = diag(lp, — lq). (lπ stands

for the nxn unit matrix.) Writing elements X€Msίt(p9q\Λ) in this standard
representation by blocks as

βN

vC D,

we define an operation of hermitian conjugation by

X t = ( _ β t Dt} where (A^ki = A*> etc.

This operation satisfies (XY^ = Y t X t and (X^ = X for X, YeM*t(p9q\Λ).
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