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Abstract. The algebraic structure of fusion rings in rational conformal field
theories is analyzed in detail in this paper. A formalism which closely parallels
classical tools in the study of the cohomology of homogeneous spaces is developed
for fusion rings, in general, and for current algebra theories, in particular. It is
shown that fusion rings lead to a natural orthogonal polynomial structure. The
rings are expressed through generators and relations. The relations are then
derived from some potentials leading to an identification of the fusion rings with
deformations of affine varieties. In general, the fusion algebras are mapped to
affine varieties which are the locus of the relations. The connection with modular
transformations is investigated in this picture. It is explained how chiral algebras,
arising in N = 2 superconformal field theory, can be derived from fusion rings. In
particular, it is argued that theories of the type SU (N),/SU (N —1) are the N =2
counterparts of Grassmann manifolds and that there is a natural identification of
the chiral fields with Schubert varieties, which is a graded algebra isomorphism.

1. Introduction

In recent years much interest has been focused on conformal field theory in
two dimensions in connection with string theory and two dimensional critical
phenomena. It was argued that string theories in four dimensions are described
by some conformal field theories and that the properties of the string theories are
a consequence of the characteristics of the two dimensional theory. A particularly
fruitful set of ideas is the relation between algebraic properties of the conformal
field theory and the emergence of space-time geometry. It was demonstrated, and
conjectured to hold in general [1], that all N = 2 superconformal field theories are
in one to one relation with complex manifolds. The interplay between algebraic
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and geometrical pictures have been very fruitful in the exploration of string
theory.

In this paper we will propose a different, through related, connection between
non-supersymmetric conformal field theories and geometry. We will show that
there is a remarkable analogy with tools and notions introduced in the context
of N = 2 superconformal field theories. In particular, the chiral algebra will be
shown to be closely related to fusion rings in rational conformal field theory,
with the primary fields playing the role of the chiral fields. We shall then proceed
to describe manifolds which are affine varieties whose moduli space is identical
with the fusion rings.

Much of the examples discussed here are drawn from the class of SU(N)
theories which are analyzed here in detail. We develop here a Schubert-like
calculus for the theories, based on Pieri and Giambelli formulas. The close
similarity with the classical Schubert calculus is explained through the connection
to N = 2 superconformal field theory, and in particular, it is explained how the
theories of the type SU(N + 1/SU(N) are the N = 2 counterparts of Grassmann
manifolds.

This paper is organized as following. In Sect.(2) the fusion ring of current
algebra theories is investigated. A Schubert calculus is developed for theories of
the type SU(N). It is then used to derive a Borel-like picture which expresses the
rings in terms of generators and relations. It is shown that the primary fields, when
expressed in terms of the generators form a system of orthogonal polynomials.
In the case of SU(N) the measure is shown to be given by the discriminant of
the N'® order polynomial equation. The rings are then expressed in terms of a
potential which is obtained by integrating the relations. A connection with the
theory of symmetric polynomials is heavily used for this purpose.

In Sect. (3) the connection with N = 2 superconformal field theory is described.
In particular, we shown that the entire cohomology of Grassmannians can be
recovered from the results of Sect. (2). The chiral algebra of the theories of the
type SU(N +1)/SU(N) is calculated and is shown to be described by the classical
Schubert calculus. This also nicely demonstrates the connection with geometry,
as well as enabling us to write down the precise manifolds that rational N = 2
theories correspond to.

The geometrical picture is further explored in Sect.(4). We use a classical
construction in algebraic geometry to map every fusion ring to some affine
variety in C". We then proceed to characterize the ring through the variety.
In particular it is shown that the modular matrix can be throught of as the
values of the primary fields on the points of the variety. A different geometrical
construction is then offered, where the fusion ring is described as the moduli
space of an affine variety.

2. Fusion Rings

The primary fields in a current algebra theory are labeled by representations of
some finite dimensional Lie algebra G whose weights we denote by 4. The highest
weights obey 46 < k, where k is the level which is equal to some integer. 0 is
the highest root. Each such primary field, denoted by G*, gives rise to an infinite
tower of fields in the corresponding integrable highest weight representation of
current algebra. The fusion rules tell us which of the invariant couplings in the
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product,
[G"] x [6"] =) Ni ,[6"], 1)
A

vanishes, where we denote by [G*] the tower of fields in the block whose highest
weight is G4.

Our basic tool for studying the fusion rules in current algebra is the depth
criteria derived in [2]. Consider the correlation function of three primary fields,

N
(Gl ()G @)GE @) = D f, 1.Cof (21,22, 23), 22)
i=1
where f(z1,z,,23) is a constant function dependent on the dimensions; f¥* are
the Clebsch-Gordan coefficients of the Lie algebra, N is the number of singlets in
the representation and the C; are some constants. The fusion rules tell us which
of the C; is nonzero for a given k.
There are two sets of group theoretic equations obeyed by the correlation
functions. The first is,

D (b1 dn) =0, 23)
j=1

which is the usual finite algebra symmetry expressing the fact that the correlation
function is invariant under the group. (Here ¢} acts on the j™ field). The solutions
to these equations are the invariant couplings or Clebsh-Gordan coefficients. The
second set of equations is an algebraic set of equations,

y (M +1)! @) e "
L L) (z—z)(z—z2)2...(z — zg)h
b+ A =M+1
(Gi(2)G1(21)G2(22) ... Gn(2n)) = 0, (2.4)
where M = k — 20. This equation follows froms the invariance under the affine
algebra and the Ward identities.

In the case of the three point function Eq. (2.4) assumes a particularly simple
form,

(e])™ (29)"™(29)" (G (21) G12(22) 63 (23)) = O, 2.5
for any n; + ny +n3 = k+ 1. This is the depth rule. The depth rule. Eq. (2.5) sets
to zero some of the C; at level k. Here 1% denotes the highest root component
of the current. It is clear from the structure of the depth rule that any given
coupling would be allowed for a sufficiently large k. Owing to the associativity of
the operator product algebra, the fusion rules form an associative commutative
algebra over the complex numbers. More precisely, since the structure constants
of this algebra are integral, it is sometimes more useful to view it as a ring, and
allow multiplication only by integers. This is the structure that will be emphasized
in this note. Equation (2.5) is particularly easy to analyze in the case of SU(2)
and we find that [2]

max(i+j, 2k—i—j)
Mxpl= > [, (2.6)
I=li—j|
I—i—j=0mod 2

where 4 = %ioz is the weight (i is twice the isospin).
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It is clear that the highest root 6 can be replaced in the depth rule by an
arbitrary positive root, as the entire discussion goes through mutatis mutandi.
This set of equations would be an algebraic consequence of the one above (as
follows from the primitive vector theorem for Kac-Moode integrable modules),
however, it will be convenient in application to have these additional equations.

We can recast the depth rule into an evidently equivalent form. Consider the
product L(A) x A(A;) x A(A;), where L(A) denotes an integrable highest weight
module of the finite algebra G. Let v be the highest weight vector of L(A) and
vy, 1o arbitrary vectors in the modules L(4;) and L(A,). If there exist integers [
and [, such that Iy + ) = k+ Ao+ 1 and (t*)"v; # 0 and (t%)2v, # O for some
negative root «, then the coupling v X v; X v, vanishes.

The two sets of equations, Eq. (2.3) and Eq. (2.5), determine precisely which
invariant couplings can appear for every group and every k and, in particular,
the number of such couplings. To demonstrate how this is done, let us first prove
this theorem (stated in Ref. [3]).

Theorem. Let o be any external automorphism of the extended Dynkin diagram,
0(A) = a(0) +w,(A). Then the product Ay X a(A3) = a(Ay) X Ay, where A, Ay and
A2 are any three integrable highest weights for the algebra G at level k.

Proof. From the associativity of the fusion rules it follows that the statement is
equivalent to
Axc0)=0a(A). 2.7

In one direction simply set A, = 0. To prove the other direction multiplicity by
Ay and use the associativity.
So let as assume that the correlator

(Gon G G32) 28)
is nonvanishing. To prove the theorem it is enough to show that this implies that
Ay = a(A4;). Now, if the correlator Eq. (2.8) is nonzero, we can assume without
loss of generality that A, is a lowest weight, as we can apply Eq. (2.3), to push
A2 down and A; up, taking any positive root « in Eq. (2.3). The process will end
when Gf; is annihilated by any t°%, « a negative root, and is thus a lowest weight,
Ay = — A». Thus we can assume that 1, = — A4, without any loss of generality.

We can further apply the Clebsch-Gordan rule, Eq. (2.3), with any negative
root o < 0 provided that ao(0) = 0. For such roots there will be only one surviving
term in Eq. (2.3) proving that the correlation function Eq. (2.8) vanishes unless

ol =0, 2.9)

for any positive root a > 0 such that ac(0) = 0.

The discussion so far was, in fact, general, and applies equally well to any
product. Let us now use the depth rule, Eq. (2.5), with any root o > 0 such that
ao(0) = k. (o(0) is a minimal weight, i.e., a fundamental weight associated to a
long simple root which appears with multiplicity one in the highest root 8, or
0a(0) = 1. Thus, the product ac(0) is either 0 or k for any positive root «.) We
find that t‘“@fl‘ = 0 for any such root.

It can be seen that for any a > 0, ao(0) = 0 if and only if w;'(«) > 0. Thus,
the foregoing discussion implies

tw"difl‘ =0, foranya>0. (2.10)
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By standard properties of the Weyl group this is equivalent to 4; = ws(4;).
Finally, since the weight of the correlator is zero we have, g(0) + 4; + 4, = 0, and

A2 = 0(0) + ws(41) = a(4y). 211

proving the theorem.

