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Abstract. Maxwell's equations in media with general constitutive relations are
reformulated in covariant form as a system of divergence equations without
constraints. Our reformulation enables us to express general electro-magneto-fluid
problems as hyperbolic systems in divergence form. We illustrate this method
on the MHD problem. In the absence of constraints, a general representation is
derived for the characteristic form for first-order systems of quasi-linear partial
differential equations in vector fields and scalars. Using this covariant formulation
of characteristics, we find that the principle of covariance imposes a very rigid
structure on the infinitesimally small amplitude waves in MHD. To demonstrate
the power of the reformulation, we study numerically ultra-relativistic wave
breaking using the divergence formulation of MHD.

Introduction

Maxwell's equations appear in a wide variety of problem settings in general
relativity. We will consider them as they appear in general relativistic formulations
of electro-magneto-fluid problems. They appear in their natural form as an
underdetermined system of divergence equations. Lichnerowicz [5] showed that
implementation of constitutive relations of a particular medium yields a pair of
scalar constraints. Thus, electromagnetic fields in general media are determined
completely by a mixed partial differential-algebraic system of equations.

Numerical treatment of electro-magneto-fluid problems by standard methods
requires these problems to be formulated as a system consisting purely of partial
differential equations with no constraints. Of course, the constraints as they ap-
pear in Lichnerowicz's formulation are avoided when taking the electromagnetic
field variables as 3-vectors (cf. [12,18]). The electromagnetic fields in general
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media are then determined by a quasi-linear system of differential equations in
an explicit space-time split.

In this paper, we will show that the constraints from Lichnerowicz's formu-
lation can become conserved quantities in a new system of partial differential
equations in which the electromagnetic field variables remain 4-vectors. Thus, we
will arrive at a system consisting purely of partial differential equations with no
constraints. We will show

Theorem 1. Maxwell's equations in general media can be reformulated in covariant
form as a system of divergence equations without constraints.

Theorem 1 enables us to formulate general electro-magneto-fluid problems
as hyperbolic systems in divergence form. The divergence form is well-known
to be a good starting point for numerical implementation. Advanced numerical
methods have been developed in classical fluid dynamics for hyperbolic systems
of this form. Theorem 1 thus allows general electro-magneto-fluid problems to
be approached numerically by existing numerical methods from computational
fluid dynamics (see, e.g., [25]). In divergence form, it now also becomes possible
to treat electro-magneto-fluid problems numerically in the weak formulation. It
is well-known that weak formulations of systems in divergence form uniquely
determine the jump conditions across shocks (cf. [16]). The shock structure of
Maxwell's solutions in the new formulation will be discussed in detail.

To illustrate this theorem from an analytical perspective, we apply it to the
classical MHD problem and show that MHD can be reformulated as a system
of divergence equations without constraints. In this form, the MHD problem
can now be treated numerically by any of the standard numerical methods from
classical fluid dynamics.

The theorem also allows for a general formulation of the problem of char-
acteristics for a Γarge class of electro-magneto-fluid problems. The associated
questions of hyperbolicity and wave structure are central in relativistic magneto-
fluid dynamics [26, 27, 4-6, 2, 1, 17]. Our theorem permits us to formulate this
problem of characteristics in terms of vector fields and scalars. We derive a
general expression for the characteristic form of the associated system of partial
differential equations.

To illustrate this approach, we show how the principle of covariance imposes
the general structure on the infinitesimally small wave equations in MHD.

In Sect. 2, we prove the Theorem, and in Sect. 3 we discuss the shock structure
of the new formulation. In Sect. 4, we reformulate MHD as a system in divergence
form. We present our general theory of characteristics in Sect. 5. Our derivation
of characteristics for MHD is discussed in Sect. 6, and our numerical study of
ultra-relativistic wave breaking is presented in Sect. 7.

