
Commun. Math. Phys. 140, 543-567 (1991) Communications ΪΠ

Mathematical
Physics

© Springer-Verlag 1991

Classical

P. Di Francesco1 2, C. Itzykson1 3 and J.-B. Zuber1 3

1 Institute for Theoretical Physics, University of California, Santa Barbara, CA 93106, USA
2 Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544, USA
3 Service de Physique Theorique de Saclay*, F-91191 Gif-sur-Yvette cedex, France

Received November 9, 1990

Abstract. We reconsider the relation between classical VF-algebras and deformations
of differential operators, emphasizing the consistency with diffeomorphisms.
Generators of the VF-algebra that are fc-differentials are constructed by a systematic
procedure. The method extends, following Drinfeld and Sokolov, to VF-algebras
based on arbitrary simple Lie algebras.

1. Introduction

Among the many relations between integrable systems and conformal field theories,
it seems of interest to investigate the concept of W-algebras introduced by
Zamolodchikov [1] which play an important role in both fields. In spite of a large
number of works pertaining to this subject [2-16], we think that this object has not
yet been completely defined. Our purpose here, in a classical context, is to contribute
to its clarification.

The Virasoro algebra or its H^-extensions appear naturally in the context of
classical integrable systems of KdV types [4-15]. We wish to carry out this analysis
in a covariant way with respect to diffeomorphisms. In a more complete
presentation under preparation, we plan to exhibit these same algebras in a more
geometric framework following the recent work of Sotkov and Stanishkov [16].
We shall briefly sketch here a natural construction of the simplest J^-algebras
pertaining to the fundamental representation of simple Lie groups treating in detail
the SL(n\ S0(2n) and G2 cases. Our work relies heavily on an (admittedly
incomplete) reading of a fundamental paper by Drinfeld and Sokolov [17].

We shall deal with differential (or more generally pseudo-differential) operators
with regular coefficients acting on regular functions. By regular we mean according
to the context, infinitely differentiable or analytic functions, either in a fixed
neighbourhood or in a pointed neighbourhood of a point, or possibly even along
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the real axis (in the real case). One could even use formal series. The important
point is that in any case the notion of derivative be well defined. We also need
the notion of integral taken along a non-trivial cycle denoted generically #, for
instance the real axis for coefficients vanishing fast enough at infinity, or a period
for periodic functions, or else a cycle around a deleted point in the complex plane.
In some instances, the integral may extend over only part of the cycle. The above
shows that the constructions can be carried in a purely algebraic way along the
lines of [18].

Our discussion is carried in three steps. In the case of sl(ή) we first decompose

a normalized nth order differential operator D mapping -- differentials into

- differentials into a canonical sum involving currents w7 of weight j ranging

between 2 and n in correspondence with the generators of the An_^ W-algebra.
We then define associated deformations of D, each one depending on an arbitrary
function, which generalize the KdV flows and in the simplest ^-instance, amount
to localizing the latter. In the last step, using the second Adler-Gelfand-Dikii
Hamiltonian structure [18] one is able to compute the Poisson brackets between
the w generators. This endows the polynomials in the w's and their derivatives with
a Lie algebra structure containing the Virasoro algebra generated by vv2. In a last
section we succinctly present the generalization to an arbitrary simple Lie algebra
and discuss in more detail the slightly more involved case of the Dn Lie algebra.

2. Action of Changes of Variables
n

We consider linear differential operators of degree n, D = dn + £ ajd
n~j with d = d/dx,

7=1

/ I * \
acting on functions /(x). By a change of function, /(x)->exp — I -ia^u^du /(x),

\nj J
one may dispose of the first coefficient a±. Therefore, with no loss of generality,
we shall only consider operators of the form

We are interested to study how D and its coefficients fl, (x)J = 2, . . . , n, transform
under changes of variables x -» t. Let &h denote the space of functions / that
transform as /i-differentials (conformal weight h):

(Here and in the following, we make a slight abuse of notation, denoting with the
same symbol the function before and after the change of variable.)