For example, let us consider the product 8 x 8 x 8. The highest weight is
o1 + oy (o are the two simple roots of SU(3)), and there are essentially two
possibilities for the weight 4; and A,, corresponding to (a1 + o2) + (—o1) + (—o2)
and «; + a3) + (—a — oz) + (0). For the first possibility we cannot act with ¢t~ as
this will take us out of the weight diagram. On the second one we can act once
(on the (0)) if the coupling is the anti-symmetric one. For the symmetric coupling
the (0) is a t° singlet. We conclude that for k > 2 the 8; coupling appears, and
that for k > 3 the anti-symmetric one does, as well. (Representing the 8 by 3 x 3
traceless hermitian matrices, the couplings 8; and 8, are given by Tr(4BC + ACB)
and the statement above follows.)

We will now derive a Schubert like calculus for the fusion ring of SU(N),
theories. Subsequently we shall connect this calculus with the classical Schubert
calculus for the cohomology of Grassmann manifolds. Due to the usefulness of
this relation we will introduce geometrical terminology from the outset. Consider
the limit k — co. Then the depth rule, Eq. (2.5), becomes null and all the products
allowed by ordinary group theory are non-vanishing. As is well known, the
representations of SU(N) may be described by Young tableaux. A given weight

k
4, at level k, may be written as 4 = Y’ 4@, where 4© =AM = 0. A® stands
i=1
for the r* fundamental weight of SUN) and 0 < a; < ap < ...ax < N — 1.
The a;’s correspond to the height of the i* column in the Young tableaux. The
adjoint (8) of SU(3) is, for example, in this notation [1,2]. There are two types
of special representations. The fully antisymmetric ones

¢ =[0,0,...,0,r], (2.12)
and the fully symmetric ones,
¢ =[1,1,...,1]. (2.13)

We shall call the representation c; the i Chern class and ¢; the i'" normal Chern
class. Our first result concerns the multiplication of the special classes (namely,
the fully antisymmetric representation) with any of the representations. The rule,
in this case, is simple — there is no truncation of the operator algebra as a
consequence of the depth rule Eq. (2.5) when multiplying one of the ¢; with
two other integrable representations at level k. Thus the product, in this case, is
essentially given by the ordinary group theory one, which can be summarized in
the following Pieri-like formula,

G lanas . al= ) [buby ..., b, (2.14)

a,<b<a,y
Z b,=z a+r

with the convention that 0 < b; < N and b; = N is the same as b; = 0. We shall
outline the proof of this Pieri-like formula. The key to the proof is writing the
depth criteria in a Young tableaux form. The coupling the three representations
to a singlet may be described by a square Young tableaux which is of height
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N and width [, which is greater or equal to the maximal level of the three
representations in question. Now, the depth rule translates in the Young tableaux
language to the following statement: the maximal number of a certain type of
quarks appearing in the product which can be flipped to a certain other kind is
less or equal to the level k, or the product vanishes. The minimal level at which
a certain coupling is non-vanishing will be termed the depth of the product.
Clearly, the depth of a product does not exceed the width [ but can be smaller.
Now, it is not hard to see that the product of ¢; with any of the integrable
representations at level k can be fitted into a diagram of width k, and is thus
non-vanishing. Simularly, the product of the other ¢,, r > 1, may be shown not
to vanish, though the details are slightly more complicated.

From the Pieri-like formula for the multiplication of the special classes, we
may derive a Giambelli-like formula which expresses any representation as a
polynomial in the classes ¢;,

[al,az, ey ak] = det (_Za‘_;.,-_j s (215)
1<i,j<k

where det stands for the determinant of this matrix, which is defined with the
convention that ¢y = ¢y =1 and ¢; = 1 for i > N or i < 0. The Giambelli-like
formula, Eq. (2.15), is a consequence of the Pieri formula, Eqgs. (2.14). To see it,
expand the determinant Eq. (2.15) along the furst column (j = 1). It follows, by
induction on k, that

k
4= Z (_1)i+léai+i—1 [al - 19a2 - 17 ceey il — l’aH-l’ ey ak] J (216)
i=1

Applying the Pieri to Eq. (2.16), all the terms cancel except for the desired one,
proving Eq. (2.15). The pieri and Giambelli formulas, Eq. (2.14-2.15), form the
basis of our Schubert-like calculus for the fusion ring, and enable one to compute
any product. For example, consider the product 8 x 8 in SU(3) at level k = 2.
The representation 8 is written in our notation as 8 = [1,2]. Using Giambellj, it
may be written as

[1,2]=det(’1C Jl)>=xy—1, 2.17)

where we denoted x = ¢; and y = ¢,. Using Pieri, we find
x[1,2] = [2,2] + [1,3] = [2,2] + [0, 1],  y([2,2] + [0,1]) = [O] + 2[1,2].

Thus
[1,2]2 = (xy—1)[1,2] =[0] +[1,2], (2.18)

or in ordinary notation, 8 x 8 = 1 + 8. Repeating this for the case of k = 3 we
find,
[0,1,2] x [0,1,2] = [0,0,0] + [1,1,1] + [2,2,2] + 2[0,1,2], (2.19)

or in ordinary notation 8 x8 = 1410410+ 8,+8,, where 8; and 8, correspond to
the symmetric and antisymmetric couplings, agreeing with our earlier derivation.
Next, we would like to describe the fusion ring as a ring of polynomials in the
variables ¢; with some relations among these variables (“syzigies” in Hilbert’s
terminology). This would correspond, as we shall later see, to the Borel picture
of the cohomology of Grassmannians.
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As for any associative algebra, there is a canonical map from the algebra
of polynomials in n indeterminates P[xi,X», ..., X,] to the fusion ring R. This
map, denoted by ¢ is given by ¢(x{'x3*...x%) = ¢{'cy...cn, where n = N — 1.
Clearly, this map is an algebra homomorphism and thus according to the first
isomorphism theorem R is isomorphic to the quotient ring P /I, where the
ideal I is the kernel of the map, I = ker ¢, i.e., the polynomials which vanish
when substituting the ¢;. A set of generators of this ideal correspond to the
syzigies satisfied by the ring. We will show that the fusion ring is given by the
polynomial ring P[¢y,C, ..., Cn] and the ideal is generated by the Chern classes
Cik+1,Cka2, -++ » CkeN—1, When these are expressed as polynomials in the normal
Chern classes using Giambelli,

P[EDEZ, IRKIE) En]

R~ (2.20)

(Ck15 Ch42s -+ > Chgm)

To prove Eq. (2.20), it is enough to show that all the integrable representations
at level k + 1 are contained in the ideal I defined above. This is a consequence
of the Pieri formula, since all the terms which are missing there are integrable
representations at level k + 1. Modulo the ideal generated by all integrable
representations at level k + 1, the Pieri formula is identical to the ordinary
group theory multiplication, or the limit k — oo of the fusion ring. Using, for
example, Young tableaux theory, it is not hard to see that for k — oo the ¢;
are algebraically independent and thus generate the ring of polynomials. In
addition, any representation at level k+ 1 appears in some product of lower level
representation, unaccompanied by any other representation at level k + 1. So, it
must vanish in order for the Pieri formula at level k to hold. It is enough to
show, then, that the ideal I is identical to the ideal generated by all level k + 1
representations. This can be done by expressing the level k + 1 representations in
terms of the Chern classes, which is possible by some rather lengthy manipulations
of determinants, which make use of the Giambelli formula. We omit the detail.
An alternative proof will follow from the discussion of Sect. (4).

Next, we will show that the relations ¢; can be integrated to a potential V,
or that the fusion ring can be written as P(¢;)/(0;V), where (0;1') stands for the
ideal generated by the derivatives of the potential. This is due to

o = (—1y- i (221)

Jac j

where V; is some potential which will be described below. In order to integrate
the Chern classes we will use a rather remarkable connection with the theory of
invariant polynomials. The fusion ring for k — co becomes the usual multiplica-
tion in group theory. The Pieri formula may be viewed as a recursion relation
for the polynomials of each of the irreducible representations of SU(N). Now,
the characters of the representations obey precisely the same Pieri formula, and
thus are the solutions of this recursion relation. Define, as usual the character
function of a representation with the highest weight A4 to be

cha(6) = ) e, (2.22)
AEL(A)

where «, are any of the simple roots of the algebra, and we defined the character
as a function of the angular variables 6; € [0,2x], fori = 1,2, ..., N —1. The sum
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ranges over all the weights of the representation L(A). Define also the variables
gqi = 000, (2.23)
fori=1,2,..., N, with the convention that 8y = 6y = 0. The variables g; obey

N
H qi = 1
i=1
Now, we can make a change of variables from the normal Chern classes ¢; to
the character basis, or the 0; or g; variables. The character of the representation
[r] is
¢ = > Gy (2.24)

1<iy<ip<.<i,<N

as it is the fully anti-symmetric representation. The g; are the quark states in
physicists language. Equation (2.24) may be interpreted as a change of variables.
With this change of variables, the solution to the Pieri and Giambelli formulas
is given by the character function of the representation, ch,. Note that the ¢
are the generators of symmetric functions in the ¢g;, with the constraint that
¢y = [[4i = 1. These generators are customarily denoted by S;. The characters

1
are the Schure functions expressed in terms of the g;. These can be described by
the Weyl character formula,

chy(8) = D' ) (—1)reittamdn, (2.25)
wew

where W stands for the Weyl group (which is the symmetric group, Sy, for
SU(N)) and g is half the sum of positive roots. D is the denominator of the Weyl
character formula

D — Z (_1)weiw(g)an0n — eieotnﬁn I—[(l _ e‘_iaanon) X (226)
wew >0

Since the positive roots of SU(N) can be written as ¢; —¢j, where 1 <i<j <N
and where ¢; is an orthonormal set of unit vectors, the denominator can be
written as,

D =¢l 2 0n H [1 — e nGn—00 =n1,+one1,)]

1<i<j<N
=20 -aa7) =[] @—ay)- 2.27)
i<j i<j

This shows that in terms of the g;, the denominator D is the Vandermonde de-
terminant. Now, the Chern classes are given by the so-called complete symmetric
functions, as they are the totally symmetric tensor products of the fundamental

representation,
e = Z 9,9, -+ i, - (2.28)
1<ij<ip<.<i, <N
The generating function for the symmetric functions S; is
N