2. Maxwell's Equations in Divergence Form

In this section we prove our Theorem, showing that Maxwell's equations in
general media can be written in divergence form without constraints. Maxwell's
equations can be stated in terms of a pair of divergences of 2-forms H, the
electric field-magnetic induction tensor, and G, the electric induction-magnetic
field tensor, [5] as

Va*Hab = 0,
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where j is the electric current 1-form. Here, * denotes the Hodge star operator
defining the dual * α of a p-ίoτm α on an n-dimensional Riemannian manifold
as

where e is the Levi-Civita tensor. Throughout this paper we use the convention
that roman indices rum from 0 to 3. The constitutive relations for a medium
yield two scalar constraints. Before proceeding to prove the theorem, we show
how these constraints arise.

In a medium with velocity four-vector u, ubub = — 1, we have

(ea,ba) :=(ubHab,u
b*Hab), (2)

( 4 A ) :=(ubGab,u
b*Gab) (3)

for the electric field, e, magnetic induction, b, electric induction, d, and magnetic
field, h, respectively. We remark that as a consequence of the antisymmetry of H
and G, we have the algebraic identities

ubdb = ubbb = 0. (5)

The 2-forms H and G can now be expressed as [5,7]

H = uΛe-*(uΛb), (6)

G = uΛd-*(uΛh). (7)

Here, the velocity four-vector u actually enters as its dual one-form, but we will
not make this explicit.

Thus, Maxwell's equations are a set of evolution equations for the family of
tensor fields U = (e, d, h, b, u, g, q) with given g, where g is the metric. The scalar
variable q (which corresponds to the electric charge density) arises as an extra
degree of freedom so that the following familiar relationship holds:

0 = d2*G = d*}. (8)

Here, d denotes the exterior derivative. We remark that there can be no confusion
between the d for the exterior derivative and that for the electric induction,
because the latter always explicitly appears as a tensor.

In this form, Maxwell's equations can be closed by local constitutive relations
of the form

d = d(e,h,u,g,g),

b = b(e,h,u,g,4), (9)

j=j(e,h,u,g,4)

with d}(U)/dq Φ 0 and such that the identities

uada(U) = uaba(U) = 0 (10)

hold as algebraic implications of (4). For example, in the familiar case of linear,
isotropic media this reduces to

d(l/) = εe, b(U)=μh, (11)
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where ε is the electric permittivity and μ is the magnetic permeability. Further-
more, using the fact that u is nowhere vanishing, it is consistent to take

}(U) = qu + σe (12)

with σ as the electric conductivity. In this case, q is precisely the electric charge
density.

As a result, Maxwell's equations are stated as a set of evolution equations for
V = (e,h,g) (and u) in the family of variables F = (F,u,g) as a mixed partial
differential-algebraic system of equations as [5]

Va*Hab(U)=0,

cx(U) :=uaha = 0, [ }

c2(U) :=uaea = 0.

This comprises a set of 10 equations for the 9 variables V. In the degenerate case
of MHD when the medium is linear, isotropic with σ infinite, this reduces to

uaba = 0,

in view of e = d = 0. This comprises a set of 5 equations for the four unknowns
b.

The sets of equations above evidently consist of systems of the type
7aωab=jb,

c = 0,

where ω is a 2-form, j is a 1-form, and c = 0 forms a scalar constraint. Now
consider a Cauchy-problem for K on a smooth space-like hypersurface Σ in a
hyperbolic Riemannian space (M, g) with given metric g. Cauchy-data for K must
satisfy a compatibility condition. This can be made precise as follows. Let v be a
unit vector field normal to Σ. Decomposing V on the space-like Σ orthogonally
as

where V^ is interior to Σ, we can rewrite K on Σ as

-va(vcVc)ωab + (VΣ)
aωab = j b .

Next, we observe that
vavb(vcVc)ωab^0,

because ω is antisymmetric. Therfore, the Cauchy-data on Σ must satisfy the
two compatibility conditions

(vb((VΣ)
aωab-vbjb)=0,

\ c = 0.

