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Abstract. We prove the existence of resonances in the semi-classical regime of
d2

small h for Stark ladder Hamiltonians H(h, F) = — h2 —- + v + Fx in one-
dx2

dimension. The potential v is a real periodic function with period τ which is the
restriction to R of a function analytic in a strip about R. The electric field strength
F satisfies the bounds || vf \\ ̂  > F > 0. In general, the imaginary part of the
resonances are bounded above by ce~κpτh'\ for some 0 < K ̂  1, where pτh~l is
the single barrier tunneling distance in the Agmon metric for v + Fx. In the regime
where the distance between resonant wells is (9(F~l\ we prove that there is at
least one resonance whose width is bounded above by ce~a/F, for some α,c>0
independent of h and F for h sufficiently small. This is an extension of the
Oppenheimer formula for the Stark effect to the case of periodic potentials.

1. Introduction

The Hamiltonian for an electron moving under the influence of a periodic potential
and a constant electric field of strength F ̂  0 in one-dimension i§

H(h,F)=-h2^ + v + Fx. (1.1)
dx

The real periodic potential v is assumed to be the restriction to R of a function
analytic in a strip about the real axis. We consider the small electric field regime
|| v' || oo > F > 0 in the semi-classical limit. We prove under these conditions that
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there exists h 0>0 such that for 0</ι<fc0,H(/ι,F) has infinitely-many spectral
resonances, the so-called Stark ladder resonances. *

We also prove an upper bound on the width of these resonances. The following
bound is an immediate consequence of our work and standard semiclassical
analysis of tunneling (see [CDKS, HiSi or Sil]). Let zΛtk be any resonance and let
entk = Re zΛtk. Let h ~ VT be the exit barrier tunneling distance in the Agmon metric
for v(x) 4- Fx at energy en k, where

S'τ(en,k)

(1.2)

Sτ(en fc) = min (x|t?(x) + Fx = eΛtk} and S'τ(enk) is the next such point to the right.
Then there exist cnk > 0 and 0 < β ̂  1 such that

llmz^c^e-^'*. (1.3)

We prove here a more interesting result which explicitly indicates the dependence
of Im zn t. on the electric field strength F. Under the condition that resonant wells
at energy eQ are sufficiently far apart, we prove that there exists a resonance with
Re z0 tk — eQ + ίcFτ, τ the period of v and e0 the ground state of a single cell
Hamiltonian, for which there exist constants c, α > 0 such that

|Imz0JgαΓα/F (1.4)

for h sufficiently small. The bound (1.4) can be considered as an extension to
periodic potentials of the Oppenheimer formula for the lifetime of a state of the
hydrogen atom in a constant electric field F (cf. [H]). This dependency of the
width on F was conjectured by Avron [Al].

The results of this paper were announced in [CHI] and in the 1989 Brasov
Conference Proceedings [CH2].

Our analysis of Stark ladder resonances follows the general lines of study for
shape and Stark resonances. It is based on spectral deformation methods, multi-well
tunneling effects, and non-trapping properties of the potential in the semi-classical
(small h) regime. Shape resonances in the semi-classical regime were studied by
Combes, Duclos, Klein, Seiler [CDKS], Hislop and Sigal [HiSi], Helffer and
Sjostrand [HSjl], Sigal [Sil], and Briet, Combes, Duclos [BCD4]. Semi-classical
multi-well tunneling phenomena has been extensively explored in recent years and
we mention the work of Combes, Duclos, Seiler [CDS] in one-dimension and the
work of Briet, Combes, Duclos [BCD3], Simon [S1,S2] and the exhaustive
analysis of Helffer and Sjostrand [HSJ2-4] all for the multidimensional case.
Non-trapping estimates on resolvents play a key role in the proof of the existence
of spectral resonances in Stark and shape resonance problems. Originally developed
for complex exterior scaling ([K] and [BCD1]), general quantum non-trapping
conditions and related theorems concerning bounds on resolvents appear in
[Sil, DeBH, N, BCD4].