N
> (Ve =] —q), (2.29)
i=1

i=1
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as can be seen by expanding the product. The generating function for the complete
symmetric functions is

Z ot = H (1—q)™, (2.30)
i=1

as can again be seen by expanding each of the geometrical series; the terms on the

right-hand-side are of the form ) g¢f"gy?... g™ ™+ which is equivalent
m;>0

to Eq. (2.28). Define the potential V,, by

N
2 (2.31)

A generating function for the potentials is

Sl*‘

Ve =Y ()" V" Z log(1 — git) = log H (1 — git)

m=1 i=1 i=1
N . .
= log (Z (-1)15,-#). (2.32)
i=0

It follows that

Z( l)m ltm m—l aV(t) H( _ lt)— 0_(2( I)PS tP)
m=1
= [Z crt’] [Z( 1)Ptp ] (2.33)
r=0 p=0

Comparing sides we find that

oS,
m—1 _m—1 14
) = ), e St (2.34)
r+p=m
0qy 08,
Multiplying both sides by dq,/0S,, summing over n and using Z 55, %4 = Opg»
it follows that
_ dqn 0 6V
_1ym—1 n _1ym—1 — 1 _ )
D" Y G g Vel D gt = e (239)

and we have proved that the integral of the Chern classes is given by V., Eq.
(2.21).
To summarize, the fusion ring of SU(N)y is the quotient ring

P[x19x2’ cee xn]
@:V) ’

where the variables x; are identified with the fully anti-symmetric representations,
¢ =i, fori=0,1,...,n where n = N — 1. The potential V is given by the

R = (2.36)
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symmetric function V = Z qN +k expressed in terms of the generators of

N N +k &
symmetric functions which are xn = > 9,9, - - - Gi, -
1<ii<iy...<ip <ip
The ring Ry does not contain all the information of the conformal field theory.
Specifically, we miss the invariant bilinear form on the conformal blocks. We can
define the scalar product of two primary fields through the two point function
(¢2(21)Pu(z2)). The bilinear form is defined through

(b2, ) = 045> (2.37)

where [ is the complex conjugate representation (or the time reversal of it). In
other words, the bilinear product (¢,, ¢,) counts the number of times the unit
operator appears in the product ¢,¢, according to the fusion rules. It follows
that this bilinear product is non-degenerate over C.

We wish to express this bilinear product as an integral over the generators x;
with some suitably chosen contour of integration. This, in particular, will define
a structure of orthogonal polynomials for the primary fields of the theory. In
other words, we would like to find a measure M such that

(621 ¢) = / dxy dxa ... dxy M (X1, X2, -, Xa)a(x) (i) ", (2.38)
C

where C is some contour of integration and d)Z = ¢z, where fi is the complex
conjugate representation. We shall first describe a general method for deriving
M, using the theory of orthogonal polynomials, and then give a more direct route
for doing so based on the Weyl character formula.

We can rewrite M = e~ Y, where U is some potential, assuming that M
vanishes on the boundary of the contour of integration. With the definition Eq.
(2.37), the polynomials ¢;, expressed in terms of the generators ¢;, become a
system of orthogonal polynomials, i.c., they form an orthonormal basis for the
algebra of polynomials P[x, X2, ..., X,]. Since (¢;, ¢,,) is the number of singlets
in the product, Eq. (2.37) would follow if,

510 = (62, 1) / dx; dx; ... dx, $1(x)e ™Y, (2.39)

owing to the fusion rules algebra. By partial integration, using the assumption
that M vanishes on the boundary of C, we find

09, adu_ _y oU
() [ o (02), om

where the integral, as before, is over all the x;. Since the ¢; form an orthonormal

system, we may expand,

ou

= = iy, (2.41)
: "

where the aL are some complex constants, and the sum is over all the weights
u of the algebra. Substituting into Eq. (2.40) we find, using the orthonormality,

that o6
4y = (a—x‘ 1), (2.42)
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and so

% => ¢1<%,1). (2.43)
1 2 1

. 0 . . . . .
Since %,1 is the number of times the singlet representation appears in
i

the derivative of ¢, it is not hard to compute this quantity directly, getting an
expansion for the derivatives of U, which can then be summed and integrated to
find M.

Let us illustrate this orthogonal polynomial method by considering the case
of SU (2). By deriving the Giambelli formula, Eq. (2.15), it follows that

‘361; = > PP, (2.44)
r+s=n—1

where P,(x) is the polynomial representing [1,1, ..., 1] (r times), or the repre-
sentation with 4 = %roz and x = ¢; = [1]. Thus, the number of singlets is

1 for r =odd
P'(x). 1) = ? 2.4
(P00, 1) { 0 for r = even, (243)
and so -
U'=Y Prn. (246)

n=0

Using the Pieri formula, Eq. (2.14), it is easy to see that (x> —4)U’ = —x, and
so U' = —x/(x* —4). It follows that M = v/4 — x2, up to a constant, and the
contour of integration is x € [—2,2].

In principle, we can use this method to compute the measure in more com-
plicated cases. However, the calculations become very involved, and so we shall
use instead a Lie algebraic method. Recall that we can express the polynomials
in terms of the Weyl character formula,

1 :
a0, o @l = 55 3 (—1)vetiront, (247)
wew

where D is the denominator Eq. (2.26), and 4 =) A@ is the heighest weight
of the representation [aj,ay, ..., ax]. In this notation 4 = [N —ay, N —ayy, ...,
N — a1]. Consider now the integral

2n 2n 2n

= / / / d6, 40, ... d0, D2 chy(6)) ch, (6)". (2.48)
0 0 0

From the Weyl character formula Eq. (2.25) we find
2n 2n 2n

I= / / / d6;d6y...d0, Y (~1)" (~1)Fellrt+o—hiutolat,
0 0 0 w,W

= Qn)"(—D* (=1)*s[w(4 + o) — W(u + 0)]

"
w,W

= Q2n)"(n+ )04, (2.49)
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where we used the well known fact that (4 + ) = W(u+) if and only if w =W
and A4 = pu, where A and u are two highest weight vectors (see, for example [4]).

Thus Eq. (2.48) is our desired orthonormal integral. Note also, in this respect,
that ch#(Oi)* = chy(6;), where [ is the complex conjugate representation and
where the 6; are taken to be real, and so we can indeed write Eq. (2.48) in the
form Eq. (2.37).

Let us now express this integral in terms of the generators S; = ¢;. We need
to compute the Jacobian for the change of variables from 6; to ¢;. To do so, it

is convenient to relax the constraint [] ¢; = ¢y = 1 and allow any values for g;
i

and Cy. Also, we can introduce a radical variable for the 6;, g; = re'®—0-1) We
can then integrate the measure with respect to the redundant variable, inserting
a delta function to insure the constraint. Now, the Jacobian for the change of
variables from g; to ¢; is,

0%;
I = :3—1 =c}est Z 99, - - - iy =H(qi—4j)=D, (2.50)
q, ’ i <l:2<..‘<i,, i<j
LjFs

i.e., it is given by the Vandermonde determinant. This is easy to see by noting
that the Jacobian is a totally anti-symmetric function of the same degree as D,
and thus must be equal to it up to a constant.

The Jabobian of the change of variables from g; to 6; is not hard to compute
directly and we omit the details. The result is that it is equal to iY !N Inserting
a delta function and integrating over the constraints we find that

T d6: = %]‘[ de;. (2.51)
i=1 i=1

It follows that the orthogonal integral, Eq. (2.49), assumes the form!

D@) 17 .-

_ at,d, ., a] [N —bi, N —bes, ..., N —b

I /(27”.)" I 1I dcilas, a a] [N — bk k-1 1]
c =

k
=[] o6 —b). (2.52)
i=1

The measure M is thus seen to be identical to the Vandermonde determinant,
expressed in terms of the ¢ variables. Denote by R = D?. Then D = +/R. The g;
are the solutions of the polynomial equation,

N
0=Ja-a)=a"- (> a)d" ' +..+ D" [[a. (253
i=1

and so this equation is
gV =g+ + (DY ley_ig+ (D) Vey =0, (2.54)

with the convention that ¢y = 1. Thus we see that R is precisely the discriminant
of the most general Nt order polynomial equation, Eq. (2.54), with the constant

' The change of variables ¢, to g, is (n + 1)! = |W(G)| fold, and so the contour of integration, C, in
Eq. (2.52) is the maximal torus modulo the action of W
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term Cy set to one. In the case of SU(2), we have found earlier, using the
orthogonal polynomial method, that M = VR, where R = 4 — ¢3. This is indeed
the discriminant of the second order polynomial equation, > — &g +1 = 0.
The calculation of the discriminants of polynomial equations is described in the
appendix.

We conclude this section with some examples. The simplest case is SU(2).
The fields of SU(2) at level k are labeled by the highest weights A = % am, where
0 < m < k is any integer (which is twice the isospin). We shall denote this field
by (m). In our previous notation 4 = [1,1, ..., 1] (m times). The fusion rules can
be written, in this case, Eq. (2.6),

max(2k—m—n, m+n)

(m) x (n) = > ). (2.55)
I=|m—n|
llm—’n=e\|len
It is not hard to see that for n = 1, this product rule is identical to the Pieri
formula Eq. (2.14).
The Giambelli formula, Eq. (2.15), expresses the field (m) as a polynomial in
x = (1). Explicitly, we find

x 100 00 0

1 x 10 00 0

1 x 1 00 0

(m) = Pn(x) = det Do
0000 ..1x 1

0000 ..01 x

A closed form for P,,(x) follows from the Weyl character formula, Eq. (2.25). The

relevant change of variables, Eq. (2.24), assumes the form x = exp(if)+exp(—if) =

2cos 8. Then Eq. (2.25) becomes

ei(m+1)9 _ e—i(m+1)0 sin(m + 1)9
el — e—i0 ~ sin@

P,(2cosf) = ch% me(8) =

(2.56)

The denominator is . '
D =¢% — ¢ =2ising. (2.57)

Thus, Pu(x) = Un(x/2), where Un,(x) are the Chebyshev polynomials of the
second kind, defined as

sin(m + 1)0

Un(cos ) = pem

(2.58)

The Pieri formula is simply the well known recursion relation for Chebyshev
polynomials of the second kind, whereas the Giambelli formula appears to be new.
The fusion ring is given, according to our earlier discussion, by P[x]/(Ug+1(x/2)),
where P[x] denotes the ring of polynomials in the indeterminate x over the
integers.

