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Abstract. Witten's 2 + 1 dimensional Chern-Simons theory is exactly solvable. We
compute the partition function, a topological invariant of 3-manifolds, on
generalized Seifert spaces. Thus we test the path integral using the theory of 3-
manifolds. In particular, we compare the exact solution with the asymptotic
formula predicted by perturbation theory. We conclude that this path integral
works as advertised and gives an effective topological invariant.

Quantum Field Theory is rapidly emerging as the unifying principle behind new
topological invariants in low dimensions. Ed Witten led this development with his
introduction of topological quantum field theories. From many points of view the
most accessible of these quantum theories is the 2 +1 dimensional Chern-Simons
theory [W]. There is a beautiful corresponding classical theory [Fl] defined for
each class in H\BG\ where G is a compact Lie group and BG its classifying space.
In case G is finite the quantization is straightforward and illuminating [DW, FQ],
though the topological invariants arising from the quantum theory are trivial. On
the other hand the quantization of the theory for continuous groups proceeds via
the Feynman path integral, which is not (yet) a mathematically rigorous
procedure. Nevertheless, this quantum theory (presuming it exists) reproduces the
Jones polynomial of links in S3 and generates new invariants of links in arbitrary
closed oriented 3-manifolds. Some of Witten's assertions in [W] now have
mathematical proofs independent of path integral arguments. We give evidence of
a different kind for the validity of the quantum theory - computer calculations.

In this paper we restrict our attention to the simplest continuous group
G = SU(2). Then H\BG)^Z, so there is an SU(2) theory for each integer k,
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typically called the level A nondegeneracy requirement forbids fc = 0, while
theories at opposite integers are trivially related, at least on the classical level. Thus
we restrict k to be a positive integer. In Sect. 1 we summarize the relevant
information in [W]. Here we review both the exact solution and the perturbation
theory for large fe.1 Witten's invariant depends on a certain framing of the 3-
manifold; we use the canonical 2-framing of Atiyah [Al]. The Kirby calculus
keeps track of these framings nicely. The primary new theoretical contribution of
this paper is the explicit computation of these framings, as we explain in detail in
Sect. 2. We also record various topological invariants of lens spaces and Brieskorn
homology spheres. As we ask the reader to trust our computer code, we present
some brief evidence for the validity of our programs in Sect. 3. The computations
are tabulated, graphed, and analyzed in Sect. 4. We test the exact solution in
various ways and then compare the exact solution to the perturbation theory. We
summarize our findings in three words: It all works! There are a few details that we
could not resolve. We list them in Sect. 5 together with some conclusions and open
questions.

Physicists have great confidence in the path integral based on theoretical work
and on their experience in the lab. Measurements of physical quantities such as the
anomalous magnetic dipole moment of the electron agree with perturbative
calculations from path integrals to remarkable accuracy. Many mathematicians,
however, remain incredulous. Lacking a rigorous justification for path integral
manipulations, they often cast a skeptical eye on physicist's methods and results.
Topological Quantum Field Theory not only illuminates invariants in low
dimensional topology, but also provides a new testing ground for the path integral.
The Chern-Simons theory discussed in this paper is unusual among quantum field
theories in dimensions ^ 3 - it is exactly solvable. Hence we can test the gluing
law,2 the fundamental property of the path integral, using the exact solution.
Furthermore, as with any quantum field theory there is a perturbative expansion
for the path integral - here for large k - and we can test the exact solutions against
this standard perturbative expansion. In our experiments the standards against
which we measure the path integral calculations are not experiments in a lab, but
rather the mathematical theory of 3-manifolds. It is worth emphasizing how
different is the mathematics used to derive the formulas for the exact solution
(symplectic geometry, Kaδ-Moody Lie algebras) from the mathematics used to
derive the perturbative expansion (gauge theory, Gaussian measures). Also, it is
the locality of the integral which implies the gluing law, not the mathematics of the
exact solution. The Chern-Simons path integral passed all of our tests with flying
colors. Not only were manipulations intrinsic to the quantum theory tested, but
the topological predictions that came out were verified by a mathematical theory
completely extrinsic to any quantum considerations. We hope that these results
will inspire increased belief in Quantum Field Theory - yes, it is to some extent still
a religion - and in its potential contributions to geometry and to mathematics
generally.

Our work can be extended in several directions. First, we only carry out
computations for the group SU(2), and one might hope to learn more from other

1 We correct a slight error in Witten's asymptotic formula
2 The path integral over a manifold whose boundary on one side is Y and on the other is Y' should
be viewed as an evolution from the Hubert space of states on Y to the Hubert space of states on Y'.
The gluing law (1.12), which is the Euclidean field theoretic version of the group law in quantum
mechanics, states that these evolutions compose when we glue manifolds together
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Lie groups. In addition, the specific computations we make only use the simplest
data from the associated conformal field theory: the central charge, the conformal
weights, and the "S matrix." More interesting examples, particularly hyperbolic 3-
manifolds, can be treated using the "braiding matrices." We hope to extend our
computations in future work.

After we carried out most of our computations, Paul Melvin pointed out that
our formula for Witten's invariant of a Seifert manifold - the right-hand side of
(1.17) - can be shown to equal the invariant of Reshetikhin and Turaev [RT]. This
equality follows from [KM2, Theorem 3.27]. Since Reshetikhin and Turaev prove
that their construction gives a topological invariant, this provides a rigorous proof
for some of our observations about Witten's exact solution. Recent work of
Walker [Wa], based in part on the ideas of Reshetikhin and Turaev, goes further -
he constructs the complete SU(2) Chern-Simons theory and proves the gluing law.
However, we do not know of any rigorous derivation of the asymptotic expansion
for large k. Our numerical data remains the only evidence that this expansion is
valid. In addition, our calculations for finite k illustrate the effectiveness of Witten's
invariant.

Karen Uhlenbeck provided not only most of the computer equipment, but also
much inspiration and advice. We also thank Rob Kirby, Lisa Jeffrey, Paul Melvin,
Danny Ruberman, Ron Stern, and Kevin Walker for useful conversations.
Ed Witten answered some of the questions we raised in a preliminary version of
this paper. The referee's comments improved the exposition in several places. The
first author warmly thanks the Aspen Center for Physics for its hospitality during
the final stages of this work.

1. Chern-Simons Theory

The classical Chern-Simons action [Fl] is a function of a connection over a 3-
manifold X. Since all SU(2) bundles are trivializable over X, we may take the
connection to be an su(2)-valued 1-form A on X. Then the action is3

SX(A)= A ί TrίAΛdA+ \ A3). (1.1)

This is well-defined in R/Z if X is closed and oriented. Note that SX(A) changes
sign if the orientation of X is reversed. The path integral4 at level k is then

Zx(k) = ZX=\ dAe2πikSχ{A), (1.2)

where the integration is over all gauge equivalence classes of connections. No
measure dA has been constructed as we write, so we must regard (1.2) as a formal
expression. Nonetheless, Witten gives an explicit recipe for computing Zx, based
ultimately on formulas (1.7) and (1.8) from the theory of Kac-Moody Lie algebras.
It is important to realize, though, that the recipe also uses geometric properties of
the path integral, not just these algebraic formulae. We briefly review his results
and derive a formula for a specific class of 3-manifolds, the Seifert fίbered spaces.

3 Our normalization differs from Witten's by a factor of 2π
4 Our mathematical readers may wish to consult [A2] for a general description of topological
quantum field theory
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Then we discuss the large k asymptotics of (1.2), which is derived from standard
path integral arguments.

Exact Solution. Let X be a closed oriented 3-manifold. Then the exact solution for
the path integral (1.2) depends on a framing of twice the tangent bundle as a Spin (6)
bundle, henceforth referred to as a 2-framing. Atiyah [Al] has shown that there is a
canonical choice α for this 2-framing. It is characterized by the following property:
If W is an oriented 4-manifold with boundary X, then the signature of W is

σ(W)=iPl(2T(W\(x)9 (1.3)

where the relative Pontrjagin class is computed using the framing α on the
boundary. A change of framing by one unit multiplies the path integral Zx by the
factor

where c is the central charge. For the SU(2) theory at level fc, we have

A key ingredient in our work is the explicit computation of the canonical
2-framing, which we undertake in Sect. 2.

The quantum field theory assigns a finite dimensional complex inner product
space E to the standard torus T2 = Sί xS 1. At level k it has dimension k +1 and a
distinguished basis which we denote 1,2, ...,k + l. The inner product is

We use this inner product to raise and lower indices. The vector space E carries a
unitary representation of SL(2;Z). The standard generators

- ( J O - * - ( ? " ! )
act by the matrices

f 2 i ^ 2 (1.7)

where α, β = 1,2,..., k +1 and ha is the conformal weight

More generally, the theory attaches a hermitian vector space E( Y) to each (stably
2-framed) closed oriented 2-manifold Y and a vector Zx e E(dX) to each (2-framed)
compact oriented 3-manifold X. For example, the vector attached to the solid
torus D2 x S1 is 1 e E(dX) = E. The theory also assigns vectors to framed5 oriented
links in 3-manifolds if each component of the link is labeled with a basis element of
E. For example, the vector attached to the single component link representing
ptxS1 is αe£, if that link has label α. These vector spaces and vectors obey

The framing here is a trivialization of the normal bundle to the link
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properties easily derived from the path integral.6 Thus if- X denotes X with the
opposite orientation, then

Z-x = Zχ (1.10)

Also, if Xί #X2 is the connected sum, then7

ZXι*Xl=^*i. (1.11)
Z

Fig. 1

Other properties are the multiplicativity under disjoint union and the gluing law.

The latter states that if Y CX is an oriented codimension one submanifold, and

Xcυt is the manifold obtained by cutting X along Y, then

x—*• *• YK*-'xcvit) 5 v̂  ^A'

where Try is the inner product

Tr y:.

over the state space of Y. We use these properties freely in the derivations which
follow.

First, since S3 is obtained by gluing two solid tori along their common
boundary after twisting one of the boundaries by the matrix S, we have [W, (4.38)]

(1.13)

Similarly, for the Hopf link in S3 with labels oc,β, the invariant is Saβ [W,(4.47)].
Now using the connected sum formula [W, (4.6)] we compute the invariant for the
link shown in Fig. 1 to be

If w = 3, then (1.14) reduces to a formula of Verlinde [V, W, Fig. 17b].