Proposition 1. There exists a natural transformation of the functions a2, ..,an such

that the operator D maps the space ^ r_ ( M_1 ) / 2 into the space

Proof. Let /ι,/2> ,/n be n linearly independent functions in the kernel of D.
Since α l 9 the logarithmic derivative of their wronskian W vanishes, Wis a constant
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and by a change of normalization of the /'s, may be set equal to 1,

/? 1} •" f(n 1}

r(n-2) ... /*(n-2)

r r \ J 1 -̂  W

545

(2.3)

/i - /.

Let us then define the differential operator D by its action on the function /,

r /r - /<π)

/•(n-l) /•("-!) ... /•(»-

[£>/] =

/.

(2.4)

It is readily seen that D is of the form (2.1), and it is a simple lemma [19] that if
/ι> /2> >/π and / belong to J%, then W ( f ^ f 2 , ...,/„) belongs to ,

and [D/] to ,. The choice of /ι = —
n-\

preserves the condition

(2.3). By identification of the coefficients α2 ? %> 5

 an with minors of the determinant
(2.4), one finds their transformation law, and Proposition 1 follows. Under the
change x -> ί,

Here and in the following we use the following notations: φ(t) denotes the jacobian
dx/dt of the change of variable, b(i) = φ'(t)/φ(i) its logarithmic derivative and the
schwarzian derivative s(ί) reads

f d 3 x \ Id2x\ 2

dx

It I

(2.6)

It is denoted with double pairs of curly brackets to distinguish it from the Poisson
brackets introduced later. We shall say that an operator transforms covariantly
if it obeys (2.5). As a consequence of /eJΓ_ ( / J_1 ) / 2 the quantity dxf[Df~] is a
1-differential showing that its integral over a cycle is a well defined quantity.

Let us discuss more explicitly how the functions α 2,..., an transform. According
to (2.5) Λ J vanishes in any coordinate system. On the other hand, a2 does not
transform as a 2-differential but has an "anomalous term" proportional to the
schwarzian derivative of the change of variable

(2.7)— \ +ca{{x,t}}.
(A l

and this is reminiscent of the transformation law of the energy-momentum "tensor:"
this is not an accident, see below. In (2.7), the "central charge" cn reads

n(n2-

Ϊ2~
(2.8)
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We recall that under composition of changes of variable, u -> x -> f , the schwarzian
derivatives transform according to:

(2.9)

which implies the consistency of (2.7) and shows that a2(x) transforms as cn{ {u, x} },
with u a fixed coordinate for which a2 vanishes. The other coefficients a3,...,an

of (2.1) have more complicated transformations involving higher and higher
derivatives of b(t). Their variations under infinitesimal change of variable,
x = t + ε(ί), may be written in a closed form

δak = εa' + kε'ak + -

- Σl{( n

Ά\\k-l

However, we have the following

Theorem 1. There exist linear combinations wk of α f c ,α f c _ 1 , . . . ,α 2 and their
derivatives, with coefficients polynomials in a2 and its derivatives that transform as
k-differentials (k ̂  3):

1 = 2

δwk = εwk + kε'wk. (2. lib)

Moreover these relations are ίnvertible and one can express in a similar fashion ak

linearly in wfc, . . . , w2 = a2 and their derivatives, with coefficients that are differential
polynomials of a2.

It is the aim of the rest of this section to establish this result, to give explicit
expressions for the matrix Bkl and its inverse and to show how the remaining
coefficients may be obtained in a systematic way. For illustration, the formulae
for the lowest values of k are displayed in Table I. As these /c-differentials wk will
appear later as the generators of the w-algebra, we shall refer to them as "currents"
and to k as their "spin." It is of course equally well their conformal weight.

More precisely, we are going to prove that any operator D may be written as
a sum of differential operators

n

D = Δ2(a2)+ Σ 4K,α2), (2.12)
fc=3

each of which maps the space «?(n_1)/2 into the space ^(n+i)/2- In (2.12), Δk is
linear in wk and its derivatives.