The measure, as we computed earlier, is M = v/4 — x2, which translates into
the well known orthogonality relation for Chebyshev polynomials,

2
/mﬂ—ﬂmmmm=nqw (2.59)
22
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The potential Vi, is, Eq. (2.31),

(k+ 1)Vip1(2cos0) = »_ gkt = &0 4 o=it18 = 2 cos(k +1)0,  (2.60)

1

i.e., the Potentials are Chebyshev polynomials of the first kind. The fact that

dv,
Piii(x) = d’:l

of the first and second kinds. The first few polynomials are P,(x) = 1,x,x* — 1,
x> —2x, ..., where as the first few potentials are V,,(x) = 2,x,x%/2,x3/3 — x,x*/
—x2,.... As an example of the fusion ring consider k = 2. Then, according to
Eq. (2.36), R = P[x]/(x® — 2x). The elements of this ring are a + bx + cx?, where
a, b and ¢ are arbitrary integers. The addition of elements is term by term, while

the product rule is

, Eq. (2.21), is the usual relation between Chebyshev polynomials

(a+ bx + ex?) (o + Bx +yx?)
= ao + x(ba + af + 2by + 2cf) + x*(ca + bf + ay + 2cy), (2.61)

ie., R is the additive group Z3 embedded with the above product structure. The
scalar product in R is defined through (1,1) = (x,x) = (x%,1) = (x>,x?) = 1 and
(1,x) = (x,x*) =0.

Let us as a second example consider the case of SU(3). In this case the
polynomials are P, ,(x,y) = [1,1, ..., 1,2,2,...2], where there are n one’s and
m two’s. Py m(x,y) = x"y™ + lo.t, where Lo.t. stands for lower order terms and
the order of x and y is one (this is not hard to see from the Giambelli formula).
Giambelli gives the polynomials as a determinant. The polynomials up to level
two are, Poo = 1, P10 = x, Po,1 =y, P2 = det (; i) =x—y, Pi=xy—1,
P, , = y* — 1. The polynomials at level k are all the polynomials whose leading
coefficient is of order k. These span the k™ order subspace of the algebra of
polynomials (this is general for all SU(N)). The orthogonality relation of the
polynomials is

/ dxdy M Py m(x, y)P1,s(x,y) = 0n,50m,1, (2.62)
c

where C is the contour 60; € [0,2n] parametrized by the variables,
x = ei01 + e—i01+i02 + e—iGZ, (2‘63)

and y = x™ (the complex conjugate of x). The measure M, as discussed earlier, is
the square root of the discriminant, D = v/R. From the appendix, the discriminant
of the third order polynomial, g*> —xg?+yq—1is —R = 27 —x?y? —4x34y* 4 18xy
and so the measure is (up to a factor)

M = /27 — x2y2 — 4x3 — 4y3 + 18xy. (2.64)

In terms of the variables g; = ¢/®—%-1) the polynomials are the Schure func-
tions, specialized to these values of the variables gq;. The potentials are given
by

1. ‘ 4
Vm = —I’il- Z qzk = ﬁ [elm91 + elm((')z—@l) + e—1m02] , (265)
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expressed in terms of the variables x and y. The explicit form of the potentials
can be calculated by integrating the Giambelli formula expressions for the Chern
classes, or alternatively by computing directly the first three potentials and then
using the recursion relation,

(k+3)Viys — (kK + )xvi0 + (k+ D)y Vg1 — kVi =0, (2.66)

which follows by multiplying by g* the equation obeyed by all the g;,
@ —x¢*+yq—1=0, (2.67)
(see Append1x (A)) and summing over i. Clearly, > ¢° =3, V1 = Y q; = x,
2V, = 3 ¢ = x* — 2. We can now compute recurswely usmg Eq. (2 66),

3V3 = x3—3xy+3, 4Vy = x* —4x2y +4x + 22, 5Vs = x> — 5x*y + 5xy% + 5x2 — 5y,
etc. Alternatively, we can use the generating function, Eq. (2.32),

m! dt

The fusion ring at level k is the polynomial ring P[x, y]/(0;Vi+3). For k = 2,
for example, the relations are generated by the derivatives of Vs which are the
Chern classes,

Vi = (=1" (i>m log(l — tx +°y — )]0 - (2.68)

q=unu=%§=ﬁ—w@+f+u, (2.69)
q:ﬂﬂ]:~%§—x-—%y+l (2.70)

It can be checked that the same answer follows from Giambelli. Hence, the
fusion ring is generated by the two variables x and y modulo the relations,
x? = 2xy—1 and x* = 3x2y — y?> — 2x. The fields can be represented by 1, x, y, xy,
x2, y? and the products can be computed from the relations, e.g., X’y = x + y?,
y3 = x3 =2xy — 1, and so forth.

3. The Connection with Grassmannians

The formalism that we have developed in the previous section of the fusion
ring of SU (n + 1), is remarkably similar to the cohomology ring of Grassmann
manifolds, i.e., the manifolds

Un+k)
Um) x Uk)’

whose points are k dimensional vector subspaces in C"**. There is an obvious
symmetry in the Grassmann manifold of exchanging n with k. In the geometrical
language, this corresponds to replacing a k dimensional hyperplane with its
normal plane.

The relation with Grassmann manifolds can be made precise through the
connection with N = 2 superconformal field theory (see [5] for a review). This
connection is interesting for its own sake.

As was established in [1], every N = 2 superconformal field theory (with a
central charge that is a multiple of three, corresponds to some complex manifold.
On the other hand, the G current algebras are the building blocks of the rational

Gi(C"HF) = 3.1
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N = 2 theories. Consider the quotient theory G/H, where (G, H) is some reductive
pair, i.e., H is a subgroup of G obtained by the removal of some nodes from the
Dynkin diagram of G and is of the same rank as G. As was shown in [6] this
theory has an N = 2 superconformal invariance. An important subclass of these
theories is described by the quotient, SU (n+ 1)/SU (rn) x U (1). We shall denote
this theory by SU (n + 1) /SU (n).

In each N = 2 theory there is a special class of fields, called chiral primary
fields, which obey the relation 4 = Q/2, where 4 is the dimension and Q is the
U (1) charge, and a similar relation holds for the right moving algebra. These
fields are chiral in the two-dimensional supersymmetry sense, as well as being
highest weight vectors of the Virasoro algebra. As was established in [7] the
operator products among the chiral fields are associative, i.c., we can define an
associative algebra structure on the chiral fields via their operator products,

CiCj = fkCr, (3.2)

where fi’; are the operator products. This algebra is an associative, commutative,
finite dimensional, graded algebra. It is graded by the U(1) charges, Strictly
speaking, since there are left and right moving U(1) charges, this algebra is
actually bigraded. However, we shall limit ourselves here to theories in which the
right and left moving charges are identical, and so there will be a unique grading.

In the framework of the general connection between N = 2 theories and
complex manifolds, we shall now establish that the theories SU (n + 1)x/SU (n)
are the conformal field theory counterparts of Grassmann manifolds. This will
also explain the striking similarity of the formalism developed in Sect. (2) for the
fusion ring, with classical tools in the study of such manifolds: the Schubert and
Borel pictures of the cohomology, along with the connection to the theory of
invariant polynomials.

The calculation of the chiral algebra of theories of the type SU (n+ 1)x/SU (n)
was described in [7] and, for the general reductive pair in [8,9]. The result is
simple — the chiral fields of the theory are in one to one correspondence with
the primary fields of SU (n + 1);. Each such field, denoted by C“, where 4 is a
highest weight of SU (n + 1) at level k, is obtained through the decomposition

G* = HAC4, (3.3)

where G4 is the highest weight component of a primary field and HZ is the
primary field in the H current algebra to which it decomposes. Thus, we can
compute the chiral algebra as a ratio of the structure constants among the primary
fields in the current algebra theories. Unfortunately, however, though much is
known about these structure constants [10,2], they have not been computed in
general, at the present. Thus, instead of using the actual structure constants, we
will substitute the fusion coefficients. We shall then argue that this procedure
leads to the correct answer.

As in Sect.(2), we shall be representing each integrable highest weight A
as 4 =) A@ or A = [ay,ay, ..., ac], where the integers a; are such that
0<ay <ay<...a <n. The U(1) charge of the chiral field C* = @4, is

k
k+g0=> a. (3.4)

i=1
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Consider now the fusion ring of this theory, restricted to the chiral fields.
These fields fuse according to

CAI X CA2 f//lll(GlizfAl(Iil)zé(Q - Ql - QZ)CA’ (35)

where f Ay 2 are the fusion coefficients of G = SU (n + 1) and similarly f(H) are
the fusion coefficients of H = SU (n). Let us, as in Sect. (2), define first the spec1a1
classes C4, where 4 is one of the fundamental weights, which will be again
referred to as the normal Chern classes, and denoted accordingly by ¢, = C*,
where 4, is the ™ fundamental weight. Consider the product of one of the special
classes with some field GZ. The fusion ring is a subset of the Pieri-like formula,
Eq. (2.14), with some of the coefficients set to zero according to Eq. (3.5). The
delta function in Eq. (3.5) is equal to & (r + 3 a; — Y. b;). Thus, ignoring the H
algebra, the fusion rules assume the form,

[l x [anay...,ad = Y [buba...,bd, (3.6)
aigb.sam
r+z a,=z b;
with the convention that 0 < b; < n. In other words, the fusion rule Eq. (3.6) is
identical to the Pieri-like formula, Eq. (2.14), except that now b; = N is no longer
allowed to appear in the product.