6 Atiyah [At] axiomatizes these properties. They are used by Witten in [W, Sect. 4], and our
formulae below are simply derived from his work there
7 Equation (1.11) holds for any given 2-framings on Xγ and X2, the induced 2-framing on
Xι # X2, and the canonical 2-framing on S3. The existence of a well-defined induced 2-framing on
X X # X 2 follows from the uniqueness (up to isotopy) of orientation preserving self-
diffeomorphisms of S2. (Compare this with our discussion below of gluing along a torus.) The
canonical 2-framings on Xλ and X2 induce the canonical 2-framing on X1 φX2, by (1.3)
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We compute the Witten invariant for lens spaces and Seifert fibered spaces,
though our methods apply to the larger class of manifolds obtained by plumbing
on trees. Let Pi/qi9-.-,pJqn be rational numbers in lowest terms. The Seifert
manifold8

X = X(pi/qu...,pn/qn) (1.15)
is obtained from S2xS1 by removing n disjoint solid tori D xS 1 (Du...,Dn

disjoint disks in S2) and gluing them back after twisting the boundary by certain

SL(2\Έ) matrices Mί9 ...,MM. The matrix Mf = M(pί? ĝ ) has9 first column ( ' I.
\qj

The particular choice of Mt among all such matrices affects the 2-framing, but not
the diffeomorphism type of the resulting manifold; we specify our choice below
(2.2). Let Mi denote the corresponding transformation of E. The gluing law implies

where the inner product takes place in E®", and ψ is the path integral over S2 x S1

with the n solid tori deleted. Expanding, we have

Zx= Σ (tt1ft...(ti,K<*1®...®*mψ>. (1.16)

The last factor is the partition function of S2 x S1 with an n component link of
disjoint circles ptxS1 labeled α1? ...,αn; it is the dimension of the vector space
attached to S2 with n labeled punctures. We compute it via surgery on a parallel
circle, which changes S2 xS1 into S3 and converts the n +1 parallel circles into the
link depicted in Fig. 1. So from (1.16) and (1.14) we obtain

zx= Σ (Mjv.η^
This is our basic formula. The lens space L(p, q) is the Seifert manifold

L(p,q) = X(q/p). (1.18)

In this case the invariant is easy to compute directly as

)){. (1.19)

In these formulas we have not kept track of the 2-framings. We postpone those
considerations until Sect. 2.

Suppose L is a link in S3, and we label each component of L with 2. Then Witten
shows [W, Sect. 4.1] that the path integral here reproduces a certain value of the
Jones polynomial. Following [KM1] we let VL(t) be the version of the Jones
polynomial satisfying the skein relation

r 1 / 2 ) F L o - r 1 F t . ( t ) = o (1.20)

and normalized by Punknot{t) = 1. Then for the left-handed trefoil knot, for example,
we have

Kref«=-ί 4 + ί3 + ί. (1.21)

8 Usually the term "Seifert manifold" is only used when all pjqt are nonzero. However, our
methods also apply when some pt or qt are zero. For example, any pί/ r̂i = 1/0 may be deleted
without changing the manifold
9 The first basis element is the meridian ODiXptCdDixS1. The second basis element is the
longitude ptxS1C 5Df x S1
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Witten's invariant Z ( S 3 ; L ) for the link L depends on a choice of normal framing
(framing of the normal bundle) for L. Adding a right-handed twist to the normal
framing multiplies Z ( S 3 ; L ) by

(1.22)

The invariant becomes well-defined if we agree to use a framing for which a parallel
push-off of L has linking number 0 with L.10 Since Witten's invariant for an
unknown is S12, for a link LcS3 with label 2 we obtain

s i n

Let M denote a matrix in SL(2;Έ) and M the corresponding transformation of
E. Then M determines an oriented 3-manifold XM which fibers over S1, namely the
mapping torus determined by the action of M on T2. Up to a correction for the
framing, the partition function can be computed from the gluing law as

Z X M = TraceM. (1.24)

Perturbation Theory. Standard path integral techniques predict the behavior of
Zx(k) for large k [W, Sect. 2]. By stationary phase the leading order contributions
comes from the classical solutions, i.e., the stationary points of the action (1.1). The
Euler-Lagrange equation

dA + A2 = 0 (1.25)

asserts that the classical solutions are connections with vanishing curvature.
Recall that these flat connections are determined up to gauge equivalence by a
representation π1(X)-»SU(2) up to conjugacy (if X is connected). For now assume
that there is a finite number of gauge equivalence classes of solutions to (1.25),
represented by a finite set of flat connections {A^. For any flat connection A we
form the elliptic complex

0 _ > ί2° (su(2)) -^> Ωi(*u(2)) ̂  β|(su(2)) ̂  £f (su(2)) —> 0, (1.26)

where dA is the covariant derivative in the adjoint representation. Since A is flat, we
have d\ = 0. Denote the cohomology groups of (1.26) by HX(A). The hypothesis
that the gauge equivalence class of A is isolated implies HX(A) = 0. Assume also
Hχ(A) = 0, i.e., assume that A is an irreducible connection. By Poincare duality we
also have HX(A) = HX(A) = 0. Since all of the cohomology vanishes, the Rei-
demeister torsion τx(A) e R + is well-defined [Re, Mi]. The torsion does not depend
on the orientation of X. It enters the asymptotic calculation in another form, the
analytic torsion [RSI], which is a certain ratio of determinants of Laplacians. The
equality of analytic torsion and Reidemeister torsion was proved by Cheeger [C]
and Mϋller [Mu]. If Hx(A) + 0 then the torsion is defined once we choose a basis
for the cohomology H X(A). [In fact, it only depends on the induced volume element
in Θίdeti/^))®*-1^.]

Another topological invariant of a flat connection A which appears in the
asymptotic formula is the spectral flow IA from the trivial connection to A. This is

1 0 For knots this is the 0-framing. For links we choose any framing for which the sum of all the
entries of the linking matrix is 0
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the same spectral flow which appears in Floer homology [Fl, FS]. It arises in the
asymptotic formula through the ̂ -invariant of Atiyah, Patodi, and Singer [APS].
Choose a Riemannian metric on X, and consider the self-adjoint operator

(-m*dΛ + dλ*) (1.27)
1

acting on φ Ω|p+1(su(2)). Let η(A)elίL denote its ̂ -invariant.11 If θ denotes the
p = 0

trivial connection, then the difference
ρ(A) = η(A)-η(θ) (1.28)

is a topological invariant independent of the metric on X. Its reduction (mod 1) is
related to the Chern-Simons invariant SX(A) via the formula

ρ(A) = 16Sx{A) (modi). (1.29)

[This follows from (1.31) below.] The fact that ρ(A) is defined over the reals allows
us to rewrite it in terms of the spectral flow. Recall that the self-dual complex of a
Riemannian 4-manifold is the elliptic complex

0—^Ω°w-^Ωι

w^Ω^-—-*0, (1.30)

where Ωfy ~ are the anti-self-dual 2-forms on W. Fix a metric on X and consider the
induced product metric on the cylinder ί f = I x [ 0 , l ] . Choose a path of
connections from the trivial connection θ to A, which then forms a connection over
W. Now couple the self-duality operator associated to the complex (1.30) to this
connection and impose the Atiyah-Patodi-Singer boundary conditions. The index
IA of this operator (taken modulo 8) is the spectral flow we seek; it is independent of
the metric on X and the path of connections. In general it is related to (1.28) by the
formula12

g β ( m o d 2 ) , (1.31)
t o o o

where ί?x(X) is the first Betti number of X. Equation (1.31) follows from the index
theorem in [APS(i)] applied to W. If we reverse the orientation of X, then ρ(A) and
SX{A) change sign; therefore, IA changes in a manner dictated by (1.31).

Now we state the perturbation theory result. Recall we are assuming that there
is a finite set of gauge equivalence classes of flat connections over X, represented by

}, and that the cohomology Hx(Aj) vanishes. It follows that bι{X) = 0 also. Then

(1.32)

1 1 It is defined whether or not A is flat, and is a smooth function of A. For Dirac operators the
relevant quantity is %(η + h\ where h is the dimension of the kernel, and only its (mod 1) reduction
is smooth. The operator (1.27) is half the boundary operator associated to minus the signature
operator. Thus its /7-invariant takes real values. The ̂ -invariant of this operator is minus the usual
^-invariant, and we appropriately modify the formulae we quote from [APS]. The operator (1.27)
is also the boundary operator associated to the self-duality operator, a fact we use below
1 2 We thank Ron Stern for discussions on this point. He points out that this argument makes
clear the fact that this term in the asymptotic expansion (1.32) contributes a fourth root of unity,
not an eighth root of unity
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This formula differs slightly from Witten's formula [W, (2.23)], and we explain the
differences. First, the ratio of determinants in [W, (2.8)] is the square root of the
analytic torsion, whence the square root in (1.32). Also, [W,(2.16)] only holds
(mod ^), which explains the appearance of the spectral flow (a fourth root of unity)
in our formula. We have rewritten Witten's f/-invariant contribution in terms of the
spectral flow using (1.31). Witten's formula [W,(2.23)] has a prefactor which
depends on the 2-framing of X. We claim that it vanishes for the canonical
2-framing. The prefactor in question depends on a 2-framing α. It is the exponential
of 2πi times

~~s—' Ϊ £ ~ ' (1.33)

where CS(α) is the Chern-Simons invariant of the Levi-Civity connection on 2T(X)
computed using the trivialization α.13 Note that η(θ) is —3 times the usual ψ
invariant, since dimsu(2) = 3. Choose a 4-manifold W such that dW=X and
σ(W) = 0. Then by (1.3) the canonical 2-framing α extends to a 2-framing over W. It
follows that

2π w

where Ω is the curvature of a Riemannian metric on W which extends the given
metric on X. This is the integral of the differential form which represents twice the
first Pontrjagin class, the factor of 2 coming since we consider 2T(X). On the other
hand, the main theorem of [APS(i)] asserts

4 π 2 i

It follows that (1.33) vanishes for the canonical framing. Finally, the factor of 1/2 in
(1.32) is due to the 2 elements in the center of SU(2). These define global gauge
transformations which act trivially on connections. The factor is a volume
correction for this isotropy group.14

Formula (1.32) also holds if all flat connections are isolated (modulo gauge
equivalence) and there is at least one irreducible connection; then the summation is
over the irreducible connections. [The isolated reducible connections contribute
lower order terms, as follows from (1.35).] Suppose now that all flat connections on
X are isolated and reducible. A prime example is X = S3, where there is a single flat
connection, the trivial connection θ. Note Hx(θ) ^ su(2) are the constant functions.
In this case we have an explicit formula (1.13) for the partition function, from which
we see

Zs3(fc)~j/27?(/c + 2)~3 / 2. (1.34)

Of course, we could replace fc + 2 by k in this formula. Notice that Iθ = Sx(θ) = 0.
The torsion τs3(0) is not well-defined, due to the nontrivial cohomology. (It is well-

1 3 The embedding SO(3)c+ Spin (6) induces the diagonal embedding 5o(3)c>5o(6) on the Lie
algebras. This explains the extra factor of 2 in the denominator of the second term. For more
details about the classical Chern-Simons action, see [Fl] . If the 2-framing α is induced by an
ordinary framing, then (1.33) is 6 times the Adams e-ίnvariant of that framing [APS(ii)]
1 4 We thank Ed Witten for pointing this out to us
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defined only after choosing a volume form for the cohomology.) At this time we
have no explanation for the factor ]/2π2. Still, we observe that the asymptotic
formula has the additional factor

(135)

which does not appear in (1.32).15 More generally, we speculate that

χ e2πiSχ(^i)(fe + 2 ) ^ _ | _ 2 y d i m H ^ > ~ d i m H ^ ) ) / 2 (1 36)

if the flat connections A{ are isolated modulo gauge. [Then Hx(Aj) = 0, but we
include it in the formula anyway.] At this time we do not know how to interpret the
torsion τx(A^ in (1.36). We will verify (1.36) for lens spaces and will note the
behavior

\Zx(k)\ ~ (k + 2)mr{dimH ^A) - d i m * ^ » / 2 (i .37)

in some examples. This will include manifolds for which the flat connections are
not isolated.