We have, in the context of classical C2(M) solutions,

Lemma 2.1. A Cauchy-problem for K on Σ can be reformulated as a Cauchy-
problem for

f Va(ωab + gabc) = j b ,

Vja = 0
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on Σ with the same Cauchy-data in the sense that if a solution exists to one then
it exists to the other and the solutions agree in the future domain of dependence of
Σ.

Proof Clearly, we need only show that a classical solution to the new formulation
with Cauchy-data compatible with K yields a classical solution to the original
X-formulation. We will do so by showing that c satisfies the canonical wave
equation with vanishing Cauchy-data:

Dc = 0 in D+(Σ),

c = 0 on I1,

v

aVac = 0 on Σ.

Here, D = gabVaSb is the Laplace-Beltrami wave operator [8], D+(Σ) denotes the
future domain of dependence of Σ (cf. [20, 8]), and v is a vector field normal to
Σ. This can be derived in two steps.

Step (a). Recall that for p-forms α on Riemannian manifolds the following identity
holds [1]:

(p - 1) ! ( - l ) p + 1 *"* d * α = Vβαβil.Jp_1dx1 Λ Λ dx""1.

Consequently, we have

VbΨωah = *~1d2*ω = 0.

Therefore, Vbjb = 0 implies

0 = Vb{Ψ(ωah + gabc) - jb) = gabVaVbC = Dc.

Step (b). Now consider a classical solution to the new formulation with Cauchy-
data on Σ which satisfy the compatibility conditions for K. Then using

as before, we have

0 = vb(Va(ωab + gabc)-jb)

= - vbva(vcVc)ωab + vb((VΣ)
aωab - jb) + vbWbc

because ω is antisymmetric.
Together, Step (a) and Step (b) show that c satisfies the wave equation with

vanishing Cauchy-data. This forces c = 0 in D+(Σ) (cf. [20, 8]), and the proof is
complete. D

This allows us to obtain Maxwell's equations in precisely the number of
variables in V, because the lemma directly yields:

Theorem 2.1. The equations of Maxwell can be reformulated as a system of diver-
gence equations as

Va(Gab + gabCl) (U) = -Jb(U), (18)

vβ/β(t/) = o
in the sense as described in the lemma.
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The constraints in Maxwell's equations have thus been given a conservative
implementation. We emphasize that the new formulation imposes no compati-
bility conditions on the Cauchy-data on Σ. With arbitrary Cauchy-data we may
construct solutions to the new formulation in which c is no longer vanishing. It
is only when the compatibility conditions for K are satisfied that, as we have
shown above, c will remain zero, and the solution will be a Maxwell's solution.
In the case of a charged fluid a solution with C2(U) = uaea ^ 0 leads to forces
along world lines. For this reason, solutions with c\9 ci ψ 0 will be regarded as
nonphysical.

In this sense the new formulation features a larger class of solution than the
original formulation of Maxwell's equations. Therefore, a detailed discussion of
Maxwell's solutions with shocks in the new formulation is required.

3. Shock Structure

We will discuss the shock structure of the new formulation of Maxwell's equations
in terms of Kf. Consider a solution to Kf which possesses a smooth, time-like
shock surface S. Let v denote a vector field normal to S. Then the following
jump conditions must hold

0 = vα [ωab + gabc] = va [ωab] + vb [c],

O vβ[/J ( ]

Here, [f] = (f)+ — [f)~ denotes the jump across S. Consequently,

0 = vavα[c], (20)

by antisymmetric of ω, and hence of [ω]. Since S is not null, it follows that

[c]=0. (21)

Thus, we obtain

Lemma 3.1. The jump conditions for K across a smooth shock surface S,

va[ωab] = 0,

VαL/α]=0, [ '

are preserved in the new formulation K'.