Next, we shall argue that H does not change this product, and that the full
fusion ring of the chiral fields is given by Eq. (3.6). If 4 = [a;,ay, ..., ai] is some
integrable representation of SU (n + 1) at level k, then the corresponding weight
of SU(n), also denoted by A (in an abuse of notation, is the same weight, with
each of the a; which is equal to n is changed to zero. Thus, the products of H that
we need to consider are those where each of the b; = n in Eq. (3.6) is replaced by
b; = 0. Note, now, that this is, in fact, precisely, the description of the Pieri-like
formula of SU(n) (which is at lavel k + 1). Thus, we conclude that Eq. (3.6),
indeed, represents the fusion of the chiral fields in the theory SU (n + 1) /SU (n).

We would wish to argue now that Eq. (3.6) is in fact the correct form for
the chiral algebra, and that the structure constants are indeed all equal to zero
or one, with the appropriate normalizations for the fields. In other words, our
argument so far implies that the chiral algebra is of the form

orla] = Z falb,ba, ..., bi],

a,<b;<a,,
z b,=z a+r

where f,; # 0 are some unknown constants. We can now use the associativity of
the algebra to find relations among these constants. A useful tool for doing so
is the Hasse diagram defined as follows [11]. Define the partial ordering among
the Schubert classes, [¢;] < [b;] iff a; < b; for all i. This is called the Bruhat order
(of a Coxeter group) and is identical to the inclusion order of Schubert varieties.
This poset (partially ordered set) has a length function which is > a;. In the
Hasse diagram every point stands for a Schubert variety, and two varieties whose
lcngth differ by one are connected by a line iff one is greater than the other. Now,
it is easy to see that ¢; x [a;] contains exactly all the terms in the Hasse diagram
greater than [a;] and connected to it. It follows that the constants f, ! can all be
assumed to be equal to one (up to normalizations of the fields) except for a set
of lines in the Hasse diagram, whose removal would make it into a tree, i.e., the
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unknown constants are in one-to-one correspondence with the cycle basis of the
Hasse diagram.

We can now use the associativity of the algebra to compute all other constants.
By computing the product ¢;¢.[a;] in two different ways, we find all the constants
fa» with 7 > 1, as well as getting some relations among the constants f al; which
represent the cycle basis of the Hasse diagram. It can be seen that, up to these
relations, the cycle basis indeed parametrizes different algebras with the generic
form described above. If we supplement the algebra with the assumption that
the inner product is? (a;,b;)) = 6(a; + bxy1—; — n), these constants can be seen to
be equal to one, and there is indeed a unique algebra which is identical to the
restriction of the fusion algebra.

As in Sect. (2) we can derive a Giambelli formula which expresses the chiral
fields as polynomials in the generators ¢;,

[al,a29 LR ak] = q?t Ea,»+i—j s (3‘7)

with the convention that ¢; = 0 for i < 0 or i > N. Note that the only difference
between this Giambelli formula and the one describing the fusion ring, Eq. (3.7),
is in the convention that ¢y = O rather than ¢y = 1.

Amazingly, the Pieri and Giambelli formulas that describe the chiral algebra
are identical to the classical Pieri and Giambelli formulas describing the wedge
product in the cohomology ring of the Grassmann manifolds G, (C"%) [12,11].
The basis of this cohomology is given by the Schubert varieties [aj,ay, ... , ax]
which are defined as follows. Let 0 =« V; < V;... © V,4 be a fixed flag
in G¢(C"*), i, an ascending series of vector subspaces in C"**, such that
dim(V;) = i. Then, the Schubert variety [a;,as, ..., ai] is defined as

lai,ap, ..., &) = {v € G(C™™¥) | dim(v N Vipi = 1)} . (3.8)

We conclude that the cup algebra of the Schubert varieties (or alternatively, via
de-Rahm isomorphism, the wedge algebra in the cohomology ring of Grass-
mannians) is identical to the chiral algebra of the conformal field theories
SU(n+ 1);/SU (n). More precisely

Theorem (3.1). There is a graded algebra isomorphism from the chiral algebra
of SUn + 1),/SUm) to the cohomology ring of the Grassmann manifold
Gr(C™*). The isomorphism map identifies the field C*, where A = Y, A and
0<a <ay <... < a, <n with the Schubert variety [a1,az, ... , a].

Proof. Outlined above (with the assumption on the bilinear product). It remains
only to show that the grading is preserved. The U(1) charge is Q = ) a;. It is
well known that the complex codimension of this Schubert variety is also )_ a;.
As this dimension is also half the degree of the form, the theorem follows.

The intersection pairing of forms in the cohomology ring of some manifold
V is the bilinear product,

(a,ﬂ)=/a/\ﬁ.

14

2 The inner product is defined through the pairing [a;] [b;] = «Cpax, Where « is the inner product. It
might be possible to justify this assumption from a conformal field theory calculation
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For the Schubert varieties this form is equal to [12, 11]
([a], b)) = [ ] 6 (@ + brysi —n).

Note that this is indentical to the result obtained from conformal field theory. In
fact, this pairing is identical to the one introduced for the fusion rings in Sect. (2);
the complex conjugate of the representation [aj,d, ..., ai] is easily seen to be
[N —ay, N—ag_,..., N —a;]. The transpose of a chiral field is defined by
[7] C' = Crmax Ct Where Crax = C*" is the chiral field with maximal U(1) charge.
It is easy to see that (C)! = C* where A' = (n — ay,n —ay_1 + n — ay). It follows
that the pairing of the chiral fields in conformal field theory is identical with the
intersection pairing of Schubert varieties (up to normalizations), and the Poincaré
dual of a Schubert variety corresponds to the transpose of a chiral field.

The structure of the chiral algebra is immediate from this theorem and from
the results of Sect. (2). The fusion ring is given by

Ple, e, ..., Cul/(Cha1sCha2s oo 5 Chgn) - (3.9

The chiral algebra is given, according to the foregoing discussion, by the homo-
geneous part of the fusion ring. That is, making the change of variables ¢; — A'c;,
where A is some complex constant, and taking the limit of |A] — oco.

It follows that the chiral algebra is given by the same formula, Eq. (3.9), where
now the Chern classes are evaluated using the classical Giambelli formula Eq.
(3.7). An equivalent way to write this is as follows. It is not hard to see that the
Giambelli formula and the ideal of relations imply that

(I—ci+e—...+ D)+ +e+...¢) =1, (3.10)

where this equation is regarded as a set of equations for each of the homogeneous
components. For example, the first equation is ¢; — ¢; = 0, the second is ¢; —
¢1¢1 + ¢ = 0, etc. The first k equations give the Giambelli formula expression for
the Chern classes, whereas, the k+ 1 up to k+n give the relations of the algebra,
¢ =0for k+ 1 <i<k+n It follows that Eq. (3.10) is a complete description
of the chiral algebra. This equation, which is due to Borel, is a very natural
geometrical description of the cohomology of Grassmann manifolds: it expresses
the fact that the complete Chern class times the complete normal Chern class
is equal to one, or that the direct sum of the tangent bundle and the normal
bundle is a trivial vector bundle, and that there are no additional relations in
the algebra. This is the Borel picture of the cohomology. We conclude that the
description of fusion rings by generators and relations is the analog of the Borel
picture. The symmetry of exchanging n and k is also evident from Eq. (3.10)
thr(;ugh the exchange of the symmetric representations with the anti-symmetric
one’.

Finally, integrating the relations to get the potential, is the same as in Sect. (2).
The potential V; is given by the highest degree components of the potential of
Sect. (2). It is immediate, thus, that it is equal to

1 n
V, = k+n+1 )
k k+n+1§‘11 , (3.11)

3 Qur definition of the Chern classes differs by a sign from the conventional one, ¢, = (—1)"[r]
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expressed in terms of the generators &, = ). g, iz, ..., ir. The only differ-
i1 <iz<...<ip

ence from the fusion ring is that now ¢y = O rather than ¢y = 1. It follows
that,
oV;
S (—1)P 2
¢ = (-1) 3, (3.12)
OVin

oG )

The description of the theories SU (n+ 1)x/SU (n) as scalar field theories with
a potential, of the deformation type of V was first described in [7]4. It follows

from the result above, that the theories may be written by the lagrangian
& = / d*0K (P, @;) + [ / d?0Visns1 (P) +c.c.] , (3.13)

where &; is a scalar superfield multiplet associated with each of the generators, and
with the precise potentials described above. This shows that the superpotential is
not only a deformation of the homogeneous space cohomology, but is precisely
identical to it, with the totally anti-symmetric representations playing the role of
the normal Chern classes, while the symmetric ones play the role of the Chern
classes.

To see the connection between the chiral algebra and the equation of motion,
Eq. (3.13) let us recapitulate the arguments of [7]. The equation of motion which
follows from the supersymmetric lagrangian Eq. (3.13) is the usual one for a
Wess-Zumino model,

as before, and that the chiral algebra is P[c;]/

K¢i"—ﬁj D+D+¢;‘ = 2—:;: N (314)
where ¢; is the lowest component of the superfield @;. Now, note that the
right-hand-side of Eq. (3.14) is a polynomial in the chiral fields ¢; while the
left-hand-side is a non-chiral field. It follows that the polynomials g—(‘;— vanish
when computed in the chiral algebra (using the structure constants to define
the algebra). Thus the chiral algebra of the theory Eq. (3.13) assumes the form
P[¢13¢25 ey d’n]

OV /0¢y)
identical to the one computed from the chiral algebra.