2. Topology of 3-Manifolds

In this section we describe the topological tools which we need for our
computations. Our 3-manifolds are described by means of rational surgery, so we
review this technique and the standard method of reducing to integer surgery. We
state and prove a formula (2.4) for computing Atiyah's canonical 2-framing on any
3-manifold obtained by integer surgery on a link in S3. We describe the Seifert
manifolds which are the examples with which we test Witten's theory. We also
provide computations of the invariants (signature, Chern-Simons invariant,
Reidemeister torsion, etc.) which are relevant to our work. Finally, we describe a
periodicity in Witten's invariants which is evident for certain families of
3-manifolds. (This periodicity has also been observed by Kirby and Melvin
[KM2].)

2-Framings. Every oriented 3-manifold X may be obtained by rational surgery on
some link L in S3. This means that for each component Lt of L, we remove a tubular
neighborhood of Lt (a solid torus) and glue it back in with a twist Mf. To specify Mt

we use a basis {mf, ZJ for H1 of the boundary torus, where Zf is the longitude running
parallel to Lt such that the linking number of l( with Lt is zero, and m{ is a small
meridian of Lί? with a right-handed orientation relative to lt. We now have

1 5 Witten suggested this factor during an informal lecture in January, 1989. At that time he also
showed some preliminary computations with the lens space L(p, 1) similar to those in Sect. 4
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The diffeomorphism type of X is specified by the link L and the rational numbers
Pi/qi. (Here we allow 1/0, corresponding to the identity matrix. If qt = 0, then Lt may
be deleted from the link.)

L.

Fig. 2

r-1

To specify X as a 2- framed manifold, we need the entire matrix Mb so we must
establish a convention for recovering a matrix Mt from pjqt. We begin with integer
surgery, or Kirby calculus [K] (all qx = 1), since in this case X is exhibited explicitly
as the boundary of a 4-manifold W, namely the handlebody obtained by gluing
2-handles to the 4-ball B4 along the link LcS3 = dB* with normal framings
specified by the integers pt. In this case we choose

0
= TPiS, (2.1)

where T, S are the standard generators of SL(2;Z) defined in (1.6). For any rational
surgery, there is a method for reducing to an integer surgery [R]. Namely, for each
pilqi choose a continued fraction expansion

1

which we abbreviate pi/qi = (aί,...,ar). Then replace rational surgery on Lt by
integer surgery on a link, as indicated in Fig. 2. This does not change the
diffeomorphism type of X, as may be seen by inductively applying the move shown
in Fig. 3, which preserves diffeomorphism type. If the two gluing matrices on the
left of Fig. 3 are

M = M' =
a - 1

1 0

then the resulting matrix is

ap — q ar — sM'M =

Thus the natural way to specify a gluing matrix Mf for Lt with coefficient p{lq{ is to
choose a continued fraction expansion Pilqt = {au ...,αr) and apply the following
formula:

M,= ar -

1 0

a, - 1

1 0
(2.2)
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Our convention for dealing with rational surgeries is essentially a reduction to
integer surgery. We emphasize that this depends on a choice of continued fraction
expansion for each pjq^ The matrices Mf in (2.2) appear in the quantum field
theory formulae (1.17) and (1.19) above.

If we cut a 2-framed 3-manifold S along a torus and regule with a twist, the
resulting manifold X' inherits a 2-framing. To see this, note that since Spin (6) is
2-connected, we may assume that the 2-framing restricts to the product (stable)
2-framing on the torus S1 xS1. We may assume the twist is an element of SL(2; Z),
so that the new 2-framing induced by the twist differs from the old one at each
point by an element of SL(2;Z) which is constant over the torus. There is
essentially a unique way to homotope this to the identity in Spin(6) through
constants over the torus. This defines the 2-framing on X'. Since π3(Spin(6))=Z,
there are different ways to do the initial straightening to a product 2-framing, but
the resulting changes in the 2-framings on the pieces of X will cancel in the final
answer. (Note that this argument is specific to the torus. For higher genus surfaces,
one must keep track of additional data.) Thus, by our convention (2.1), any link in
S3 with integer coefficients (and hence any link with rational coefficients and
specified continued fraction expansions) determines a 2-framed 3-manifold via the
canonical 2-framing on S3.

^ va - q/p

Fig.3

Let L be a link in S3 with integers pu ...,pn attached to the components. Let XL

be the manifold obtained from this by surgery, and let WL be the corresponding
4-manifold with d WL = XL. The induced 2-framing on XL differs from the canonical
2-framing of XL by an element of π3(Spin(6))^Z. Let φL denote this integer. We
determine the sign of φL by the following convention: If we remove a solid torus
from XL and glue it back in after a right-handed Dehn twist (i.e., the automorphism
T) to obtain XL with a new 2-framing, the integer in question should increase. Note
that by (1.7) this change in 2-framing will multiply ZX]L by (1.4).

Theorem 2.3. We have

φL=-3σ(WL)+ £ Pί, (2.4)
i=ί

where σ denotes the signature of WL (or equivalently, the signature of the linking
matrix for L).

We use this formula to correct (1.17) and (1.19) using (1.4).

Proof We temporarily adopt a different convention about the gluing maps. If we
replace each matrix (2.1) by
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then the diffeomorphism type of XL does not change, but the new induced
2-framing differs from the canonical framing by a different integer ψL. In fact, each
right multiplication by T changes the 2-framing by one unit. (We verify this by
direct computation in Appendix B.) Thus, we have

by the sign convention specified above. Note that if we let ΐi = li + pimi be the
longitude determined by the framing pb then M maps mf to /• and /• to — mf.
From this description it is easy to see that ψL does not change under isotopy or
handle slides.

It now suffices to show that ψL = — 3σ(WL). First, we show that blowing up a +1
changes ψL by + 3. If L+ denotes the unknot with coefficient +1, then the gluing
map determining ψL+ is

« • - ( ; > - •

The manifold XL + is diffeomorphic to S3, as can be seen by putting a left twist in the
solid torus forming the knot complement, to obtain 1/0 surgery on the unknot.
This action changes M' by left multiplication by

J )
yielding the matrix T~2. Thus, XL+ is made from S3 by putting two left twists
(T~2) in the tubular neighborhood of an unknot, one left twist in the complement,
and then gluing the pieces back together by the identity map. The exhibits XL+ as
S3 with 2-framing differing from the canonical one by —3 twists, so ψL+ = —3.
Similarly, if L_ is the unknot with coefficient —1, we have ψL_=3. These
arguments are not affected by surgeries far away from L+. Since blowing up a +1
is the same as adding a copy of L+ far away from a given link and then sliding
handles, we have that blowing up +1 adds + 3 to ψL.

If L^ is obtained from L by adding n to one surgery coefficient (thereby
changing the diffeomorphism type of XL\ then

To verify this, let λ denote iPi(2T(t^), αL), where αL is the 2-framing inherited by
XL, and let λ% = %p1(2T(WLXocLi). Then by Atiyah's formula for the canonical
framing (1.3),

and similarly for L .̂ The manifold Wu is obtained from WL,by cutting along a
solid torus, adding n twists, and regluing. This changes the relative framing by n
units. However, the longitude used to compute ψ also changes by n twists. These
twists must calcel, since ψL+ — φL_ = — 6. Thus, λ = λ# and

ΨL*~ΨL= ±(MWJ-3σ(WL)).

The ambiguous sign is —, by our computation for L+.
It is now easy to see that ψL= — 3σ(WL) for L an unlink with any integer

coefficients. To complete the proof, it suffices to show that if L is any link with
integer coefficients and if L differs from L by a single crossing change (and some
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surgery coefficients), then

Figure 4 demonstrates this. In this picture (a) and (c) have the same values oϊψ and
σ. When we change to (d), then ψ changes by — 3 times the difference in signatures.
We move to (e) by the usual procedure of separating the Hopf link from the rest and
then canceling it by blowing up and down; this preserves ψ and σ. •

Fig. 4 d e

To compute Witten's invariant with respect to the canonical 2-framing we must
apply Theorem 2.3. In particular, we must compute the signature σ(WL) for our
examples. We begin with the lens space L(p, q) with p> \q\ ^ 1 (1.18) which is more
conveniently described as — p/q surgery on the unknot in S3. (See Fig. 3.) Choose a
continued fraction expansion —p/q = (al9...,ar) with |α;|^2 (for example, by
repeatedly decomposing as an integer of absolute value ^ 2 plus remainder). Then
by Fig. 2 the lens space L(p, q) is described by the integer surgery diagram shown in
Fig. 5. The linking matrix (al7) for this surgery diagram has diagonal entries au = ah

and has ^,i+i = l. All other entries are zero. Since all |fl, | ^ 2 , diagonalization
shows that the signature of (<zl7) is

σ(Wl)=Σsign(αi), (2.5)
i

where sign(α) = l,0, —1 according as α>0, α = 0, or α<0.

Next, we consider a general rational surgery diagram Lo. As in Fig. 2, we obtain
an integer surgery diagram L by continued fraction expansions (al9..., ar) of each
nonintegral coefficient of Lo. We may assume |α f |^2 for each i^kr — 1. Let
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Fig. 5 a 1 a

2

{bjΛ ^j^N} denote the family of integers obtained by deleting the last entry of
each continued fraction and combining the remaining numbers into a single
collection. Let A denote the linking matrix of Lo; the diagonal entries are the
(rational) surgery coefficients of Lo and the off-diagonal entries are linking
numbers. Then we have

σ(WL) = σ(A)+ Σ signify). (2.6)
. 7 = 1

This may be seen by reducing the matrix for L. (For each nonintegral surgery
coefficient of Lo, apply a diagonalization procedure similar to the one which works
for lens spaces.)