We mention two features of the Stark ladder problem which distinguish it from
the shape resonance and atomic Stark problems. First, the electron always
experiences the periodic potential t;. So, despite the force of the constant electric
field, it is a priori unclear that the electron moves off to minus infinity. That the
electron does eventually escape to minus infinity is the content of the non- trapping
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condition proved in Sect. 3. Second, it has been discussed (cf. [Al] and references
therein) that for small electric field strength F, the lifetime of Stark ladder
resonances is a sensitive function of F. Using the ideas of multi-well tunneling,
our analysis verifies this result (see Sect. 7). These fluctuations in the lifetime are
due to the fact that various potential wells become resonant or non-resonant as
F varies and this changes the tunneling probability and hence the lifetime.

There is a large physics literature concerning Stark ladder resonances and we
refer to [Al] for additional references. We mention in particular the work of Avron
[Al] on the width of these resonances. He discusses the sensitivity of the lifetime
to small changes in F and presents physical arguments for some of the results of
this paper. In an earlier paper, Avron and Zak [AZ] discuss the spectral
concentration for the Hamiltonian (1.1). They show in a solvable, single band
model that the spectral density

P(E) = -π~ * Im(H(F) - F - ΐO)-i

is a continuous function of F concentrated in the band. This indicates a type
of "stability of bands" for F > 0. Indeed, if the interband matrix elements of H(h,F)
are neglected, the spectrum of H(h, F) in each band subspace is pure point [A2]
(these eigenvalues correspond to the real parts of resonances). We also mention
the numerical work of Bentosela, Grecchi, and Zironi [BGZ] who compute the
lifetime of resonances for a semi-infinite lattice with a Kronig-Penny potential.
Their results are in agreement with the conjectures of Avron [Al] and results of
this work.

There are fewer rigorous results on Stark ladder resonances. Agler and Froese
[AF] gave the first proof of the existence of Stark ladder resonances for large F
(and not in the semi-classical region). Their proof is based on a Birman-Schwinger
principle and is quite different from our work. We mention that when F > || t/1| ̂
the potential wells disappear and our analysis no longer holds whereas [AF]
establishes the existence of resonances in this case. These must be located far in
the lower-half complex plane. Bentosela [B] obtained estimates on the long-time
evolution of e

itH^F^φ which suggest that the resonance width is at most linear in
F for small F. Nenciu and Nenciu [NN] pursued the analysis based on the fact
that H(h, F) restricted to the (F = 0) band subspace has pure point spectrum and
studied the perturbation given by the interband matrix elements.

During the course of our work, two other groups obtained results on (1.1) in
different regimes and using different methods. Buslaev and Dimitrieva [BD 1-2]
studied the asymptotics of (1.1) with h = 1 as F-»0. They obtain the existence of
ladders of resonances and an asymptotic expansion in F for the resonance width
whose leading coefficient is e~alF for some α > 0, which is explicit. Bentosela and
Grecchi [BG] have studied another slight variant of (1.1) in which they set h — ε/ι0,
F = εF0, and consider ε->0 with h0>0 fixed and F 0>0 fixed but sufficiently
small. In this limit, they obtain results on the existence and width of the resonance
similar to ours. Their approach gives rigorous justification of the tilted band
picture of Zener.

This paper is organized as follows. In Sect. 2, we describe the model and an
approximate Hamiltonian HQ(h, F). The Hamiltonian H (h, F) is considered to be a
perturbation of this operator. The non-trapping property of the potential
V = Fx + v is proved in Sect. 3. This requires the construction of a particular
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vector field /with support in the region where a classical particle with energy e0

behaves like a free particle. Analytic families of operators H^h.F) and HQί(h,F)
are constructed in Sect. 4 using this vector field / and standard spectral deformation
methods (see [Hz]). In Sect. 5 we prove a crucial resolvent estimate for ff0>ί(/ι,F),
Im t > 0, using the non-trapping result of Sect. 3. The existence of the Stark ladder
resonance is proved in Sect. 6 and the crude upper bound (1.2) on the resonance
width is given. Section 7 is devoted to proving the refined estimate (1.3) in the
case when the resonant wells are separated by a Euclidean distance (9(F~*). Finally,
we conclude with the two appendices. In the first, we sketch the proof of a decay
result on a localized resolvent based on [BCD3]. In the second, we discuss a
factorization trick (see also [BCD3]), which simplifies tunneling analysis.