Now consider an open neighborhood Ω of S. Let Ω~ and Ω+ denote the
subregions of Ω lying at either side of S. Let I~(S) denote the chronological past
ofS (cf. [20]). We have

Lemma 3.2. A solution to Kf in Ω which satisfies K in Ω~ is a solution to K in
Ωnr(S).

Proof. We consider a solution to Kr which is C2 in each of Ω+ U S and Ω~ U S.
Notice that this forces

c = 0 in Ω~.

We will show that c satisfies the canonical wave equation with vanishing Cauchy-
data in Ω+:

Πc = 0 in ί2+,

(c)+=0 on S,

v*(Vαc)+=0 on S.
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Of course, we have already demonstrated in the proof of Lemma 2.1 that c
satisfies the wave equation in Ω+. It remains to derive the Cauchy-data. We will
do so in two steps.

Step (a). From the discussion preceding Lemma 3.1, we have

0 = [c] = (c)+ - (c)- = (c)+,

since c = 0 in Ω~.

Step (b). Decompose V on S as

By Lemma 3.1 and smoothness of S, we have

0 = (Ws)
avb[ωab] = vb(Vs)

a[ωab] + [ωab](Vs)
avb.

Let {xα}α=i denote a coordinate system for Σ9 and β(α) = d/dxa. By Lemma 3.1,
vα[ωαb] = 0 so that

[ωab](Vs)avb = [ ω α / ? V

The symmetry of the extrinsic curvature tensor, K, [11] in

-Vy =K(e(α),e(0))v

further implies

[ ω ^ ] V " v ' = 0 .

We, therefore, have
v f )(V s)

a[ωα f )]=0.

This and the second jump condition from Lemma 3.1 together imply

= vb((Vs)a(ωab)
+ - (jb)+) - vh(ma(ωabr - (jbT)

= vb((Vs)a(ωab)
+ - (jb)+),

since the solution to K' is assumed to be a C2 solution to K in Ω~ US. Therefore,
the solution to K' satisfies

0 = vb(Ψ(ωab+gabc)-jb)
+

= vb((Vs)
a(ωab)

+ - Ub)+) + vb(Vbc)+

= vb(Vbc)+.

We remark that a proof for this result in a weak formulation can also be given.
Together, Step (a) and Step (b) show that c satisfies the canonical wave

equation in Ω+ with vanishing Cauchy-data. This forces c = 0 in Ω Πl~(S) by
Holmgren's Uniqueness Theorem (cf. [23]). D

We have therefore demonstrated

Proposition 3.1. Maxwell's solutions are preserved across smooth shock surfaces in
the divergence formulation of Theorem 2.1 in the sense as described in Lemma 2.1.
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4. MHD in Divergence Form

In this section, ideal MHD is formulated as a system of divergence equations
with no constraints. Consider a perfectly conducting fluid with unit velocity four-
vector u in a background with metric g. The fluid is described by a stress-energy
tensor [9]

M g, (23)

where r is the proper restmass density, / is the specific enthalpy and P is the
fluid pressure. Physically, / appears as / = f(r,S) with entropy S. However, one
usually takes r = r(f,S) in view of

dP =rdf-rTdS (24)

as the implicit definition of the temperature T. The electromagnetic field is
described by

TEM = b2(u ® u + g/2) - b ® b, (25)

where b is the magnetic induction. Write

T = τM + ΊEM (26)

for the total stress energy tensor. The standard governing equations for MHD
comprise a mixed partial differential-algebraic system of equations of the form
[26, 5, 6, 19]

Vau[abb] = 0,

Va(rua) = 0,

uaVaS = 0,

uaba = 0,

uaua = - 1.

It is well-known that uaua = — 1 is conserved along streamlines, so that MHD
is a problem with essentially one constraint: uaba = 0. Anile and Pennisi [19]
reformulated this standard form of MHD as a quasi-linear system of partial
differential equations. They obtained their result by a detailed study of the
equations. However, their final system is not in divergence form.