We apply the preceding formula to the Seifert manifold X(Pi/qι,...,pn/qn)
(1.15). Recall that this manifold is obtained from S2 x S1 by rational surgery on n
circles pt x S1. Surgery on another such circle changes S2 x S1 into S3, resulting in
the rational surgery diagram for X(pι/qί9..., pjqn) shown in Fig. 6. [Note that if we
compute Witten's invariant directly from this picture, we recover (1.17).] If we
choose continued fraction expansions to obtain an integer surgery diagram L,
Eq. (2.6) immediately yields

σ(WL)=-sign(i qjp)+ Σ sign(p^)+ £ signify). (2.7)

Here, the first term is taken to be zero if any pt = 0.

Fig. 6

Seifert Manifolds. We now list some general facts about lens spaces and other
Seifert manifolds. The fundamental group of the lens space L(p, q) is Έ/pΈ. Two
lens spaces L(p, q) and L(p, q') are diffeomorphic if and only if

q=±q' (mod/?) or qqf=±l (mod/?). (2.8)

A diffeomorphism preserves orientation if and only if the relevant sign is +.
Therefore, the lens space L(p, q) has an orientation reversing self-diffeomorphism if
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and only if
q2=-l (modp).

For example, L(5,2)«L(5,3) w — L(5,2)« — L(5,3) as oriented manifolds. Notice
that L(0,l) = S2xS1 and L(l,0)^S3. By the above relations all other oriented
diffeomorphism types of lens spaces are realized by p^.2 and l^q^p— 1. An
important feature of lens spaces is that many homotopy types contain more than
one diffeomorphism type. In fact, there is a homotopy equivalence between L(p, q)
and lip, q') if and only if

q'= ±n2q (mod/?)

for some integer n, and the map preserves orientation if and only if the sign is +.
For example, the lens spaces L(7,1) and L(7,2) have the same oriented homotopy
type, but they are not diffeomorphic.

Consider, once again, the Seifert manifold X(Pi/ql9...9pJqJ. We allow pf = 0,
even though the resulting manifold is not, strictly speaking, a Seifert fϊbered
space, but rather is a connected sum of lens spaces:

as is easily derived from Fig. 6. We will be primarily interested in the case n = 3,
although all of our work holds for the general case. The order of the first homology
group of X(pjqu p2/q2, P3Λ73) *s the absolute value of

PiPiQi +Pι<l2P3 + ΊiPiPi (2.9)

(Here zero is understood to indicate infinite order.) In particular, we can choose
qί9 q2, and q3 to obtain a homology sphere if and only iίpl9 p2, and p3 are pairwise
relatively prime. In this case the manifold is independent of <h,g2>#3> a n d it i s

called the Brieskorn homology sphere Σ(pup2,p3). [Without loss of generality we
can take all p{ > 0. We choose qu q2, <?3 so that (2.9) is positive. This has the effect of
orienting Σ(pί9 p2, p3) as the link of the algebraic singularity z\ι + zp

2

2 + zψ = 0.] We
will illustrate the Witten invariant for the family

£(2,3,6n±l) = X(2/±l,3/+l,(6n±l)/+n). (2.10)

Now two of these are diffeomorphic. Note that Σ(29 3, l ) ^ 3 . The manifold
Σ(29 3,5) is the famous Poincare homology sphere, and for each nonnegative
integer n the homology sphere Σ(2,3,6n +1) may be described as — ί/n surgery on
the trefoil knot, where the knot is right or left handed depending on whether the
sign is + or —. More generally, rational surgery on the left-handed trefoil knot
with any coefficient p/q is realized by

X{-2/ί,3/i,(p + 6q)/q). (2.11)

We will consider the family Xtref{p) of integer surgeries on the left trefoil with
coefficient peZ. We have H^X^p^Έ/^Έ. The manifold Xtref(0) is of
particular interest since its homology is infinite cyclic, and because it is a torus
bundle over S1. The monodromy matrix of this torus bundle is

where

Xtref(0)«Γ2x//(x,0)~(iVx,l).
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Using the torus bundle structure of Xtref(0), we may compute its Witten invariants
directly by (1.24), but this formula assumes a particular (non-canonical) 2-framing.
In fact, Xtref(0) is obtained from T2 x S1 by cutting along T2 x pi and regluing after
twisting by N. The 2-framing required by (1.24) is the one inherited from the
canonical 2-framing on T 2 x S x by the regluing. (This is well-defined by the
discussion preceding Theorem 2.3.) To compare this 2-framing with the canonical
one, decompose AT as a product of two Dehn twists about two orthogonal axes Ct

and C2 in T2:

We may assume that the Dehn twists have support in small neighborhoods of Cί

and C2, respectively. Now if we think of Xtref(0) as made from T2 x S1 by cutting
and regluing by these twists near Cί x 1 and C2 x — 1, we may reinterpret the
procedure as surgery on the two circles C1 x 1 and C2 x — 1 in T2 x S1. The matrix
of each surgery will be

ί
(The basis {mb Q is chosen so that lt respects the product structure of T2 x S1.) We
examine this in the standard Kirby calculus picture: T2 xS1 is 0-surgery on the
Borromean rings, and Cγ x 1 and C2 x — 1 are meridians of two of the link
components. The matrix M indicates that we perform +1 surgery on each of these
to obtain Xtref(0) as a surgery on a link LcS3. To understand the inherited
2-framing using Theorem 2.3, we must replace the matrix M with our standard
matrix (2.1)

- )
This changes our 2-framing by two applications of T~* (one for each surgery). The
new 2-framing differs from the canonical one by φL = 2, by (2.4). Thus, we must
apply 4 left twists (T~ ι) to get from the original bundle 2-framing to the canonical
one.

The Seifert space formalism also allows us to study torus knots. As an example,

Jf(-2/l,3/l)«S3. (2.13)

Let C C X( — 2/1,3/1) be a third meridian to the 0-franted circle in Fig. 6 [so that p/q
surgery on C would result in X( — 2/1,3/1,/?/<?)]. Then by elementary Kirby
calculus, the circle C corresponds to the left-handed trefoil knot in S3. The
0-framing on C as it appears in Fig. 6 corresponds to the —6 framing on the left-
handed trefoil. [This justifies (2.11).] Thus, we may compute the corresponding
Witten invariant Z ( S 3 ; t r e f ) from Fig. 6, as long as we remember to compensate for
the normal framing.

Mu Invariants. In Sect. 4 we need to compute mu-invariants. Given a 3-manifold X
with a spin structure Θ, the mu invariant of X with respect to Θ is the signature
(reduced modulo 16) of any spin 4-manifold whose boundary is (X, Θ). Any two
spin structures on X differ by an element of H 1(X Έ/2Έ). First we consider the lens
space L(p,q). Assume p>\q\>0, and expand —p/q as a continued fraction
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{al9 ...,αr) with all•|αi|^2 and all a( even for i + 1 (for example, by repeatedly
decomposing as an even integer plus a remainder with absolute value less than
one). Consider the integer surgery diagram for L(p,q) shown in Fig. 5. First,
suppose ax is even. Then the 4-manifold WL in Fig. 5 is spin. (In general, for any link
L with integer coefficients, WL is spin if and only if all coefficients are even.) Thus,
the mu invariant of L(p,q) for one choice of spin structure is given by (2.5):

σ(Wl)=Σsign(α ί). (2.14)
i

If p is odd, then H 1(L(p, q); ΊLβΈ) = 0 and this is the only spin structure. Otherwise,
there are exactly two spin structures. The mu invariant of the other structure may
be obtained as in [Ka]. By an easy induction on r, we see that r is odd if p and all a{

are even. Slide the first link component Lί over all other components L{ with i odd
to obtain an unknot K with framing a = Σ av If a^.2 blow up — 1-framed

iodd

meridians to drop the framing of K to 1 then blow down K. The result is an even
4-manifold realizing the other spin structure with signature

Σsign(αf) Σ *i (2.15)
i ΐ = r(mod2)

If a = 0 or a ̂  — 2, a similar argument also yields (2.15). The mod 16 residue of (2.15)
is the second mu invariant of L(p, q) for p even. In the one remaining case, where a1

is odd, p must also be odd, so that there is a unique spin structure. By the same
argument, sliding Lx (if r is odd) or L2 (if r is even) over all other Lb i = r (mod 2), we
obtain (2.15) as our mu invariant.

Similar computations work for other manifolds. Any homology sphere has a
unique spin structure. For Σ(2,3,6n± 1) it is well-known that the mu invariant is

μ(Σ(2,3i6n±l)) = 8n (mod 16). (2.16)

The manifold Xtref(p) has one or two spin structures according as p is odd or even.
For any p ^ — 5 we expand Xtτef(p) as in Fig. 7, by Kirby calculus. One mu
invariant will be the signature of the 4-manifold on the right of Fig. 7, which is

)= - p - 8 + srign(p). (2.17)

(Similar calculation involving + 2's show that this formula is valid for all p.) lϊp is
even, the other mu invariant is sign(p), the signature of the spin manifold WL for L
the trefoil with coefficient p.

Fig. 7 - 2 all - 2

Chern-Simons Invariants and Spectral Flow. We consider lens spaces. Since
^fayZ/Z is cyclic, each of the representations πί(L{p,q))^SU(2) is
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reducible. Let ζ be a generator of the fundamental group, and set ω = e2πί/p. The
trivial connection θ and (if p is even) the representation £(—• — 1 have dim//0 = 3,
while the other equivalence classes of representations

0 < n < | , (2.18)

have dimH0 = 1. The first cohomology vanishes for all representations. According
to (1.36) it is only the representations (2.18) which contribute to the leading term of
the large k asymptotics of Zx(k). The ρ-invariant (1.29) of the representation ζ\-^ωn

into 1/(1) can be computed from the formulae in [APS(ii), Sect. 2]. 1 6 We find the
value

1 P-l ΛrίΛ ΛrΛlΛ

However, we must compute this invariant in the adjoint of the representation
(2.18), and so

Q(An)= -p £ cot ^j) cot [^J {ω™-i). (2.19)

The Chern-Simons invariant is computed (by a different method) in [KK] to be

Sx{An)=^j~ (modi), (2.20)

where q*q = 1 (mod p). [Presumably this could be derived directly from (2.19) using
(1.29).] Hence from (1.31) the spectral flow is

j w*_ij} c o t ί*\ c o t fe*\ ( ω 2 π,_1 )_2 ( m o d 8 ) . ( 2 2 1 )
P P k=ί \P ) \ P )

Let X = Σ(pup2,p3) be a Brieskorn homology sphere. Recall from the
discussion following (2.9) that we choose the other Seifert invariants q^q2Λz s o

that

PiPi<l2>+Pι<l2P?> + QiPiP3 = 1

Then the fundamental group has a presentation

πί(X)^(x1,x2,x3,h\h central, xfihqi = \, xίx2x3 = \}.