2 The Model and Approximate Hamiltonian

We consider the Hamiltonian H(h,F) in (1.1) with /ι>0 and F^O satisfying
\\υ'\\ao>F^O. We write V = v + Fx for the full potential. We will occasionally
omit writing h and F for convenience. Also, we let c denote a generic constant
(independent of h) whose value may change from line to line. We assume the
following condition on v:

(vl) v, a real-valued non-constant periodic function with period τ, is the
restriction to 1R of a function v(z) analytic in a strip Sη = {ze(C||Imz| <η} for
some η > 0.

For F>0 and any e, let Sτ(e) = mm{x\Fx 4- v(x) = e}, the classical turning
point for energy e. Note that V'(ST(e)) ^ 0. We distinguish two cases: the threshold
case (TH) when V'(ST(e)) = 0, and the non-threshold case (NTH) when V'(ST(e)) > 0.
We will only consider the NTH case in this paper. (Of course, by varying F slightly,
this can always be achieved.) Let v0 = max v(x). For any e, let G(e) = { x | V(x) - e > 0},

X

the classically forbidden region for energy e.
It follows by an application of the theorem of Lavine and Faris [RSI] that

H(h,F) is essentially self-adjoint on CJ(R) for F^O. The following lemma
summarizes the spectral properties of H(h, F) for F ̂  0.

Lemma 2.1.
00

(i) F = 0, σ(H(Λ,0)) = σβc= U Bn> ™here Bn = {^βn} is the nth band and
n**l

a1<β1^oc2<β2^'" and <*! ^ max v(x).
JC

(ii) F>0,σ(H(h,F)) = σαc = R.

Proof. Results (i) is standard; cf. [RS2]. For F ̂  0, this is a result of [BCDSSW]:
d

σsc(H) = 0 is proved using Mourre theory [CFKS] with conjugate operator A = —

and a clever compactness argument; σpp(H(h9F)) = 0 follows from a theorem
in ODE's; eess(#(h,F)) = R is demonstrated by constructing a Weyl sequence by
the WKB method for each ΛeR. Π

We now introduce our approximate Hamiltonian #0(/ι,F). We will always
consider F>0 fixed and F<\\v'\\ao. Let V0 = K|[s,s + τ), where 5 is any value
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such that v(s) = v0. By a unit cell of K, we mean any interval of the form [5,5 + τ].
We extend K0 in a continuous, monotonically increasing manner to a potential
V0 on R such that lim K0(x) = + oo and K0(x) = 0(|x|). Let Λ0 = h2p2 + V0 on

|x|->oo

L2(R), /? = — i—, so σ(h0) is discrete and all multiplicities are one. The operator
dχ

h0 is a single-cell Hamiltonian. Let e0 be the lowest eigenvalue of h0. In the
semi-classical regime of small h,e0 is insensitive to the extension of V0.

We define Sτ(e0)9 the classical turning point for particles with ene.rgy eθ9 by

Sτ(e0) = min {x\Fx + v(x) = e0} (2.1)

for the NTH case. We fix the energy scale and the x-coordinate by choosing (via
a linear change of coordinates) x = 0 to be s + τ, where s is any point satisfying
v(s) = v0 as above; then F(0) = v(0) = vQ. The number of unit cells between x = 0
and x = Sτ(e0) < 0 is given by

N = l(vo-e0)(Fτn (2.2)

where [α] is the largest integer less than a.
By the continuity of V, for any εl>0 sufficiently small, we can choose

0 < f/ i < η2 sufficiently small such that (V — e0)\[5T + fh,SΓ + f/2] > £i(more
conditions on ηt will be given below). Let W1 =(— oo,5Γ(β0)4 ^2]» ^2 =
[SΓ(£0) + f y l 9 oo) and Ω=WinW2. (See Fig. 2.1.) We define a symmetric operator
/f!(A,F) on L2(WJ with domain C^ίW^) by

(H,(h,F)g)(x) = (h2p2 + Fx + »(x)te(x).