This set of arguments applies, in fact, equally well to non-conformal scalar
field theories. Consider the perturbations of the conformal lagrangian Eq. (3.13).
These are described by adding to the potential V arbitrary elements of the chiral
algebra. Thus, the new theory will be described by the potential ¥V = V +C, where
C is any chiral field, expressed as a polynomial in the generators. The potential
no longer needs to be quasi-homogeneous, and the theory is not necessarily
conformal. However, the equation of motion is still of the form Eq. (3.14), and
thus the chiral algebra (again, defined through the structure constants among the
chiral fields) is given by the quotient

€ = P[¢19¢2:)\-'° ) ¢n] ) (315)
@iV)

. Hence also, the potential appearing in the lagrangian, is

4 The fact that the Poincaré polynomial of this theory is identical with the Poincaré polynomial of
the cohomology of Grassmann manifolds was subsequently noted in [8,13]
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We thus see that this relatively simple derivation enables us to calculate exactly
the structure constants among the chiral fields in any two dimensional scalar field
theory?>.

As explained in [7] this also allows us to write down the manifold which
corresponds to an N = 2 string theory built with these conformal field theories.
The manifold, as was shown there, is given by

> V=0, (3.16)

where V; are the potentials for each of the theories, and the variables ¢; are
considered now to be complex numbers in weighted projective space. This gen-
eralizes the correspondence with manifolds of [1] from the minimal series SU (2)
to the more general SU(n + 1)/SU (n). Owing to the calculation of the chiral
algebra in non-conformal field theories, described above, we can map N = 2 su-
persymmetric theories to manifolds, even in the absence of conformal invariance.
The corresponding manifold is again given by Eq. (3.16) with ¥ replaced by V
and with the variables ¢; now considered to be complex numbers in C”, ie., a
complex affine variety rather then a complex projective one. The elements of the
chiral algebra can now be identified with the moduli space of the affine variety.
We shall see more of this type of correspondence in the next section.

4. The Geometrical Picture

In this section we will apply some algebraic geometric notions to fusion rings.
Let us begin with some elements of ring theory and algebraic geometry [15, 12].
Let A be some commutative algebra over the pair of fields (k, K), where K is the
algebraic closure of k)%. For any ring, R, two types of radicals can be defined. First
the Jacobson radical, J(R), which is the intersection of all the maximal ideals in
R. Equivalently, J(R) is the union of all the ideals, I, for which (1+x) is invertible
for any x € I. A ring for which the Jacobson radical vanishes is called semisimple.
The quotient ring R/J(R) is semisimple. Another radical one can define is the
nilradical, N (R), which is equal to (for a commutative ring) the set of all nilpotent
elements in R, i.e., elements x such that x" = 0 for some n. Clearly, the nilradical
is contained in J since if x is nilpotent, (1 4+x)™' =1 —x 4+ x> +...(—1)"x" and
so 1 4 x is invertible, implying that x € J(R).

Now, assume that the nilradical of the algebra R vanishes, or that there are
no nilpotent elements. Let x1,xp, ..., X, be a set of generators of R. There is a
natural map from the polynomial algebra P[x,Xs, ..., x,] = P[x] to R given
by substituting the generators. The kernel of this map is an ideal, I, in P[x].
Clearly R = P[x]/I. A set of generators of I is called the relations (or syzigies)
of the algebra R. Consider the zero set of I, or the root locus, M, which consists
of all the points x € K" for which p(x) = 0 for any p € I. M is some affine
variety in K". Consider the ideal J which consists of all the polynomials which

5 The chiral algebra of perturbed minimal models (of types A, D, Eg) was recently calculated directly
using perturbation theory in [14]. The result described there agrees with ours

6 Actually, we will allow k to be a ring, provided it is an integral domain, and then take K to be a
field containing the algebraic closure of the field of fractions of k. For fusion rings, k will be taken
as the ring of integers which is not a field but an integral domain. K will then be taken to be the
complex numbers
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vanish on M. Hilbert’s Nulistelenzats theorem asserts that any elements of p € J,
raised to a sufficiently high power, lies in I, p™ € I. It follows that if N(R) =0
then J must be identical to I, since p" € I implies that p € I. Thus every
such algebra can be mapped uniquely to an affine variety M. The converse of
this is also true; any variety M would give rise to the algebra P[x]/J, where
J is the ideal of polynomials which vanish on M. The algebra R itself can be
interpreted as the algebra of polynomial maps (with coefficients in k) from the
variety M to the field K or, in other words, the algebra of functions on the
variety M. One introduces the notion of regular maps between the varieties M
and N as the polynomial maps with coefficients in k which take M to N. Clearly,
a regular map induces a homomorphism on the corresponding algebras and
vice-versa. The composition of regular maps is the same as the composition of
homomorphisms. More precisely the category of finitly generated commutative
algebras with vanishing nilradical is equivalent to the category of affine varieties,
with the functorial map defined above. It follows that any algebraic question can
be phrased geometrically and vice versa. The algebraic R is called the coordinate
ring of the affine variety M.

Now, suppose that R is finite dimensional over k. Then, since R can be
identified as the algebra of polynomial functions, p : M — K, it must be that
M consists of a finite number of points, whose number is dim(R). The following
basis can be chosen for R (over K). Let x; be the ih point of M (in some arbitrary
order). Define the functions,

Cilxj) = 6y, (4.1)
namely, {; vanished in all the points except one. Clearly, the product of two such
functions is

bilj = (idij , 4.2)

as is seen by substituting any of the points of M. Equation (4.2) shows that
over K any two such algebras are isomorphic if they have the same dimension.
Equivalently any n points in C™ can be mapped to any other n points by a regular
map (provided, of course, that k = K). The detailed structure of the algebra (or
alternatively, the variety M) reveals itself only when k is not algebraically closed.
In the case of the fusion rings, the most suitable choice is k = Z, the integers,
and K = C, the complex numbers.

Now, fusion rings in a rational conformal field theory are semisimple. It follows
that they can be cast in the form Eq. (4.2) along the general lines described above.
The {; are closely related to the basis introduced in [16] for the fusion rules. To see
it, note that if f; =Y S;;[j], where S is the matrix of modular transformations,

j
and [j] is any primary field block, then

BiB;j = AidijB;,  where 4 = Sg'. 4.3)

Now, the f; are polynomials in x. Substituting any of the points of M we find
that

Bi(x)B; (x) = Aifi(x)d; - (4.4)

It follows that B;(x) = 0 or f;(x) = 4; and it is non-zero for a unique point. Thus
Bi = 4i{;, and
ST

Nogtg = g
1 =SB = Si,JO G 4.5)
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Substituting any of the points x € M and denoting by p;(x) the polynomial
which represents the field [j] we find that,

pj(xi) = 4; L) = —'0. (4.6)

In particular, since the generators are identified with some of the fields, p,(x) =
x® for a € S where S is some subset of the fields, it follows that the points of
M are given by
¥
0 _ 2 47
X; Sio 4.7)
Thus we have expressed the variety M in terms of the modular matrix S. Further,

S can be described as the values of the polynomials of R on the variety M, or
the functions that each primary field corresponds to. To summarize,

Theorem (4.1). Any fusion ring can be written in the form P[xi,xa, ..., X4]/1,
where x; are the generators and I = (p1,pa2, ..., pn) is the ideal of relations. The
syzigies p; are algebraically independent and the solution of the system and polyno-
mial equations p;(x) = 0 is given by the points x® = S;; /Si0, where S is the modular
matrix and [o] for o € S are the generators. Equivalently, It can be described as
the ideal consisting of all polynomials vanishing at these points.

Consider a fusion ring generated by one primary field, which will be denoted
by x = [1]. Then M is an affine variety in C, or the points x; € C, where

s
xi=<L, fori=0,1,2,...n. (4.8)
Si0
The ideal I of polynomials vanishing on M is (since P[x] is a principal ideal
domain) generated by some polynomial p € P[x]. Clearly, p(x) is proportional to
n

IT (x — x;). Hence
i=0
n ST
R= f(l[)—’)‘], where p(x) = I;! (x - S—(‘)) 4.9)

Note that this is the structure of R as a ring over Z and that, in particular, the
coeficients of p(x) are all integral. Now, it is easy to see that {; is given by

G = pi0)/pilx),  where pi(x) = [T (x—x)), (4.10)
=0
i
since {;(x;) = d;j. From this we find an explicit expression for the primary fields
as polynomials in x,

Sk x—Sh/Se
pi) =3 S => 8h/sieti=Y L] —222 0 @1
: ; 7 Xl: e Z(:) Sjo rl;!) SITI/SIO'—SJI/SrO
rei

Let us now describe the variety M which corresponds to the fusion rings of
Sect. (2). There, we found that the fusion ring of SU(N), can be described as the
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quotient P[xy, X, ..., x,]/ (6 V), where x; are the anti-symmetric representations,

and the potential is V = kN with the x; identified as the symmetric

N N +k £ Z 4
functions in the gj’s, n = N — 1 and with the constraint xy = q142...qn = 1.