Now there is a finite number of irreducible representations π1(X)^>SU(2) up to
conjugacy; they are described in [FS, Sect. 2]. The conjugacy class is determined
by integers lt with 0</ ί <p i such that the matrix representing xt is conjugate to

Fix a triple </l5 Z2, Z3> of integers describing such a representation, and let A denote
the associated flat connection. Then the formula for the Chern-Simons invariant is

1 6 Recall from (1.27) that we must change the sign of the formulae in [APS]
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given in [FS] and [KK] as1 7

-e2

SX(A)=—— (modi), (2.22)
4p

where p=pχp2p3 and β = /1p2p3+p1/2p3+p1p2/3. For the spectral flow we quote
[FS,Sect.3]:

„ [2e2 I 2 Pi"1 (πpk\ fnk\ . 2 /πβk\Ί , ΛOΛ

IA=-3-\ — + Σ ~ Σ cot -^- cot — sin2 (mod8).
IP i=iPik=ι \Pi ) \Pi) \Vi)λ

Reidemeister Torsion. The Reidemeister torsion of lens spaces was computed in a
classic paper of Franz [Fr] (cf. [RS2, Sect. 1]), who used this invariant to
distinguish the various L(p, q). In fact, some of his results were given in (2.8).

Consider the one dimensional representation ζh->ωn of π^Lip^q)) for 0<n< -,

where ω = e2πi/p. Then Franz' formula for the torsion, suitably normalized, is

| ω " - l | | ω « * - l | , (2.24)

where q*q = l (modp). We need the torsion of the connection (2.18) in the adjoint
representation, which is the sum Ch-κy2/IφlΘω~211 of one dimensional represen-
tations. Leaving aside the trivial representation, we compute the torsion

sin2

of the remaining two dimensional representation. Now the trivial representation
has nonzero homology, so we must choose a basis for the homology to define the
torsion. With an obvious choice for this basis, an easy computation [RS, Sect. 1]
shows that the torsion of the trivial representation is 1/p. Hence

VP

2πn\ . (2πq*n
sin I I sin '

P

(2.25)

The Reidemeister torsion for the Brieskorn sphere X = Σ(p1,p2, p3) is computed
in [F2, Sect. 2]. [There Franz' formula (2.24) is also rederived.JLet the flat SU(2)
connection A be described by the triple of integers </1? Z2, Z3>. Then the square root
of the torsion in the adjoint representation is

sm (2.26)
\ Pi /

where p=PιP2Ps and qfqι = \ (modp,).

A Periodicity Phenomenon. Witten invariants display a certain periodicity under
changing surgery coefficients, with period depending on the level k. Suppose L is a
link with integer surgery coefficients, and let L be obtained from L by adding n
twists to the coefficient of one component Lx. Assume that σ{WL) = σ(WL). (If L is a

1 7 This is minus the result in [KK] and —1/4 times the formula in [FS] for the Chern-Simons
invariant of the adjoint connection. The discrepancy with [KK] arises due to the sign convention
in [FS] that px of a real vector bundle is minus c2 of the complexified bundle
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knot, this holds provided the sign of the surgery coefficient is not changed.) Then
the Witten invariant of XL at level k with the canonical 2-framing has the form

where <α, ψ} = Z(X. (Ll,α)) is the invariant of the pair (X; L x) obtained by labeling L1

with label α and performing surgery on the other link components. Then the
invariant of Xv is

ZXL=(TnMT-n(llψ}, (2.27)

where the factor T~n is added to correct the 2-framing using (2.4). [If σ(WL)
+ σ(Wj), then formula (2.27) is off by an easily computed root of unity.] By (1.7) the
term T~n has the effect of scalar multiplication by e

2πinc/24; which cancels the terms
involving c in the Tn factor. Thus, we change Z X L to Z X L , by multiplying some
terms by roots of unity e2πinh". If n is a multiple of 4(/c + 2), then these roots are all
equal to 1, by (1.9), whence ZXL, = ZXL.18

The periodicity applies to the family of homology spheres Xq obtained by 1/q
surgery on a fixed knot K in S3, since Xq is obtained by surgery on the link Lq given
by K with coefficient 0 and a meridian to K with coefficient — q. (See Fig. 3.) We
have σ(WLq) = 0 independent of q. Thus,

Zχq = Zχq+n, ( 2 2 8 )

where n is any multiple of 4(/c + 2). Our data for the left trefoil reveals a smaller
period k + 2. This (k + 2)-periodicity has been shown to hold for arbitrary knots in
S 3 by Kirby and Melvin [KM2].

3. Method

The main calculations of the Witten invariant were coded using the standard C
programming language. Many of the routines were first developed in Mathematίca
[Wol]. We also used Mathematica to carry out smaller computations. The
programs were developed on NeXT computers and run on both NeXTs and a
Sun 4/370 SPARCserver.

Our code was tested in several ways. First, many of the routines were run in
both C and Mathematica. Also, we were able to test our routines for lens space
calculations against the routines for Seifert spaces, since by (1.19) the lens space
L(p, q) is the Seifert space X(q/p). Other coincidences such as

L(5,4) = X(-2/l,3/

L(7,2) = X(-2/l,3/l

provided more tests. In addition, the connected sum L(p1,q1)#L(p2,q2) is the
manifold X(0/ί, —pjqu "Vil^iX So we further tested our routines using (1.11).
Finally, after reading Sect.4 we hope the reader will not imagine that computations
so consistent with theory could come from defective programs.

A similar periodicity (with different periods) occurs for other Lie groups
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4. Results

We are ready to present and analyze our computations. The computed values for
the Witten invariant obey the predictions of Quantum Field Theory and of
Topology. The reader should notice the following general features. First, if
Zxή=Zx,, then X is not (orientation preserving) diffeomorphic to X'. This is
consistent with Witten's assertion that the path integral is a topological invariant.
Furthermore, we observe that the invariant conjugates under orientation reversal,
consistent with (1.10). For manifolds with orientation reversing self-
difΓeomorphisms, the invariant is real. Finally, this invariant turns out to be quite
effective. This is most striking in the case of lens spaces, which historically were first
distinguished by the Reidemeister torsion. Here it is crucial that we use the
canonical 2-framing, and not just consider the invariant up to certain roots of
unity. For most values of the level k the invariant distinguishes many different lens
spaces, even those which have the same oriented homotopy type. Perhaps our best
results come when we examine the invariant for large values of k. There we verify
(numerically) the predicted asymptotic formula.

Tabulations. Lens spaces. The values of the invariant for lens spaces can be
computed by combining (1.19) and (2.2), though we actually use the equivalent
procedure indicated above. We expand L(p, q) as in Fig. 5, compute {SM)\ with M
as in (2.2), and correct the framing with (2.4).

The Witten invariants for the lens spaces L(5, q) are displayed in Table 1. These
numbers are consistent with the diffeomorphisms

L(5,l)»-L(5,4) and L(5,2)«L(5,3)« -L(5,2)« -L(5,3),

which follow from (2.8). Notice that fe = 2 already reflects the fact that no further
relations are possible, as do most other values of k. The invariant is real for L(5,2)
and L(5,3), since these manifolds have orientation reversing self-diffeomorphisms.
We display explicit values for some large k in anticipation of the discussion below.

The lens spaces L(7,1) and L(7,2) are orientation preserving homotopy
equivalent, but not diffeomorphic. Table 2 demonstrates the ability of the Witten
invariant to distinguish these spaces. Notice that the Witten invariants differ
except for k = 1 and k = 4. In fact, for k ̂  125 these are the only values of k for which
the Witten invariant does not distinguish the spaces. The third column of Table 2
illustrates the importance of the canonical 2-framings; we check those values of k
for which the invariants of L(7,1) and L(7,2) are different, and not simply by a
power of e~2πίc/24, where c is the central charge (1.5). In other words, only for the
marked values of k does the invariant distinguish the spaces without using the
canonical 2-framings. There are very few such values of k.

The lens spaces L(25,4) and L(25,9) are also homotopy equivalent, but the
Witten invariant behaves somewhat differently.19 We computed the invariants for
1 ^ k ̂  200; the values for 1 ̂  k ̂  20 are shown in Table 3. Here we observe that the
invariants agree for fcφ3 (mod5). If fc = 23 (mod25) then the invariants both
vanish; otherwise for fe = 3 (mod 5) the invariants differ, and so distinguish these
two spaces. Most interesting is the fact that for all values of k ̂  200 the norm of the
invariant for L(25,4) is the same as the norm of the invariant for L(25,9). This is an

1 9 We thank Kevin Walker for pointing out this example
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Table 1. Witten invariants for L(5,q)

k

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

291
292
293
294
295
296
297
298
299
300

L(5,l)

0.707107
0.500000/

-0.415627+0.572061/
-0.288675

0.115960-0.508055/
0.326641-0.326641/
0.151506+0.262417/

-0.154508 + 0.475528/
-0.221192+0.064948/

-0.394338/
0.208334-0.301824/
0.146930+0.184244/

-0.084880+0.399327/
-0.181472 + 0.075168/
-0.030440-0.328496/

0.156615-0.271266/
0.134967+0.146613/

-0.055308+0.349201/
-0.156628 + 0.075428/
-0.041171-0.286353/

0.025223-0.074359/
0.038966+0.029081/

-0.000980+0.092052/
-0.039331+0.027817/
-0.023188-0.074576/

0.024994-0.073739/
0.038643+0.028827/

-0.000955+0.091282/
-0.038999+0.027595/
-0.023011-0.073950/

L(5,2)

-0.707107
0.500000
0

-0.288675
0.521121

-0.461940
+ 0.300013

0
-0.230530

0.394338
-0.366744

0.235657
0

-0.196424
0.329903

-0.313231
0.199277
0

-0.173844
0.289298

-0.078520
0.048622
0

-0.048174
0.078098

-0.077860
0.048211
0

-0.047774
0.077448

L(5.3)

-0.707107
0.500000
0

-0.288675
0.521121

-0.461940
0.303113
0

-0.230530
0.394338

-0.366744
0.235657
0

-0.196424
0.329903

-0.313231
0.199277
0

-0.173844
0.289298

-0.078520
0.048622
0

-0.048174
0.078098

-0.077860
0.048211
0

-0.047774
0.077448

L(5,4)

0.707107
-0.500000/

-0.415627-0.572061/
-0.288675

0.115960+0.508055/
0.326641+0.326641/
0.151506-0.262417/

-0.154508-0.475528/
-0.221192-0.064948/

0.394338/
0.208334+0.301824/
0.146930-0.184244/

-0.084880-0.399327/
-0.181472-0.075168/
-0.030440+0.328496/

0.156615 + 0.271266/
0.134967-0.146613/

-0.055308-0.34920U
-0.156628-0.075428/
-0.041171+0.286353/

0.025223 + 0.074359/
0.038966-0.029081/

-0.000980-0.092052/
-0.039331-0.027817/
-0.023188+0.074576/

0.024994+0.073739/
0.038643-0.028827/

-0.000955-0.091282/
-0.038999-0.027595/
-0.023011+0.073950/

example of two distinct spaces which are not distinguished by the norm of the
Witten invariant. We studied several other pairs of homotopy equivalent lens
spaces and observed in these examples that if the norm of the invariant
distinguishes the spaces, then one of the invariants is zero.