Our theorem allows us to obtain:

Corollary 4.1. The equations of ideal MHD can be reformulated as a system of
divergence equations without constraints as

V β (m β ) = 0,

Va(rSua) = 0

in the sense as described in the lemma.

In ths form, MHD may now be treated numerically by any of the standard
numerical methods for hyperbolic systems in divergence form. To illustrate one
of its analytical aspects, we will show that this formulation will naturally yield
the well-known characteristics for MHD. To this end, we first put the problem
of characteristics in a more general setting.
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5. A Covariant Formulation of Characteristics

A large class of electro-magneto-fluid problems in general relativity can be
formulated in terms of a family of tensor fields U = (α1, ..., αp, u1, ..., u^, g)
which consists entirely of scalars a[ e ^ ( M ) , vector fields u ; e < "̂o(M) a n ( *
a hyperbolic metric g € ^ ( M ) . Here, ^ ( M ) are the tensor fields of type
fa, Si) on a four-dimensional manifold M. Our theorem enables us to formulate
Maxwell's equations as a system consisting only of partial differential equations
with no constraints. For this reason, the class of problems that we will discuss are
those for which the evolution equations for a subset V = (α1, ..., ap\ u1, ..., u^)
(pf < p, qr < q) of U can be expressed in the general form

A(U;V)V=f(U). (28)

Here, A(U;V) : <3f(M) := (^(M))p/ x (^(M))* ' -• <3f(M) is a local, first order
quasi-linear differential operator and f(U) is local in V.

The problem of characteristics can be stated in terms of a Cauchy problem
in an open neighborhood Jί{Σ) of a 3-dimensional initial manifold Σ with
prescribed Cauchy-data U° as

;V)F=/(L7) i

U° on Γ.

The initial hypersurface Σ is now said to be characteristic whenever U° on Σ
and U7 = (uq'+1, ..., u ,̂ g) in Jί{Σ) do not suffice to obtain V away from Γ into
^V(Σ). We will study this problem pointwise in M as a function of the orientation
of nonnull Σ in (M, g). The case when Σ is null is excluded specifically. Null-
characteristic hypersurfaces form an intricate problem that we will not touch
upon here. For this problem we refer to Muller zum Hagen and Seifert [28] and
references therein.

Nonnull characteristics can be defined as follows. We first decompose V as
Vα = ±vα(vcVc) + (Wz)a on Σ9 depending on whether Σ is time-like (+) or
space-like (—). We obtain C in "Cauchy-Kowalewski" form on I as:

±A(U°;v)(vaVa)V+a(U°;VΣ)V =f(U). (30)

The characteristic hypersurfaces are then defined by nonnull v such that
A(U v) (p) is not invertible as a map from the bundle Y{p) := (T0°(p))p' x (T<$(p))q'
into itself (p e Σ). Let us use the standard covariant definition of the determinant
of A(U°;v) (p) [15, p.79], det A{U°;v) (p), to define

(detΛ(I/°; v)) (p) = det^(£/°; v) (p) (p € M). (31)

Thus, there exists a natural, covariant definition for the determinant of A(U;v)
as a scalar field on Σ. The condition for Σ to be characteristic therefore becomes

detA(U°;v)=0. (32)

Such a scalar field possesses a very rigid dependence on its arguments. We
have the following general representation for the characteristic form of (28):

Proposition 5.1. Let U be as above. IfV = (α1, ..., aP\ u1, ..., uq') (pf <p,q' < q)
then ^

(U) (u{va)μι... (uq'va)μf«(vav
a)y

9 (33)

where μ\-\ \- μq> + 2y = p' + 4qf and the αμi...μ ,γ(U) are local scalars in U.
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A formal proof of this fact is not difficult but somewhat lengthy. We will merely
remark that the basic mathematical ingredients are locality and the theorems of
Stone-Weierstrass and Riesz. Using these, the proposition follows from invariance
of the physics under diffeomorphisms φ : M —> M. If φ* denotes the pull forward
map associated with such φ9 it suffices to consider the invariances
(i) det A(U v) (p) = det A o φ* (U v) (p), φ(p) = p,