. ov . . . |4 .
The manifold Pl 0 is identical to the manifold % = 0 subject to the
constraint, except ’at the points where the Jacobian, whicﬁ is equal to the Van-
dermonde determinant, vanishes. Introducing a lagrange multiplier 1, we see that

the manifold M is given by the extremum with respect to g; and A of the potential

N
k+N ZqN+k (]‘[ qi—l). (4.12)
i=1

By deriving U with respect to g; and A we obtain the conditions for an extremum,
N+k

gVt =4, H gi=1. (4.13)

Making the change of variables, g; = exp(if; — i0;—1) with 6y = Oy = 0, we find
that,
S zAq - A;

0,‘ = : i .
Nk T Nk T @14
where s;, n; and z are any integers. Defining the variables
N
o= N Tk 4.15)

where o; are the simple roots, it follows that U has an extremum if and only if
¢ € M* mod(k + N)M, (4.16)

where M is the root lattice and M ™ is its dual (which is the weight lattice). From
these solutions we need to exclude the points at which the Jacobian vanishes,
which do not correspond to an extremum with respect to the x;. These are the
solutions where g; = g;, for some i and j. From the denominator formula, Eq.
(2.26-2.27), it follows that these correspond to ¢’s such that w(¢)—¢ € (k+N)M,
where w is some reflection in the Weyl group. Now, the variables x; are expressed
in terms of the ¢’s through the Weyl character formula, Eq. (2.25), and it follows
that Z (_l)we2niw(/.+g)¢/(k+N)
xeW
x1(0:) = > (—1)"e2miv@d/GrN) (4.17)
xeW

where A correspond to the anti-symmetric representations, A = A®?. The same
formula holds for the other representations, with A taken as the highest weight.
From this equation it is easy to see that ch;(¢) = ch;[w(¢)] implying that ¢
and w(¢) lead to the same solution. Consequently, the manifold M consists of
the vectors in M * mod(k + N)M modulo the anti-invariant action of W. As is
well known, e.g. [4], these vectors can be described as 4 + ¢, where 4 is an
integrable highest weight at level k. Thus, the points of M are given by the
integrable highest weight vectors at level k, 4, whose number is, indeed, equal to
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the dimension of the fusion ring R, in accordance with our general theory. The
points are ¢, = 2n(A + ¢)/(k + N). Substituting these points into the character
formula, we find that the values of the primary fields at these points are

st
ch,(2) = 2£, (4.18)
So, u
where S is the unitary matrix
* 1/2
Siu= M Z (—1)¥e~2riwlito) (uto)/(kte) (4.19)
Yo lk+oM| &

(We used Sy, = S& ,-) The partition functions of the current algebra transform
according to the matrix of modular transformations, which is identical to Eq.
(4.19) [2]. Thus we have verified directly Theorem (4.1) for the SU (N); theories.

Consider, for example, the case of SU(2) ’. We have found that (r) is given by
Chebyshev polynomials,

sin(r + 1)¢

sing
Thus, quite clearly, Ujy1(x) = 0 if and only if ¢, = n(n + 1)/(k + 2), for
n=0,1,...k or x, = 2cos(n(n + 1)/(k + 2)). We can now calculate the value of
Ur(xn)a

U,(2cos ¢) = (4.20)

n(r+1)(n+1)]
k+2

N n(r+ 1) ’
k+2

which is indeed indentical (up to a factor which is fixed by the unitarity) to the

matrix of modular transformations, Eq. (4.19), which reads for SU (2),

G+ G+
i sin [ ) ] . (4.22)

From Egs. (4.10-4.11) one finds product formulae for Chebyshev polynomials
of the second kind. It is left as an exercise to check these relations by explicitly
substituting the matrix S.

Let us briefly discuss the application of the formalism described above in
the investigation of automorphisms of the fusion rules. As already remarked,
from the basis of functions on the variety M, it is evident that any two such
algebras over C are isomorphic if, and only if, their dimensions are equal. The
isomorphism simply sends {; to (/, where { and (' are the two basis of the
algebras. Clearly, also the automorphism group of the algebras over C is Sy,
the permutation group, where d = dim(R). Any automorphism is of the from
{i = {p@, where p is some permutation. This can be seen also geometrically: the
automorphisms correspond to any permutation of the points of the variety M.
The question becomes much more complicated when considering R as a ring,
allowing only integral coefficients. The automorphisms are then polynomials in

Ur(xn) = [ (4.21)

S =

7 The description of the fusion rules as a truncation of character multiplication, was already noted
in [16] in the case of SU(2)
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R which have integral coefficients. Geometrically, this translates to the question
which regular maps (i.e., polynomial maps with coefficients in Z) take the points
of M into themselves. Clearly, only a subgroup of the permutation group S,
survives, as most of these maps do not have integral coefficients (but rather some
algebraic integers). Thus, the question of finding the automorphisms under Z
translates into a difficult arithmetic question which will not be addressed here.

The discussion in much of this paper centered around theories of the type
SU(N). However, much of the machinery developed here applies equally well to
any rational conformal field theory and, in particular, to current algebras based
on other types of groups.

Consider the Schubert-like calculus. We have based it on Young tableaux and
thus as it stands it is specific to SU (N) type groups. However, it is quite likely that
one can develop a similarly elegant calculus for any group. The basic steps are
finding the set of generators and writing a Pieri-like formula for their products.
Such a set of generators for the general group are the primary fields associated
with the fundamental weights. The solution of the Pieri-like formula once written
down is given, again, by the characters of the finite algebras, for large enough k.
In particular, the characters expressed in terms of the generators again form a
system of orthonormal polynomials, just as in the SU(N) case, with a measure
which is D?/J, where D is the denominator of the Weyl character formula and
J is the Jacobian for the change of variables, from the #; which parametrize the
maximal torus to the fundamental weights. (In the case of SU(N) we have found
D = J. This might also hold for the other groups.) Now, the Pieri-like formula
differs from the character products by the fact that some representations are
missing. The missing representations form an ideal, I, specific to the level, Thus
the fusion ring is given by

Ri = P[x1, %2, ..., xul /I, (4.23)

where the x; correspond to the i" fundamental weight. At k — oo the algebra
is a free polynomial algebra. Now according to the discussion of Sect. (3), the
points where I vanishes correspond to a variety M which consists of d points
in C", where d is the number of integrable highest weights at level k (ie., the
dimension of the algebra). In the case of SU(N) we found that these points
correspond to the elements 27(A4 + g)/(k + g) in the Cartan subalgebra, where
g is the dual Coxeter number. It is reasonable to guess that these would be the
points in general, and thus,

x; = ch, (%ﬁ) where u = A, (4.24)

and A’ is the i fundamental weight. As explained earlier, the values of the
primary fields when expressed as polynomials in the generators evaluated at
these points, correspond to the modular matrix. This is indeed consistent with

Eq. (4.24) since
¥

chy | ————= ) = ===, 4.25
K ( k+ g So, A ( )
where S is the matrix of modular transformations, Eq. (4.19), as is easy to see
from the Weyl character formula Eq. (2.25). We have thus formed a complete
picture of the fusion rules: It is the algebra of polynomials in n variables x;
modulo the ideal of polynomials vanishing at the points x,4 given by Eq. (4.24).
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The unitarity of S implies that the primary fields are linearly independent in this
algebras and thus form a basis of it (as the dimension is equal to the number of
primary fields). It follows that Eq. (4.23) indeed represents an algebra which is
identical to the usual group multiplication, modulo some identifications, which
is closed among the integrable representations and is consistent with the relation
to the modular transformations.

It is not hard to describe more explicitly the ideal I;. Consider the expression
for the primary fields, Eq. (4.25). Clearly, if w,(A4+0) — (4 + @) € (k+ g)M;, where
M; is the lattice generated by the long roots, then ch, vanishes for all the points
in M. It follows that the ideal I; contains all the representations with highest
weight 4 such that,

(4 + ) =O0mod(k + g), (4.26)

for some root of a of G. Choosing, in particular, « = 6 (the highest root), and
using the relation g = g — 1, it follows that I contain all the representations at
level k+ 1 (i.e., 04 = k + 1). This, gives also, another proof for Eq. (2.20).

The mapping of an associative algebra to an affine variety in C", described
above, is general to all finite dimensional semi-simple algebras. It is a somewhat
lacking description since it translates algebraic questions into hard arithmetical
ones. The fusion rings described here, afford however a different geometrical
description which is more natural from the viewpoint of quantum field theory.
As we found here, all the fusion rings can be described by potentials ¥ which
are polynomials in the generators V (xy,;, ..., x,) with integral coefficients. The
fusion ring itself is the quotient P[x]/(0;V). Now, consider the manifold,

V(xl’xz’ M xn) = O’ (4'27)

where the x; are considered to be complex variables in C. This is some affine
variety, which is a hypersurface of codimension one in C", where n is equal to
the number of generators in the ring. Now, what is the relation between R and
the variety M ? Consider the perturbations of the complex structure of M. These
can be described as polynomials which can be added to the defining equation,
Eq. (4.27),

V=V+4+0=0, (4.28)

which do not change the degrees of V. However, linear redefinitions of the x;
lead to the same complex structure. Such redefinitions give polynomials which
are proportional to derivatives of V. It follows that the complex structures of M
(i.e., its moduli space) are described by the ring P[x1, x3, ..., X,]/(0;V). Namely,
this is precisely the primary fields of the conformal field theory, and we recovered
the fusion ring as the deformations (or moduli space) of the hypersurface M.

5. Discussion

In this paper we have focused on two apparently unconnected finite dimensional
associative algebras arising in conformal field theory. One is the fusion rule alge-
bra expressing the way the primary fields fuse in the operator product algebra.
The other is the operator product algebra of the chiral fields in an N = 2 su-
perconformal field theory. Both physically and mathematically these algebras are
quite different. Physically, the fusion rules express the truncation of the operator
products owing to the existence of an extended algebra in a rational conformal
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field theory, while the chiral algebra describes actual correlation functions of
some special fields, in a theory which is not necessarily rational. Mathematically,
the two algebras are also as different as one can get. While the fusion algebra is
semi-simple, the chiral algebra is a local algebra, i.e., an algebra with a unique
maximal ideal, which is hence identical with the Jacobson radical. Thus the close
relation and complete analogy between the two structures, described here, is
somewhat surprising.

The first level of this relation is the direct one. Namely, as we have shown, the
fusion ring of the the theories SU (N)y is almost identical to the chiral algebras
of the N = 2 theories SU(N);/SU(N — 1). The connection is two-fold. First,
the chiral algebra of this theory is the homogeneous part of the fusion ring
of SU(N)y, ie., taking the limit 1 — oo in the change of variables x; — A'x;.
The second is that the fusion ring of SU(N)x can be described, precisely, as
the chiral algebra of the theory SU(N + 1),—1/SU(N) specialized to the value
C!" = qiqs...q, = 1. [This is most easily seen from the explicit expressions
of the algebras, Eq. (3.9).] Thus, we see that these two mathematically and
physically very different objects are identical, in essence. It follows that there is
a close analogy between the two algebras and one can write a dictionary for
translating notions from one to the other: chiral field — primary field, structure
constant — fusion coefficient, weighted projective variety — affine variety.