Table 4 shows some values of the invariant for L(30, q). This illustrates a larger
fundamental group which is not of prime order. The invariant vanishes for k odd.
Notice the diffeomorphism L(30,7)«L(30,13). Also, we have not printed the
values of the invariant for L(30,17), L(30,19), L(30,23), and L(30,29), since these
four spaces are diffeomorphic to the four displayed, but with the opposite
orientation. As expected, the invariants are the conjugates of the ones displayed in
the table.

For the lens spaces L(p, ± 1) we have an explicit formula for the Witten
invariant at level k:

k + 2
Σ sin2

α = l U + 2/ (4Λ)

[This is the (1,1) entry of the matrix ST*^ multiplied by a correction factor for the
framing.] We use (4.1) in the large k computations below.
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Table 2. Witten invariants for L(7,q)
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k

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

Table 3.

k

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

WΛ)

0.707107/
0.353553-0.353553/

0.601501/
0.288675

-0.552838+0.440874/
0.073223-0.176777/

-0.402046-0.232121/
0.361803

-0.090789-0.309199/
0.278839+0.278839/
0.150013-0.103547/

-0.216942+0.450484/
-0.148519/

-0.340097-0.067650/
0.263269-0.074906/

-0.127674-0.221138/
0.263301+0.172023/
0.101515-0.101515/

-0.120333+0.390111/
-0.017825-0.123977/

Witten invariants for L(25,4)

L(25,4)

0.707107
0.500000

-0.415627-0.572061/
0.288675
0.376521 -0.181323/
0.191342
0.232121 -0.402046/

-0.154508-0.475528/
0.254000-0.293131/
0.105662

-0.083115-0.043622/
-0.075776-0.331996/

0.303388-0.273171/
-0.346760/

-0.105346-0.065228/
-0.127674-0.221138/
-0.121857-0.094845/

0.349201-0.055308/
-0.130874-0.164111/
-0.105369-0.230726/

L(7,2)

0.707107/
-0.353553+0.353553/
-0.353553-0.486624/

0.288675
0

-0.176777-0.073223/
0.402046-0.232121/
0.111803+0.344095/

-0.174223+0.271096/
-0.278839-0.278839/

0.180950-0.021971/
0

-0.141250-0.045895/
0.288320-0.192650/
0.098878+0.255234/

-0.127674+0.221138/
-0.231396-0.213015/

0.141797-0.022458/
0

-0.120179-0.035288/

andL(25,9)

L(25,9)

0.707107
0.500000
0.672499+0.218508/
0.288675
0.376521-0.181323/
0.191342
0.232121-0.402046/
0.404508-0.293893/
0.254000-0.293131/
0.105662

-0.083115-0.043622/
-0.075776-0.331996/
-0.166050-0.372953/

-0.346760/
-0.105346-0.065228/
-0.127674-0.221138/
-0.121857-0.094845/
-0.315018-0.160510/
-0.130874-0.164111/
-0.105369-0.230726/

Distinguishes
without framing

Seifert Spaces. The invariant for Seifert spaces is computed by combining (1.17)
with (2.2). The canonical framing is determined using (2.4) and (2.7).

Table 5 displays the invariant for the homology spheres Σ(2,3,6n +1). Notice
that Σ(2,3,1)« S3. We checked that the values computed using the Seifert formula
agree with those calculated directly from (1.13). The new phenomenon here is a
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Table 4. Witten invariants for L(3Q,q)
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k

2
4
6
8

10
92
94
96
98

100

Tab. 5.

k

1

2

3

4

5

6

7

8

9

10

L(30,l)

-0.270+0.270/
-0.500+0.500/
-0.127-0.052/

0.321+0.630/
-0.191+0.461/

0.002-0.083/
-0.075+0.159/

0.009-0.040/
-0.203-0.092/

0.069-0.156/

Witten invariants for Σ

2(2,3,1)
2(2,3,25)

0.707
0.707
0.500
0.500
0.372

-0.301-0.926/
0.289
0.289
0.232
0.428-0.407/
0.191
0.191
0.161
0.099-0.878/
0.138

-0.766-0.557/
0.120

-0.258-0.651/
0.106
0.106

L(30,7)

-0.270-0.270/
-0.500+0.500/
-0.127+0.052/

0
0.461+0.191/

-0.072-0.042/
-0.105+0.141/
-0.036 + 0.020/

0
0.162+0.054/

:(2,3,6W + 1)

2(2,3,7)
2(2,3,31)

0.707
0.707

-0.500
-0.500
-0.716-0.354/

0.372
0.289
0.289
0.585+0.734/

-0.492+0.327/
0.191/
0.191/

0.099-0.878/
-0.176+0.402/

0.388-0.507/
0.138

-0.365+0.407/
0.151-0.902/

-0.789+0.183/
-0.789+0.183/

L(30,ll)

-0.270-0.270/
-0.500-0.500/

0.127-0.052/
-0.500+0.500/
-0.191-0.461/
-0.082-0.011/
-0.166-0.059/

0.031-0.027/
-0.116+0.190/
-0.096-0.141/

2(2,3,13)
2(2,3,37)

0.707
0.707
0.500
0.500
0.372-0.707/

-0.716-0.354/
0.289
0.289

-0.052+0.226/
-0.846-0.045/
-0.733
-0.733
-0.176+0.402/

0.161
-0.362+0.526/

0.388-0.507/
-0.758 + 0.512/

0.218-0.501/
0.106
0.106

L(30,13)

-0.270-0.270/
-0.500+0.500/
-0.127+0.052/

0
0.461+0.191/

- 0.072 - 0.042i
-0.105+0.141/
-0.036+0.020/

0
0.162+0.054/

2(2,3,19)
2(2,3,43)

0.707
0.707

-0.500
-0.500
-0.301 +0.219i

0.372-0.707/
0.289
0.289
0.145-0.835/
0.232

-0.733/
-0.733/

0.161
0.099-0.878/
0.043+0.131/

-0.362+0.526/
-0.700+0.035/

0.050+0.109/
-0.789+0.183/
-0.789+0.183/

certain periodicity (2.28), which occurs since 2(2,3,6n +1) is — 1/n surgery on the
right-handed trefoil knot. The periodicity allows us to determine from the table
some Witten invariants of Σ(2,396n±l) which are not explicitly given. In
particular, we obtain 2(2,3,6n —1) for n>0 by noting that this is the same as
2(2,3, — 6n + l) with reversed orientation, or — 1/n surgery on the left trefoil.
[Recall our orientation convention preceding (2.10).] Thus, the Poincare ho-
mology sphere 2(2,3,5) would appear (with reversed orientation) just to the left of
the n = 0 column. From the table we may now immediately verify (for most values
of ή) the known fact that 2(2,3,6n± 1) cannot admit an orientation reversing self-
diffeomorphism unless n = 0. For example, fe = 3 proves this for nφO (mod 5) and
k = 5 works for n φ 0 (mod 7). It seems likely that all values of k together should
prove the fact in general, and furthermore should distinguish all Σ(2,3,6n±l).
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Surgery on the Trefoil Recall from (2.11) that p-surgery on the left trefoil is

We have already listed some Witten invariants of Jf t re f(l) = Σ(2,3,7) (with reversed
orientation) and Xtref( — 1) = Σ(2,3,5). Table 6 displays the Witten invariants of
Xtτef(p) for p = — 2,0,2 at low values of k. The computations are analogous to those
for Σ(2,3,6n +1). Note that the invariant distinguishes the handedness of the trefoil :
If we reverse the orientation of Xtref(p) we obtain — p-surgery on the right trefoil,
but the invariants for Xiτef(p) are usually not conjugate to those for Xtreί(—p). In
particular, the invariants for Xtτef(0) are usually not real.

Since Xtref(0) is a torus bundle over a circle, we tested this data against the
predicted formula (1.24) of Quantum Field Theory. The monodromy matrix is
(2.12). The 2-framing inherited by Xtτef(0) as a torus bundle with this monodromy
can be converted to the canonical 2-framing by adding —4 twists [cf. the
discussion following (2.12)], so we corrected (1.24) by a factor of e2πic/6, in
accordance with (1.4). The resulting numbers (for 1 ̂ /c^20) checked against the
values for Xtre{(0) computed as above.

We tested Witten's assertion (1.23) that the Chern-Simons theory reproduces
the Jones polynomial on the left-handed trefoil in S3. The value of the Jones
polynomial was already given in (1.21). To compute the Witten invariant we carry
out the surgery procedure described after (2.13). Then we apply the gluing law as in
(1.17), but now just carry along the extra circle, which after surgery becomes the left
trefoil with the —6 framing. Thus the formula for its Witten invariant (without a
correction for the framing) is

7 \1V1ί)l\M2)ί

Table 6. Witten invariants for p-surgery on the left trefoil

fc

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20

P=-2

0
0.923880Ϊ

0
- 0.288675+0.866025i

0
-0.310153+0.865723;

0
-0.232292+0.903112*

0
- 0.099046+0.942055Ϊ

0
0.069468+0.959316/
0
0.257802+0.940545/
0
0.451105+0.877817/
0
0.634633+0.768530/
0
0.794263+0.614787/

p = 0

1.000000
0

-0.309017+0.951057/
0.500000+0.866025/
0

-0.707107 + 0.707107/
0.173648+0.984808/
0

-0.841254+0.540641/
1.000000/

0
-0.900969+0.433884/
-0.104528 + 0.994522/

0
-0.932472+0.361242/
-0.173648+0.984808/

0
- 0.951057+0.309017i
-0.222521+0.974928/

0

p = 2

0
-0.923880/

0
-0.288675+0.866025/

0
0.670633-0.670633/
0

-0.720289+0.535941/
0
0.892399-0.333293/
0

-0.873783+0.198082/
0
0.950894-0.014598/
0

-0.891344-0.113566/
0
0.906578 + 0.274378/
0

-0.815103-0.388241/
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where M1 and M2

 a r e representatives of the matrices (2.1) for pt=— 2,3,
respectively. Finally, we correct for the canonical 2-framing of S 3 using (2.4), (2.7)
and for the normal framing of the knot using (1.22). We verified (1.23) for 1 ̂  k ̂  50.