(ii) det A(U;v)(p) = detAoφ*(U;v) (φ'1 (/>)), Vφip) = id.
The first invariance is known as scalar invariance and isotropy, and the second

invariance is known as homogeneity.
We wish to emphasize the following. The set of zeros vp e 3~\(p) for which

A(U°;y) (p) is singular is called the normal cone at p € M [13]. This normal cone
contains the normals to the characteristic hypersurfaces. These characteristic
hypersurfaces carry the infinitesimally small amplitude waves. As such, these
zeros must be invariant by the principle of covariance. Thus, if we somehow
knew that the normal cone possesses a full set of N real sheets of zeros we could
say that this suffices to establish the covariant expression (33), up to a nonzero
factor. However, in the general case or, more importantly, in proving that the
system possesses a full set of N real, spacelike sheets (algebraic hyperbolicity),
we need to go through the full formal arguments above.

A system of partial differential equations is regular in the sense of Cauchy-
Kowalewski if its characteristic form is not identically zero [11]. Systems involving
Maxwell's equations (13) without incorporation of the constraints are not regular
in this sense. Systems impose uniqueness, and, therefore, may be a given direct
numerical implementation, only when regular in the sense of Cauchy-Kowalewski.
It is easy to see that the divergence formulation (18) regularizes Maxwell's
equations (13). This is also exemplified in Sect. 5.

The usefulness of such a general form lies in the possibility of a priori partial
factorization by using elementary facts about the problem at hand. The problem
can be considered in terms of blocks A®(U;V) each corresponding to a specific
subset of tensors from V. Considering these blocks individually, we can consider
the rank of each of them. Usually, ther will be one or more blocks with known
degeneracies, i.e., simple scalar conditions which imply a change in the rank of
A®(U°;v)9 and a vanishing of det A(U°; v). By Proposition 5.1, we can then arrive
at a partial factorization of det A(U°; v). This will be illustrated in our treatment
of ideal MHD. We will call this the method of uncoupled factors. This can result
in a dramatic reduction of the characteristic determinant. This completes our
covariant implementation of constraints in the problem of characteristics for
problems of type C.

6. Infinitesimally Small Amplitude Waves in MHD

The structure of the infinitesimally small amplitude waves will follow from the
equations of the characteristics. The characteristics for MHD in Corollary 4.1 as
given by Proposition 5.1 are in V = (u,b,/,S) and U = (F,g). The evolution of
the metric g is described by the Einstein equations

G = 8πT, (34)

where the Einstein tensor G depends on g (up to its second derivatives) only, while
T is a function of all the tensor fields but none of its derivatives. Furthermore,
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in MHD only g and none of its derivatives appear. Thus, the problem of
characteristics for the Einstein equations is independent of that of MHD. We
will consider the problem of characteristics of MHD only. Alternatively, we could
say that we consider MHD in the background of a given, fixed metric.

By Proposition 5.1, we have in this case

detΛ(l/; v) = DN(U;y) = ]Γ ak(U) (uava)
Vk(bavar(vavaγ^ (35)

where Vk + μ/c + 2γk = N with N = 10. Let us apply the method of uncoupled
factors to partially factorize this polynomial in v. Write uaVaS in Cauchy-
Kowalewski form on a time-like hypersurface Σ as

uava(vcVc)S + ua(VΣ)aS=0. (36)

Thus, (0,0,0, uava) implements ucVcS in A(U v). Clearly, its rank is zero whenever
uava = 0. Notice that detA(U v) is even in b, and hence also in u, by invariance
under rotation about u (b is space-like, u is time-like and uaba = 0). Indeed,
if detA(U;v) where odd in b, then in going from b to —b by rotation about
u det,4(1/ v) would always have a zero, forcing this to be zero for all b. But
then dQtA(U;v) is also even in b. From this we have {uava)