Let us first consider the term Δ2(a2) that depends solely on a2 (and its
derivatives). Given the function a2(x), let u denote a variable such that a2(u) = 0.
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Table I. wk as functions of ahSU(n) case

n-2
—a'

n-3 (n-2)(n-3) (n - 2)(n - 3)(5/ι + 7) ,
w4 = 04 --- fl' H ----- Λ" -- α,

2 3 10 2 10φ2-l) 2

w - 4 3(n - 3)(n - 4) (n- 2)(n - 3)(n - 4)
w5 =α5 -- a'-\ -- a" -- a"'

5 2 4 28 3 84 2

(n-3)(yi-4)(7π+13),

14φ2 -
+ ΓΓ-Γ^ ((« - 2)fl20'2 - 2α302)

This means that u is a solution of the equation

a2(x) = cn{{u,x}} (2.13)

or that the jacobian φ(x) — du/dx and its logarithmic derivative b(x) are such that

b'(x)-l-b2(x) = a^. (2.14)

The transformation from the function a2(x) to the function b(x) is an example of
a Miura transformation1 and enables one to write d2 + |s = (d — \b)(d + ^fc). In
the variable w where 02 vanishes, the operator z!2 reduces to (d/du)n. Therefore,
since we want the operator to transform covariantly, in the variable x, it must read

= (d -jb)(d - (j - l)b) . (d +jb)9 (2.15)

where we have set n = 2/+ 1. For the consistency of this argument, we have to
prove the

Proposition 2. The expression (2.15) depends upon b only through the schwarzian
derivative (2.13) and hence only on a2 and its derivatives.

Proof. Clearly, Δ2 is a differential operator with coefficients that are polynomials
in b and its derivatives and may be expressed through (2.14) as polynomials in
b, s and derivatives of 5. The proof amounts to showing that these polynomials
reduce to their term independent of b. To see this, in the expression (2.15) we
change b into b + δb, keeping s = b' — \b2 fixed. This implies that δb satisfies the
equation δb' — bδb=ΰ, or equivalently the commutation relation between
differential operators

(d-(k+l )b)δb = δb(d- kb) (2. 1 6)

1 For regular α2, Eq. (2.14) always admits a solution defined, up to a constant PSL(2)
transformation, in a fixed neighbourhood of a point. As the following is only formal algebra,
the introduction of this intermediate variable is clearly legitimate
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for any k. The change of Δ2 is thus
j

δΔ2= £ (d-jb)...(d-(k+l)b)(-kδb)(d-(k-l)b) (d+jb)
k=-j

= 0. (2.17)

(See [14] and [4] for an alternative argument that the product (2.15) does not
depend on the choice of a solution of (2.14).) Under a change of variable, the
operator Δ2 transforms covariantly, thanks to the transformation properties of
the schwarzian derivative (2.6).

We now proceed to the construction of the operators Δk(wk,a2) along similar
lines. Let wk(x) be a fc-differential. In the variable u defined above, the operator
has the general form

n-k

Δk(wk(u),Q)= Σ αuw<''d"-*-', (2.18)
1 = 0

and we seek coefficients α (with the normalization αfc0 = 1) such that after the
change from u to x, it depends on b only through the schwarzian derivative (2. 1 3),

= <^ ί = 0

(2.19)

where we have introduced the covariant derivative taking /z-differentials to h + 1-
differentials:

&f = (d- hb)f (2.20)

thus, @\vk = (d- kb)wk,@
2wk = (d-(k+ l)/b)(d - kb)wk, etc... and Q)n~k~l in (2.19)

maps&r_(n_ί)/2 into ^((n + 1)/2)_k_Γ The square brackets in [^wfc] mean that &
does not act further to the right.

Proposition 3. The operator Δk in (2.19) depends upon b only through the schwarzian
derivative (2.13) provided the coefficients akl are chosen as

f - l V n - / c N

(2.21)

Proof. We proceed as before for Δ2 Variation of b with 5 fixed produces a
differential operator, and imposing that all its independent coefficients vanish yields
recursion relations between the α's

/(/ + 2k - l)αkί = (* + /- l)(n + 1 - k - /)αM_ 1? (2.22)

the solution of which (with the boundary condition αfe0 = 1) is given in (2.21).
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We have thus shown how to construct n—\ independent differential operators
transforming covariantly. Given an operator (2.1) depending on the functions
02,α3, , an, we can thus define the forms wfc by identifying w3 as the coefficient
of dn~3 in D - A2(a2\ w4 as the coefficient of dn~4 in D - A2(a2) - Δ3(ω3, α2), etc... .
This completes the proof of the existence of the decomposition (2.12). This
identification is easy to read off for the linear terms

k

ak= Σ Λ w wj k ~° +non-linear terms,
1 = 2

fc_lVn-Γ

(2.23)
: + /- !