Small k. Reshetikhin and Turaev [RT] construct an invariant ρx of an oriented
3-manifold X which they suggest is equal to Witten's invariant, 2 0 but they provide
no proof.2 1 The formula for the invariant is quite complicated. On the other hand,
after much work Kirby and Melvin [KM1] were able to simplify this expression
for low values of k. Their formulas, which we recount below, are in terms of
elementary topological invariants and the Jones polynomial. We checked our
numbers against the K M formulas for k = 1,2,3,4, and we summarize our results
in this section. Our experiments not only support the hypothesis that the RT
invariant (as adjusted by KM) is equal to Witten's invariant, 2 2 but also suggest
that the RT invariant uses the canonical framing. (That the canonical framing
enters into the work of Reshetikhin and Turaev was anticipated by Atiyah [Al].)

The K M formulas apply to an oriented 3-manifold X = XL obtained by integer
surgery on a link L. As in Sect. 2 we denote the corresponding 4-manifold by
W=WL. Then for k= 1 Kirby and Melvin compute

ρx() Σ ,
S<L

where n is the number of components of the link, σ is the signature of W, the
summation is over all sublinks of the given link, and S- Sis the sum of the entries in
the linking matrix of S. IΪX has a unique spin structure (i.e., if X is a Z/2-homology
sphere), then this reduces to

Qx(ί)=±e-2πiiμiX)/8)/]/2,

where μ(X) is the (unique) mu invariant of X, and the sign is positive if
IH^X)]^ ±1 (mod8) and negative otherwise. For k — 2 the K M formula is

ρx(2)=-Σe~2πii3μiXtΘ)/ί6\
2 &

where the summation runs over the spin structures Θ on X.
We verified Zx(k) = ρx(k), k = 1,2 for a variety of spaces. First, we checked the

lens spaces L(p, q) for 2 ̂  p ̂  20. The mu invariants for lens spaces are computed in
(2.14) and (2.15). We can easily check the homology spheres Γ(2,3, βn ± 1) for all n,
using Eq. (2.16) for the unique mu invariant μ(Σ(2,3,6n ± 1)) = 8n (mod 16) and the
periodicity described above. The verification for small values of n can be read off
from Table 5. We also checked the manifolds Xtre{(p) for — l O ^ p ^ l O . Here we
need the mu invariant formula (2.17).

The K M formulas for fe = 3,4 only apply to knots (i.e., links with one
component). Let p denote the surgery coefficient. The formula for k = 3 only applies

2 0 However, the RT invariant (after KM) is normalized to be 1 on the 3-sphere. In the formulaes
below we correct by the factor (1.13) to normalize according to quantum field theory. Also, K M
adjusted RT's normalization so that the invariant conjugates under orientation reversal
2 1 Witten's invariant depends on a positive integer k. The RT invariant (in the notation of
[KM1]) depends on a root of unity e2πi/r. The correspondence is r = k + 2. For simplicity we will
use the notation Qχ(k) for the (renormalized) RT invariant
2 2 As mentioned in the introduction, Melvin has verified this for the class of manifolds -
plumbings on trees - considered in this paper
Added in proof. Kevin Walker has now proved this for all manifolds.
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to p > 0 . After some algebraic simplifications, their formula is

ρx(3)= I sin2 (j\ e-
2πi(9/40)

where VL is the Jones polynomial (1.20) of the knot L. The formula for k = 4 applies
to any integer p:

ρχ(4)= 2 π i / 6 )

We verified Zx(k) = ρx(k)9 k = 3 for Uj>, - 1 ) and for k = 4 we checked Up, ± 1). In
this case VL = \. We also carried out this verification for the surgeries in the trefoil
X tref(p). For fe = 3 we checked 1 ̂ /?^10 and for fe = 4 we checked — l O ^ p ^ l O .
Here we used Eq.(1.21) for the Jones polynomial VL.

Large k. We compare our exact calculations for L(p,q) and some homology
spheres Σ(pup2,p3) with the asymptotic behavior (1.36) predicted by the path
integral. We begin with the lens spaces L(p, ±1), p ^ 3 , for which we have the
explicit formula (4.1) for all k. In Appendix A, we give a (partial) proof of the
asymptotic formula

ΓP-i-]
4 L 0 J

± f& 1/2 (± sin> ( ^ ) ) ie±2^k+2\k+2)-^ (4.2)

as fc->oo. Except for the factor of j/2, this agrees with the predicted result. The
torsion is (2.25) with q*=±ί. The Chern-Simons invariant is computed from
(2.20). Finally, we claim that for L(p, ± 1) we have the spectral flow

lArr + 1 ( m o d 4 ) ( 4 3>

for each of the flat connections. We do not provide a proof, but assert this on the
basis of numerical calculations from (2.21). The fact that dimH°(An) = ί for each
flat connection accounts for the factor (k + 2 ) " 1 / 2 . Recall that the torsion τL{Ptq)(An)
depends on a basis choice, since the cohomology is nonzero, so the unexplained
factor of j/2 does not contradict the path integral. This factor appears in all of our
lens space results.

Lisa Jeffrey [J] uses a reciprocity law to rewrite (4.1):

«. (4.4)

The leading order asymptotics (4.2) follow easily from (4.4). One could also obtain
a full asymptotic expansion from (4.4). Jeffrey's results cover other L(p, q) as well.

For other lens spaces we verified the asymptotic expansion numerically. We
carried this out for L(5,2), L(7,2), L(7,3), L(8,3), and L(12,5). In all cases, up to the
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Table 7. Asymptotic values of the Witten invariant for L(12,5)

k

191
192
193
194
195
196
197
198
199
200

Exact value

-0.032268 + 0.018630*
0.101535

-0.087706-0.087706/
- 0.050508+0.087482i

0.119199+0.068819/
-0.174078/

-0.118598 + 0.068473/
0.050000 + 0.086603/
0.086387-0.086387i

-0.099503

Asymptotic value

-0.032080+0.018579/
0.101535

-0.087706-0.087706/
-0.050274+0.087616/

0.119247 + 0.068636/
-0.174078/

-0.118550+0.068653/
0.050227+0.086471/
0.086387-0.086387/

-0.099503

Ratio

0.994936-0.001350/
1.000000
1.000000
0.999996-0.002671/
0.999642-0.001328/
1.000000
1.000351-0.001316/
0.999997-0.002618/
1.000000
1.000000

mysterious factor ]/2, the exact results are asymptotic (numerically) to the
predicted value (1.36). For example, when X = L(ί2,5) we verify

— π I e

2 i 4 λ
— 4 s i n 2 \ — π ] e

2

+ 4sin2

2πi(^-)(k + 2)

2 / 4 ^ 2πifc)(k + 2)
-4sin2 ( — π ) e 1 2 /

Λ 2 I 2 \

+ 4sin2( — πje
\

(4.5)

We illustrate our numerical check in Table 7, where we list the exact value of the
Witten invariant computed using (1.19), the asymptotic value predicted by (4.5),
and the ratio for 191 ̂  fc ̂  200. We also illustrate these results graphically in Figs. 8
and 9, where we plot the Witten invariant and its norm for the lens spaces L(5,1)
and 1(12,5).

We can check the asymptotic formula (1.32) more precisely for the Brieskorn
homology spheres Σ(pu p2, p3), since the equivalence classes of flat connections are
isolated and have trivial cohomology. As we discussed in Sect. 2 such an
equivalence class of flat connections corresponds to a triple of integers </l512, /3>.
We ran checks on several homology spheres in the family (2.10). For the Poincare
homology sphere X = Σ(2,3,5) there are two flat connections, and they correspond
to the triples L̂1 = <1,1,1> and 4 2 = <1,1,3>.23 From (2.22) we compute the
Chern-Simons invariants

- 1

120
(modi),

-49
—

( m o d l )

2 3 In this case the fundamental group is finite, the binary icosohedral group of order 120
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Fig. 8. Witten invariants for L(5,1): 1 £k£5000

The spectral flows

IAι = 4 (mod 8), IA2 = 0 (mod 8),

are computed from (2.23). The torsions are given by (2.26) and are

Therefore, (1.32) yields the asymptotic formula

^(2,3,5)(fc)~ \l\ e-3πi/4 jsin (j (4.6)

In Table 8 we display some numerical data for 191 ̂ k^200 comparing the exact
value and the asymptotic value predicted by (4.6). The agreement between these
numbers strongly supports the validity of the asymptotic expansion. In Fig. 10 we
graph the exact value of ZΣ{2ί3,5)(fc) for 1 ̂ fc^200.

We obtained similar results for Σ(2,3,7), Σ(2,3,11), Σ(2,3,17), and Σ(2,3,19). The
space X = 2"(2,3,17) illustrates the importance of the spectral flow term in (1.32).
Here there are 6 classes of flat connections, labelled by Aγ = <1,1,3>, A2 = <1,1,5>,
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Fig. 9. Witten invariants for L(12,5): 1 ̂  k ̂  300

Table 8. Asymptotic values of the Witten invariant for Σ(2,3,5)

300

k

191
192
193
194
195
196
197
198
199
200

Exact value

0.590150-0.540484i
-0.114537+0.352848/

0.973668-0.047578/
-0.148285 -0.340505/

0.639755 +0.480216/
0.431065 -0.673858i

-0.019691 +0.370860/
0.928612-0.296421/

-0.230939-0.290393/
0.741961 +0.299562/

Asymptotic value

0.614364-0.510640i
-0.133223+0.347057/

0.973249
-0.133223-0.347057/

0.614364+0.510640/
0.461267-0.652250/

-0.038858+0.369712/
0.940086-0.251895/

-0.218508-0.300750/
0.725594 + 0.334231/

Ratio

1.000570-0.048104/
0.996531 -0.052510/
1.000430-0.048886/
0.998066-0.044143/
1.000100-0.049604/
1.000256-0.046485/
0.997683-0.051601/
1.000453-0.047243/
0.997114-0.043429/
1.000453-0.047990/

Chern-Simons invariants is

\-\ -169 -217 -145 -361 -49

8' 408 ' 408 ' 408 ' 408 ' 408

the ordered list of spectral flows is

{IA} = {4,0,6,0,4,2} (mod 8)

, and Λ6 = <1,2,4>. The ordered list of

(modi);
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Fig. 10. Witten invariants for Σ{2,3,5): 1 <; k ̂  200

0.5 . .1

and the ordered list of torsions is

A 2 (*A A
Ϊ 7 S m VΪ7/'Ϊ7

The asymptotic formula is then

— e~3nil*hm —

, -

2π\ 8 . 2/7π
l 7 > Ϊ 7 S i n (ϊ7

_ s i n j ^ J e-217πί(t+2)/204

i Is i n U r - 4 9πi

We illustrate the numerical data in Table 9 for 141 ̂ fe^ 150 and graph the exact
values in Fig. 11 for 1 ^k^l50.
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Table 9. Asymptotic values of the Witten invariant for Γ(2,3,17)

111

k

141
142
143
144
145
146
147
148
149
150

Exact value

0.607899+0.102594/
-0.104966-0.151106/

0.123614-0.139016Ϊ

-0.612014+0.038199/
—0.291162—0.1321711"
-0.413944+0.674785/

0.400490-0.286350/
-0.091879+0.669230/

0.946786-0.263649/
-0.024553-0.058313/

Asymptotic value

0.596099+0.151172/
-0.094614-0.157913/

0.132261-0.128045/
-0.614913-0.008261/
-0.281928-0.153204/
-0.465909+0.642185/

0.419276-0.254325/
-0.143660+0.661309/

0.962119-0.191329/
-0.021860-0.059113/

Ratio

0.999182-0.081285/
0.997181-0.067244/
1.007707-0.075491/
0.994271-0.075479/
0.993986-0.071336/
0.994797-0.077144/
1.001116-0.075706/
0.995194-0.077257/
0.999048-0.075356/
1.002906-0.044484/

1

β. " •' 0 . 5

.
#

h " * " •

1 . - 0 . 5

- Ό . 5

-r-

•
*

• *.