2 as a factor. Another
uncoupled factor is vava due to Maxwell's equations (see the proof of Lemma 2.1).
Thus, it must be that

v) = (uava)
2(vava)D6(U;v). (37)

By the evenness of Dβ in u and b we have

D6(U;v) =R((uava)\(bava)\vava;U). (38)

But then R is a homogeneous cubic (in its first three arguments), so that

R = PQ, (39)

where P is linear and Q is homogeneous quadratic. Clearly, each term in
det,4(ί7;v) contains {uaVaY{bava)

j with i + j > 4, as follows by inspection of
Maxwell's equations. We have, therefore,

P = Pi(uava)
2 + P2(bava)\ (40)

Q = qι(uava)
4 + q2(uava)

2(bava)
2 + qφava)

4

+ q4(uava)2(vava) + q5(bava)
2(vava). (41)

A mere inspection of the equations now yields the full expressions for the
coefficients pt. It is easy to see that the block A^'2\U;v) in A(U;v) associated
with (u, b) is of the form

-b"va + ω * *
b®\t-bava uava-n®\ι * *

where ω is a linear combination of tensor products from u, b and v. Let e φ 0
such that e"ua = e"ba = eava = 0. Then e"ωab = 0. Consideration of (Ae, μe, 0,0)
as a nullvector of y4(1>2)(l/;v) yields immediately

P(U;v) = (uava)
2(rf + b2) - (bava)

2. (43)

The expression for Q is now obtained by straightforward identification, for
example by using a symbolic manipulator. Here, Cauchy-Kowalewski regularity
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is essential. We have used Macsyma for this purpose and thus rederived the
well-known result,

Q(U v) = {fdr/df - r) (uava)
4 - (r + ^ δ r / δ / r " 1 ) (vava) (uava)

2

+ r-Hvava)(bava)
2. (44)

We should mention in this context that Macsyma is actually able to give the full
factorization at once, when the problem is stated in a specific frame of reference
with v variable. This is quite surprising, considering the fact that we are dealing
here with a tenth order polynomial.

The characteristic condition (32) thus yields

Proposition 6.1 (Bruhat). MHD possesses two kinds of waves,
(i) Λlfven waves: P = 0,

(ii) hydrodynamίcal waves: Q = 0.

It should be mentioned that Bruhat [26, 27] gave the general result with
variable metric which included gravitational waves. This result was derived from
a detailed study of the differential equations. We wish to emphasize that the
result is largely determined by the principle of covariance. This completes our
discussion of waves in ideal MHD.

7. On the Numerical Implementation

An electro-magneto-hydrodynamic (EMHD) problem in a given background
metric is completely described by Maxwell's equations and the equations of
motion,

vaτ
ab =fb.

Here, Tab is the stress-energy tensor and fb is the force density four-vector. The
divergence formulation of Maxwell's equations given in Theorem 1 thus enables
us to formulate general EMHD problems as hyperbolic systems in divergence
form.

A large class of numerical methods exists to treat problems in classical fluid
dynamics for such systems in divergence form (see, e.g., [25]). Highly sophisticated
schemes have been designed for the computation of solutions of problems in ID
and higher dimensions with shocks (see, e.g., [24, 22, 3, 14]). Our reformulation of
EMHD problems to systems in standard form thus allows us to exploit existing
numerical methods.

We will give a preliminary demonstration of this advantage below. We will
discuss a ID ultra-relativistic MHD problem until shocks form. We are currently
working on a 2D EMHD problem, on which we expect to report in a subsequent
paper.