k-l

where by convention, we set w2 = a2. The inverse of the A matrix is the B matrix
of (2.11), and reads (see Appendix):

(2.24)

k-l

Remark L The coefficients α of (2.21) make sense in (2.18) only for k ̂  3. It turns
out that for k = 2 the expression (2.21) gives the terms linear in a2 in the
decomposition (2.12), namely

n-2

Δ2(a2) - dn = Σ α2X2°dn~2~ * + non-linear terms. (2.25)
ι = o

Indeed the linear terms in the right-hand side read

= Σ «2./al?d"-2"' (2.26)
1 = 0

as a result of a simple identity (see Appendix). It follows that the terms linear in
a2 in (2. 11 a) are also given by the matrix B.

Remark 2. One may prove that the differential operators Δk(wk,ty are self-adjoint,
up to a sign:

4M,0) = (-irM*(vvk,0), (2.27)

which follows from the following identity (see Appendix):

Σ(-D' (/C + /'1)! = (k + q-ί}l . (2.28)
,tΌ ll(q-t)\(2k + /-!)! q!(2/c + q-l)!

This property of (anti-)self-adjointness carries over to the operators Δ2(a2) and
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Δk(wk,a2) as is readily verified. Accordingly, one may rewrite (2.18) in a more
compact and symmetric form:

4k(w*,0) = Σ αfc/K
2V"-fc-2']+ (2.29)

0^2l^n-k

with a similar expression for 4k(wk,α2), fc ̂  3.

Remark 3. One may wonder what is the general expression of the polynomials in
the βfc's their derivatives that transform as r-differentials, with r integer larger than 2.
Their form may be obtained following the same method as used above to construct
the w's: write the expression in the coordinate where a2 = 0 as a differential
polynomial in the w's; return to the generic coordinate, transforming the derivatives
into covariant derivatives; derive the conditions on the coefficients that enable one
to reconstruct a r-differential depending only on α2. For example, 4w'3w4 — 3w3w^
is a 8-differential. This method leads to a generating function for the number N(r) of
linearly independent r-differentials:

Π Π d - < 7 A + 1 )
h=3 l>0

3. ^-Algebras as Generalized KdV Flows

3.1. Infinitesimal Deformations of the Differential Operators. In its infinitesimal
form, the previous analysis is a particular case of the following problem: find two
infinitesimal differential operators X and Y mapping JΓ_ ( n_1 ) / 2 respectively
•^(w+D/2 onto themselves, such that after a change of functions: G = (1 + Y)g and
F = (1 + X)f, the equation g = Df takes the form G = (D + δD)F9 with D + δD still
of the form (2.1). The variation of D is thus given by:

δD=YD-DX. (3.1)

The particular case X = Y corresponds to the 5L(π)-generalized KdV flows of [17],
for which the variations δ all commute. In the general situation considered here,
they do not.

Let us recall a few definitions and results from (pseudo)differential calculus
[18]. A pseudo-differential operator is a formal series in d with smooth function
coefficients, involving negative integer powers of d as well, d'1 being defined as
the formal inverse of d. Its commutation with functions is taken to be:

so that iterating it
00 / J r _ u / _ 1 \

<<></-'-*. (3.3)

We call valuation the smallest power of d appearing in the operator, if it is finite.
One denotes by (R)+ the differential part of any pseudo-differential operator R, i.e.
its parts with no negative power of d, and (/?)_= K — (/?) + . The coefficient of d~1
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in R is called the residue of R and denoted Res(Λ). One shows [20] that
pseudo-differential operators commute under the symbol Res, up to total
derivatives:

Res ([^,#2]) = total derivative. (3.4)

This leads to the definition of the trace of a pseudo-differential operator R:

Ύτ(R)=$dxRes(R). (3.5)
<$

Any pseudo-differential operator R has a well defined formal inverse denoted R~l.
Finally the natural Z2 involution *, which leaves the functions invariant, and such
that d*=-d, extends to pseudo-differential operators: for any A and B,
(AB)* = B*A*.