In the case of N = 2 theories we have encountered two quite different geomet-
rical interpretations. The first, is the original map of N = 2 theories to manifolds
with vanishing first Chern class, conjectured to be general in [1]. A different
type of geometrical correspondence follows from the analysis of Sect. (3). There
we have seen that the chiral fields are identical to the Schubert varieties which
form the natural basis of the cohomology of Grassmann manifolds. Thus, the
chiral algebra is isomorphic to the cohomology of the corresponding Grassmann
manifolds, with the two natural bases being completely identical. So, in one geo-
metrical description the chiral algebra is the ring of deformations of the manifold,
while in the other it is the entire cohomology. The connection between these two
geometrical pictures is as yet a little mysterious. Somehow, one should be able
to get from one geometry to the other in a procedure that closely imitates the
gluing of subtheories and the U (1) projection needed to derive the conformal field
theory which corresponds to a manifold of vanishing first Chern class. This is an
entirely geometrical question. Namely, for each complex manifold M (with the
correct dimension) one can define a manifold of lower dimension, N, such that
the deformations of N are the cohomology of M. Thus, the complete construction
of N = 2 string theory can be phrased and studied in purely geometrical terms.

The geometrical correspondence is particularly well understood in the case
that the theory admits a scalar field theory realization. As was shown in [7] this
reflects itself by having an integrable chiral algebra, i.e., an algebra of the form
P[x1,x3, ..., x4]/(0;V), where V is some potential. The potential is used, in turn,
to construct the manifold.

As we have seen in Sect. (4), this line of thought has an analog in the study
of fusion rings. It turns out that the fusion rings studied here are all integrable.
A study of various other examples leads us of the following:

Conjecture. All fusion rings encountered in rational conformal field theory are
integrable, with a potential V' which is a polynomial with integral coefficients.
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Thus, the fusion rings are the close analog of the scalar field theories and hence,
bearing the correctness of this conjecture, all rational conformal field theories
can be classified through their corresponding potentials. These potentials lead,
in turn, as discussed in Sect.(4) to a similar geometrical interpretation for the
fusion ring. The latter can be described as the deformations of the affine variety,
V(x1,X2, ..., Xn) = 0, where x; € C. Thus, one can map a rational conformal
field theory to some affine variety and study it geometrically. A related question
is what is the quantum field theory interpretation of this construction. Namely,
can one think of the conformal field theory as some sort of a sigma model
on the corresponding manifold? Is there, for example, a scalar field theory
construction which explains the relation found here between the fusion ring and
the deformations of its corresponding affine variety? In relation to string theory:
does this imply that the corresponding string theories are geometrical in nature?
Clearly, a deeper understanding of these questions is called for.

Appendix A. Discriminants of Polynomial Equations

Consider the most general n't order polynomial equation,

H (x—q) =x"—8x"1 + Sox"E— . 4 (=1)"S, =0, (A1)
i=1

where the coefficients S; are expressed in terms of the roots as

S= [ 4u4n---a - (A2)

iy <ip<...<iy

The discriminant of this equation, R, is defined as the square of the Vandermonde
determinant of the roots,
R=]]@—q) (A3)
i<j
The function R is symmetric in the g; and thus can be expressed (according to
the symmetric function theorem) as a polynomial in the generators of symmetric
function, which are the S,. This polynomial is the discriminant. It vanishes if and
only if Eq. (A.1) has degenerate solutions.
Now, we can calculate the discriminant directly by noting that R = (det M )%,
where M; ; is the matrix M;; = q{_l, and so R = det(M'M),
j—1 2 i—1_j—1
R= ((listq{ ) = 313; ; ailql = det Vi, (A.4)

I<i,j<

where V,, = ) g are the potentials defined in Sect.(2). These potentials can
k

be calculated in various ways. For example, by calculating the Chern classes c¢;
using the Pieri formula, and then integrating these to get the potentials, using Eq.
(2.21). Another way is to use the recursion relation which follows by multiplying
Eq. (A.1) by ¢° and summing over k,
2 (D) WpniS; =0, (A.5)
i=0
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with the convention Sy = 1. The first few terms can be calculated explicitly, and
the rest from the recursion relation Eq. (A.5).

A less direct way to calculate the discriminant is the following. Let us first set
qn = 0. Then S, =0 and

Ro=]]@-a0)?=@a..a)* [ @—a)*=S iR, (A6)
i<j i<j<n—1

where R, is the discriminant of the n'® order equation, expressed in terms of S;,
i=1,2,...n It follows that R, = R,_1S2 | + O(Sy).

Let us now derive a differential equation for the discriminant. Substituting
g} = qi +¢, where ¢ is a small constant, the discriminant R, does not change. The
change in the symmetric functions is,

Si= > @ +9@+e...(q+e="S+n—1+1eS_ +0E). (A7)
i) <ip<...<ij
Thus we find the differential equation,

- oR,
AR, = _ =0. A.8
; - (A.8)

m .
Setting R, = ) b;S] for some m (by degree counting m = n—1) and substituting
=0
into the differential equation Eq. (A.8), we obtain a recursion relation for the
bj ’S,

dbj_1
Zm—u4&18&. (A.9)

bi=- ]S_

This equation, together with by = S |R,_;, Eq. (A.6), can be used to compute
b; recursively.

This method is considerably simpler, calculation wise, than the first one
described, and is also particularly suitable for a mechanical evaluation of the
discriminant. The formal computer language Mathematica was used to this end.
The program which is simply a translation into Mathematica of the recursive
definition of the discriminant, Eqgs. (A.6, A.9), is listed below along with the
output: the discriminants R, for 2 < n < 5. In the output R(n) stands for R, and
S(I) for S;.

B/ : B[n_,0] := Expand[S[n — 1]"2 * R[n — 1]]
S/:S[0]=1

B/ : B[n_,m_] := B[n,m] = Expand[—((1 * Sum[(n— 1[n, m] + 1) *S[l[n, m] — 1] *
D([B[n,m — 1], S[l[n, m]]], {l[n, m], 1, n — 1}])/(m * S[n — 1]))]

R/:R[1]=1

R/ :R[n_] := R[n] = Expand[Sum[B[n, q[n]] * S[n]"q[n], {q[n], 0,n — 1}]]
Do[TeXForm[R[k]] >>> disc2.a, {k, 2, 5}]

The program took a second or two to execute, and can be easily used to compute

the discriminants for larger k. The output of this program, printed in tex format
into a file, is as follows,
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RQ) = S(1)2—45(2)
R(3) = S(1)25(2)> —45(2)° —4S(1)35(3) + 185 (1)S (2)S (3) — 27 (3)2
R(4) = S(1)28(2)2S(3)2 —4S5(2)S (3)2 —45(1)3S (3)® + 185 (1)S(2)S (3)3

—27S(3)* —4S(1)2S (2)3S (4) + 165(2)*S (4) + 185 (1)3S (2)S(3)S (4)
—80S(1)S(2)2S(3)S(4) — 6S(1)2S(3)2S (4) + 1445 (2)S (3)2S (4) — 275 (1)*S (4)?
+1445(1)25(2)S (4)% — 1285 (2)2S (4)2 — 1928 (1)S (3)S (4)2 + 2565 (4)°

R(5) = S(1)>S(2)2S(3)>S(4)> —4S(2)3S (3)2S (4)> — 45 (1)>S (3)>S (4)?

+185(1)S(2)S(3)3S(4)2 —27S (3)*S (4)2 — 4S(1)2S (2)°S (4)° + 16 (2)*S (4)°
+185(1)>S(2)S(3)S(4)® — 805 (1)S(2)2S(3)S(4)* — 65 (1)2S (3)2S (4)?
+1445(2)S(3)2S(4)° —27S (1)*S(4)* + 1448 (1)2S (2)S (4)* — 1285(2)2S (4)*
—1925(1)S(3)S(@)* +256S(4)° — 4S(1)25(2)2S(3)35(5) + 165(2)>S (3)35(5)
+168(1)>S(3)*S(5) — 725 (1)S(2)S(3)*S(5) + 1085(3)°S (5)
+185(1)2S(2)35(3)S (4)S (5) — 725 (2)*S(3)S (4)S (5)
—805(1)3S(2)S(3)2S(4)S(5) + 3568 (1)S(2)2S (3)2S (4)S (5)
+245(1)25(3)*S (4)S(5) — 6308 (2)S(3)3S (4)S(5)

—65(1)3S(2)25(4)2S(5) +24S (1)S(2)3S (4)2S (5) + 1445 (1)*S(3)S (4)2S (5)
— 7465 (1)2S(2)S(3)S (4)S (5) + 5608 (2)2S(3)S (4)2S (5)

+ 10208 (1)S (3)2S(4)2S (5) — 365 (1)3S(4)3S (5) + 160S (1)S (2)S (4)35(5)

— 16008 (3)S(4)3S(5) — 27S(1)2S (2)*S(5)2 + 1085 (2)°S (5)>
+1445(1)35(2)25(3)S (5)> — 6308 (1)S (2)3S(3)S(5)? — 1285 (1)*S (3)2S(5)2
45608 (1)2S(2)S(3)28(5) + 8255 (2)25 (3)2S (5)2 — 9005 (1)S (3)3S (5)>
—1925(1)*S(2)S(4)S(5)* + 10208 (1)2S (2)2S (4)S (5)2

—9008(2)3S(4)S(5)* + 1605 (1)3S (3)S (4)S(5)?

— 20505 (1)S(2)S(3)S(4)S (5)% + 22505 (3)2S (4)S (5)% — 505 (1)2S (4)2S(5)?
420008 (2)S (4)2S(5)% +2565(1)°S (5)> — 16008 (1)35(2)S (5)°
+22508(1)S(2)2S(5)? + 20008 (1)2S (3)S (5) — 37505 (2) S (3)S (5)°

— 25008 (1)S(4)S(5)° + 31255 (5)*
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