7.1. An Ultra-Relativίstίc Example

We have computed the wave breaking problem for isentropic, transverse MHD in
flat space-time. Consideration of simple waves allows for an exact error analysis,
since one can compare with an exact, analytical solution. It can easily be shown
that the equations for simple waves may be cast in characteristic form as
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Fig. 1. The velocity distribution, v, and density distribution, r, at the moment of breaking t = tβ In
this example, λ0 = λγ = 7/5, J = 4.5 and tB = 0.0963

where ua = (cosh A,sinhλ,0), va = dua/dλ, α2 = rf^dr/df, β2 = (1 + k2dr/df)/
r

(1 + r/f), φ(r) = f oΓιβr~ι and k = h/r, which is constant throughout the fluid.
Recall that a monatomic relativistic gas is described by a polytropic equation of
state,

P = Kr\

with polytropic index y between 4/3 (ultra-relativistic limit) and 5/3 (Newtonian
limit). In the intermediate case of y = 3/2, we find oΓιβ(r) = tanhψ/4 when
k = 1 and K = 2/3.

Our numerical example concerns a fluid of this type with the Riemann
invariant J = λ+φ constant throughout the fluid, and y = 3/2. The characteristics
along which the solution remains constant are then given by dx/dt = A =
tanh(5A/4 — J/4). With initial data λ(x) = λo + λ\ sin2πx, the breaking time is:
tβ = inf(—dΛ/dx)"1 (see [21]) for a general discussion on breaking times).

The divergence formulation of MHD can be implemented directly using the
leapfrog Crank-Nicholson method, until the shock forms. This scheme has second
order accurary, provided that the solution remains smooth. Since the problem has
been reformulated in standard form, we expect that the more advanced methods
cited before will allow for the computation of solutions in the presence of shocks.

We have computed wave breaking problems in the Newtonian limit, in the
relativistic case and in the ultra-relativistic case. We give here results only on
the traditionally most difficult case, the ultra-relativistic wave breaking. Figure
1 shows the density and velocity distributions at the moment of breaking in a
case when the Lorentz factor Γ « 8. Here, Γ = 1/(1 — Ϊ; 2 ) 1 / 2 , where υ is the
maximum velocity. In Fig. 1 the velocity of light is normalized to unity. These
results have been obtained without any stabilization process. The numerical and
analytical solution agree to within less than the width of the lines in the figure.

The performance of our numerical implementation is studied by the dependency
of the results on the grid size At in time and the grid size Ax in space. The
numerical solution is compared with the analytical solution in the supremum
norm.
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Fig. 2. The evolution of the error in the example shown in Fig. 1 for different discretizations. The
error is the maximum of the relative error in r and in each of the components ua and ha

Our numerical results show that
(a) the scalar field c\ = uchc remains identically equal to zero (there is not even
a round-off error)
(b) the error in the conserved quantity h/r is in the order of machine round-off
error (< 10~9);
(c) the maximum error between the numerical solution and the analytical so-
lution decays quadratically with grid size, in agreement with the second order
accuracy of the numerical scheme. This is shown in Fig. 2, where the evolution of
the error is given for different numbers of grid points, n. This result holds true
as long as the wave remains away from breaking. This error is also remarkably
independent of η = At/Ax, η < 1, for velocities, υ, satisfying Γ < 10. Significantly
smaller timesteps are required for velocities with larger Γ.

In computations of Newtonian and relativistic wave breaking, the numerical
results have been the same or better than as given in the observations (a)-(c)
above.

Figure 2 also shows that the leapfrog Crank-Nicholson method the error
exhibits an exponential growth as a shock develops. The method of Orszag and
Tang [25, 10] restores linear error growth away from the moment of breaking.
However, this introduces initial errors and fails to reduce the error. It should
be mentioned that in these computations the error in the Riemann invariant
J = λ + φ shows a linear growth in time, and, therefore remains order of
magnitude smaller than the total error given in Fig. 2. Advanced numerical
schemes should be used for solutions with shocks, as mentioned before.
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