It is easy to check that /f j is limit point at — oo and limit circle at ST + η2 and
hence has defect indices equal to one. We define H^h.F) to be the self-adjoint
extension of H1 with Dirichlet boundary conditions at x = Sτ 4- τ/2

 on ^-2(^ι)
We extend K|W 2 in a continuous manner to potential V2 on 1R such that

V2 = @(\x\) and F2->oo as x-^-oo and for some ε2>0, ε 1 ^ε 2 >0,
(f2 — ^o)l(—°°>SΓ + ι/ι)] >ε2 >0. Let H2(h,F) be the self-adjoint operator on
L2(R) with symbol A2p2 4- F2 and core C*(R); σ(H2) is purely descrete and each
eigenvalue has multiplicity one.

Ω

Fig. 2.1. The Stark ladder potential V and regions J^, W2 and Ω
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The approximate Hamiltonian HQ(h,F) is defined to be the direct sum
Hl(h,F)®H2(h,F) on the Hubert space Jt?Q = L2(Wι)®L2φί). It follows as in
Lemma 2.1 that σ(H0) = R for F > 0 and that //0 has infinitely many embedded
simple eigenvalues. We need an estimate on the spacing of the eigenvalues of H2

below the energy K(0) = ϋ(0) = t;0.

Lemma 2.2. Let e0eσ(h0) as described above. Then there exists an interval
/ = [/~,/+] such that e0el and ifF>0, we have dist(/±,σ(//2))> cFh2+εfor any
ε>0, and a(

Proof. Let N be the number of unit cells between x = 0 and x - Sτ(e0) as given
in (2.2). For each cell located in Ik = [ - fcτ, - (fc - l)τ], fc = 1, . . . , N - 1 we define
a single^cell Hamiltonian hk as follows.

Let Vk =/y\Ik

 an<i extend Vk in a^continuous monotonically increasing way to
a potential Vk on R such that lim Vk(x) = oo and Vk(x) = 0(\x\). We can arrange

things such that

F f c=F 0-fcFτ, /c = 0,...,N-2, (2.3)

where V0 is defined above. For the Nih unit cell, let ί^-i be a potential on JR.
such that ΪV j |( - QO, SΓ(e0) + ιj2] = K2, 7N_ 1 1 [ST(?0) + ̂ 2, -(ΛΓ - l)τ] = V9 and
KN_ j is monotonically increasing on [-(AT — l)τ, oo). Let ϋfc = h2p2 + Ffe on L2(R).

It follows from (2.3) that σ(hk) = σ(fc0) ~ fc^τ, fc = 0, . . . , N - 2. Let Nk(v0) be the
number of eigenvalues of hk below v0. By the Bargman bound [RS2], we obtain:

Nk(vQ) £ ch ~ 2τ2(v0 + kFτ), k = 0, . . . , TV - 1

N-l J V - 1

for some c> 0. Letting H = 0 ^ on 0 L2(R) we obtain the number of eigen-

values of H below vθ9 N(v0):l~° ί = 0

ΛΓ(f?0) ̂  c/ϊ"2τ2(Nu0 + ±N(N - l)Fτ)

^Φ2^)-1, (2.4)

where we used (2.2) and the fact that τ is independent of h and F. Now suppose
there are no points /* as in the lemma but for H rather than H2. This implies that
for energies less than v0 the spacing of eigenvalues for H must be less than \cFh2+ε

for any ε > 0. This implies a lower bound on N(v 0) given by:

cF-^h-(2+E}^N(v0) (2.5)

which, for all h sufficiently small, contradicts (2.5). Finally, we note that by [BCD3],
the existence of an interval / = [/~,/+] about eQ satisfying the properties of the
lemma for H implies the existence of an eigenvalue e0 in / for H2. Moreover, the
width of the gaps, distJσ(H2) π /, σ(H2)\/), shifts at most by a small 0(exp ( - ch~ x)),
c> 0, from that for H. This proves the lemma. Π