Let us proceed now to the detailed study of (3.1). First of all, it is clear that
the infinitesimal changes of the variable x->x + ε(x) are generated on ^Γ_ ( n_1 ) / 2

respectively J^(π+1)/2 by:
_ 1

χl=εd -- ε' (3.6a)

- e ' = -X*. (3.6b)

This entails:

δlD=YlD-DX1 (3.7)

which summarizes the transformations (2.10) of the coefficients of D under a change
of variable. More generally we look for deformations (3.1) generated by higher
degree differential operators X and Y. By inspection of the powers of d in (3.1),
we find constraints relating X and Y. We have the following:

Proposition. The most general variation of the form (3.1) is built from an arbitrary
differential operator X of valuation 1, and X and Y read:

X = X - - f Res (DX D - 1), (3.8a)
n

Y = (DXD-l)+. (3.8b)

Proof. Suppose X is of degree fe, then the left-hand side of (3.1) is of degree n — 2,
which imposes that Y be of the same degree fe and gives fc + 2 constraints obtained
by setting to zero the coefficients of all powers of d between dn+k and d11"1. It is
easy to see that the fe -f 1 first constraints express the Y coefficients in terms of
the X ones in a triangular fashion. Multiplying (3.1) by D"1 from the right, one
finds that Y - DXD~l = δDD"1. The right-hand side is of degree -2, thus taking
the differential part leads to (3.8b). Taking the part of degree — 1 (the residue) and
writing X = X + ε0, we have

Res DXD ~ 1 = - Res Dε0D ~ 1

= -nε'0. (3.9)

Since the residue of a commutator is a total derivative, it makes sense to integrate
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(3.9) and drop the constant of integration (which does not affect the definition of
δ in (3.1) anyway), which completes the proof of the proposition. As an example
the degree one operators Xί9 Y1 defined in (3.6) obviously satisfy (3.8) with X = εd.
By abuse of notation we will denote by δx = δx the variation (3.1) acting on D
hence on its coefficients.

These pairs (X9 Y) can be safely restricted to be at most of order n — 1 for the
following reason. Applying the Euclidean division algorithm to a general X of
order k^.n, one may write

X = ZD + X ,

Y=DZ+Ϋ (3.10)

with (X, Y) of order at most n— 1, and related by (3.8b). One sees immediately
that Z does not contribute to δD.

We are interested in computing commutators of <5's. From the definition (3.1),
we get:

\_δx>,δx] = δ[X,X} + δχX,_δχ,x. (3.11)

We now want to define a basis δk(η) = δXk(η) such that:

δk(εη'-kηε')9 (3.12)

which amounts to saying that η transforms as a — /c-differential under changes of
variable. The corresponding Xk and Yk are built of covariant pieces mapping
^Γ_ ( n_1 ) / 2» respectively «^(n+1)/2 i

nt° themselves, and could be constructed by a
method similar to that of Sect. 2. Alternatively, we shall determine them by using
a Hamiltonian language. The variations δk will be generated by Hamiltonians of the
form Hk = §dxη(x)wk+l(x), through some appropriate Poisson brackets. (Notice
that the fact that η is a — /c-differential guarantees the invariance of the former
integral). Before doing so, we have to recall some facts about Poisson brackets on
the manifold of differential operators D [21,17].

3.2. Poisson Brackets. Following [21,17], Hamiltonian structures (or Poisson
brackets) are defined first on linear functionals of D, (i.e. of the at and their
derivatives), and then extended by differentiation to arbitrary polynomial
functionals. Let lυ(D] be a linear functional,

= ΎrDU. (3.13)

Since a^ vanishes one can freely add to U a term of the form d~nul. The two
Hamiltonian structures discussed in [21, 17] read

(lv(D)9 /κφ)}1 = Tr(D[l/, K]) = ly(DU - UD)

) + D-D(UD)+). (3.14)

The first one will not concern us here, whereas the second one seems to fit our