*> / o.:s ί

. -

Fig. 11. Witten invariants for Σ(2,3,17) : 1 ̂ /cg

We conclude this section with some qualitative data to illustrate (1.37). Our first
example is the connected sum X = Σ(29 3,7) # Σ(2,3,7). We graph the Witten
invariant and its norm for 1 ̂ fe^ 175 in Fig. 12. It is computed from the Witten
invariant for Σ(2,3,7) using (1.11). The norm exhibits the growth \Zx(k)\ = O(fc3/2),
which we checked numerically by fitting log|Zx(fc)| to linear functions. This
behavior also follows from (1.11) using |Zs3(fc)| = O(k~ 3/2) [which is (1.34)] and the
fact that \ZΣ(2,3,7)| = 0(1) [an experimental fact which is evident from Fig. 11 and
from (1.32)]. On the other hand, it is easy to see that the equivalence classes of flat
connections on X come in 3 dimensional families. For a flat connection is obtained
by choosing two representations of the fundamental group of Σ(29 3,7) indepen-
dently. These representations come in 3 dimensional families, so the pair of
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Fig. 12. Witten invariants for Σ(2,3,7) # Σ(2,3,7): 1 ̂  k ̂  175
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representations lives in a 6 dimensional family. Now the action of simultaneous
conjugation reduces us back to a 3 dimensional family.

Our final example is X = Xiref(0), which has the homology of S2xSι. The
reducible connections have dim Jί0 = dimiί1 = 1, so contribute 0(1) to the large k
behavior. In fact, it seems that |Zjf(fc)| = 1 for all k φ 2 (mod 3), a fact we checked
numerically for 1^/c^lOO. We graph the exact value of Zx(fc), l^fc^lOO in
Fig. 13. Notice for comparison that Zs2χSi(fc) = l for all k.

5. Questions and Conclusions

There are a few proofs in this paper which we have not been able to give
completely; instead we relied on computer verifications. These proofs should be
routine for those readers with appropriate technical competence. There also
remain some deeper theoretical mysteries which are not so simple to explain. Here
is a list of some of these items, posed as problems for the reader.
(1) Derive the asymptotic behavior (1.35) and explain the meaning of the torsion
factor in (1.36). Use this reconcile the extra factor of j/2 in (4.2) and (4.5). Also,
explain the factor of |/2π2 in (1.34).
(2) Derive (2.20) directly from (2.19).
(3) Give a direct proof using Witten's formalism of the Kirby-Melvin periodicity
noted after (2.28).
(4) Prove the error estimate needed in Appendix A.
(5) Prove (4.3) directly from (2.21) (with q=±ί).

Our goal is these computer calculations was to document assertions about the
Chern-Simons theory derived from the path integral. We feel that our results in
Sect. 4 provide sufficient grounds for believing that this quantum field theory
works as advertised. (The unresolved details itemized above are simply that -
unresolved details. They do not invalidate this belief.) While some aspects of the
theory are understood mathematically from a different point of view, we are
unaware of significant mathematical understanding that proceeds directly from
the path integral. This, then, is the geometer's task: Explain the Chern-Simons
theory in terms which are as simple and direct as the path integral. There should be
a common framework which includes both the exact solution and the asymptotic
formula. One could try to directly construct a measure and so the path integral.
Such an approach works in case we replace G = SU(2) by a finite group [FQ]. But
this only involves finite measures, so eliminates many features of the problem. Still,
geometers and topologists are familiar with many forms of "integration" which do
not involve measures directly, and we are hopeful that some of these tools can be
brought to bear on topological quantum field theory.

Appendix A: Large k Asymptotics for L(p, ±1)

We provide a partial proof of the following asymptotic estimate using a "discrete
stationary phase approximation."

Proposition A.I. Ask^>co,

* / α π. 2 / α π \ T 2 « ι ( $ ) i/2fc + n i l } ΐ . 2/2nπ\ ± 2 « i ( )sin2 - e U k ^ /__g+«/4 £ s m 2 \ e yP> ( A 2 )
a=l \k ) ]/ p «=i V P )

2nπ\ ±2«i(^)\ e y P >
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The asymptotic formula (4.2) follows easily from this result. Our proof lacks a
certain error estimate.

Proof. For simplicity we only consider the top sign in (A.2). Set,

and split the region of summation on the left-hand side of (A.2) into intervals

απ(fc) - ckv ^ α ̂  ocn(k) + ckv (A3)

and intervals

ck\ (A.4)

where c is any positive constant and v is a fixed number \ < v <f. Consider first the
integral (A.3) for n fixed. Write

and let j be the integer variable defined by

oc = xn(k)+j = an(k)

Then after some simplification, the summation over the interval (A.3) is

v^fcv \ p k k J v ;

The estimates sin2(x + ε) = sin2x + O(ε) and ei(x+ε) = eix+O(ε) show that (A.5) and

sina ^ e>*Φ jz e^^. (A.6)

differ by a term of order O(fc2v"1). Using (A.7) below we see that the ratio of (A.5)
to (A.6) differs from 1 by O(k2v~3/2), which tends to zero as fc->oo. We claim that
(A.6) is asymptotic to an integral as fc->oo:

£ e~
2πί^2*~]/k f dxe~2πί^\ (A.7)

T o prove (A.7) notice that on the interval -y=9—j=r we have the easy estimate

— e

from the derivative. Thus

ill
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Summing over —ckv^j^ckv, and applying the triangle inequality, we conclude

= c/c2v"3/2. (A.8)

The desired assertion (A.7) follows by taking fc-> oo in (A.8). We explicitly evaluate
the integral in (A. 7) as

J dxe~2πi(^)=}βe-ni>\ (A.9)
- o o ]/ P

Combining (A.6), (A.7), and (A.9) we see that the asymptotic contribution of the
interval (A.3) is

β π V 4 . 2 (2nπ\ iJ^
—e~m/4sm2 e \p

P \ P )
The sum over n is the right-hand side of (A.2).

Therefore, it remains to show that the sum over each interval (A.4) is smaller
than 0(/c1/2) as fc-»oo. This is the error estimate we cannot provide.

Appendix B: Twisting a 2-Framing

Let M be a 2-framed 3-manifold containing a solid torus D2 x S1. Suppose we
remove the solid torus and reglue it after applying the Dehn twist T given by
(1.6). The resulting manifold is still diffeomorphic to M. In this appendix we verify
that the resulting 2-framing on M differs from the original one by a generator of

This is basically a local computation. Since Spin (6) is 2-connected, we may
isotope the 2-framing of M so that on D2 xS1 it agree with a standard model
(which we specify below). The model will agree with the stable product 2-framing
on dD2 x S1. When we apply the Dehn twist T, the only effect on this 2-framing on
dD2 x S1 will be a shear in the vectors pointing in the S1 direction. This shear
should be canonically straightened to obtain the new 2-framing on M. It suffices to
examine the change of framing in the model over D2 x S1. Furthermore, the effect
of the twist on the vectors in the S1 direction is trivial, so we will destabilize and
work with the Spin(4) bundle tangent to the D2 fibers.

We construct the model as follows: Let D2 be the unit disk in (C,
D2 = {reiθ I O^r^ 1}. Identify twice the tangent bundle of D2 with D2 x H, where
H = C φ C / is the quaternions. Thus the trivial 2-framing of D2 is given by
α = (l,ij,fc). Let Lq denote left multiplication by q in H. Then the stable product
2-framing on dD2 is given by Leiθa. Let λ:[0,1]->IR be a smooth monotonic
function with λ = 0 near 0 and λ = π/2 near 1. Let /:D2-^iS3ClH be the function

Then / is well defined (/(r, θ + 2π)=/(r, θ)) with /(r, θ) equal to 1 near 0, and equal
to eιθ near dD. Thus, Lf(rθ)oc is a 2-framing of D2 which restricts to the product
2-framing on 3D2. Applying this to each D2 C D2 x S1 yields the model 2-framing of
D2xSK
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The Dehn twist is given by

τ:D2xSί^D2xS1

The new 2-framing is given by L(τ%/)(r>φ)α, where (τίiιf)(r,φ) = eiφf(r,θ — φ). The
2-framings differ by the function g.D2 xS1-*S3 defined by

λ(r)e-iθ/2 ^

Note that g(r,θ,φ) = l for r = ί or φ = 0, so we get a well-defined element
[g] G π3(S3). The composition

S3 = Sp{i) xptc Sp(ί) x Sp(ί) = Spin (4) C Spin(6)

induces an isomorphism on π3, yielding the desired element [g] e π3(Spin(6)), so it
suffices to show that g:D2xS1 -»S3 is a map of degree ± 1. But j is a regular value
of g whose preimage is a single point. Specifically, suppose g(r, θ, φ) e <Ej. Then
z e <Ej, where

z = ^(r)^/2^-jA(r)

Since Rez=0 = cos(φ/2) we have φ = π and

Thus λ(r) = π/4 (determining r) and g(r,θ,φ) = eiθj (determining 0 = 0). It is easily
checked that dg is onto at this point.
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Note added in proof. We thank Don Zagier for bringing to our attention an error in Appendix A,
which we have corrected. Note that the sum in (A.2) can be evaluated explicitly using the results
of Lisa Jeffery [J], which we did in (4.4). The sum can also be evaluated using work of Skoruppa
and Zagier [SZ]. Of course. These explicit evaluations prove Proposition A.I