Note that the total multiplicity of σ(H2)nI is the same as σ ( f ί ) n l [BCD3],
which is finite. Let Yd be the smallest closed interval suchjhat σ(H2)n/c Y.
For later use, we call a unit cell Ik resonant at energy e0 if σ(hk)r\ Y Φ 0.
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3. Non-Trapping Property of the Potential

We assume that v satisfies conditions (vl) and we consider a non- threshold energy
e, i.e. one for which V'(ST(e))>Q. By continuity, there exists a small interval
/o = [/o » Jo ] 3e such that v'(sτ(E)) ^ η > 0 for all £e/0 and some η > 0. We prove
that the potential V = v + Fx with F>0 is non-trapping for all energies in a
possibly smaller interval I0 about e on ( — oo, Sτ(e) 4- c>0], where <50 > 0 is determined
below. We use the formulation of quantum non-trapping due to [BCD4] (see also
[DeBH, N and Sil]).

Definition 3.1 A potential KeC1^) is non-trapping at the energy E and on the
region Ω c 1R if there exists ε0 > 0 and a vectorfieldfeC1^) such that for all xe/2,

SE(f, x) = 2f'(x)(E - V(x)) -f(x)V'(x) ^ ε0 > 0. (3.1)

Theorem 3.2. Assume that v satisfies (vl) and that F>Q. Let e be such that
V'(ST(e)) > 0. Then there exists an interval I0^e such that for any £e/0, there exists
a bounded vector field /eC°°(R), depending on E, withf bounded, /:R->R~, and
constants <50,ε0 > 0 such that for any £e/0 and xe(— oo,ST(e) + (50]:

)^ε0>0. (3.2)

Moreover, supp / c (— oo, Sτ(e) + δ1'], S1<η1 (defined in Sect. 2).

Proof. We define two vectors fields /\ and /2. Let 70 = [/^ ,/Q ]a^ be as above.
Let x0 < SΓ(/Q ), x0 will be ίϊχed below, and for £e/0 define for x < x0:

f1(x)lE-V(x)r112 J φJCfi-Kίs)]-1^ (3.3)
^ ST(/Q)

for any real bounded function α(s) > 0. We also define

/2(x) = x (3.4)

(recall that x = 0 is fixed in Sect. 2). Note that fί and /2 are non-positive for x < 0.

The vector field / has the form / = £ g ifi for a suitable pair of functions 0^0/^1,
i = l

i= 1,2, satisfying gι+g2 = l on (— oo,ST(/o )-h<50], where 50 is defined below.
Upon computing the virials (3.1) for /,., we obtain (dropping the subscript E which
is fixed):

x) = α(x), (3.5)

S(f2,x) = ~2(F(x) - E) - xF(x), (3.6)

and

2

S(f, x) = Σ gfcWfi, x) + Ax), (3-7)
i = l

where <ί(x), the error term, is given by

£(x) = 2(E - V(x))g'2(x)(f2(x) -/,(x)). (3.8)

By the assumption on /0, we can find a possibly smaller interval J0 = [/ ~ , l£
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• o
• e

x0 Sτ(l + ) ST(I0

+)
σι Sτ(e) Sτ(e) + σ2

Fig. 3.1. Geometry for construction of the vector field /

taking |/0| sufficiently small) and σ l 5 σ2 > 0 such that for some ε^ > 0 and £e/
0,

e) - σi, ST(e) + σ2] ̂  fil/2,

e) - σl9 Sτ(e) + σ2] ̂  ιy/2

and σ2<ηl (defined in Sect. 2). We choose x0 such that Sτ(e) - σ^ < XQ < ST(I~)
and g2eC*(JR),0^g2^l such that suppg'2cιlSτ(e)
where σ2 < δv < ηΐ9 and g2\\_xQ,ST(e) + σ2] = 1. Then ^x is fixed by the condition
that 0! + g2 = 1 on (— oo, SΓ(e) + σ2] (see Fig. 3.1). Consequently, for any α(x) ̂  0,
the summation term in (3.7) satisfies the bound:

(3.9)

It remains to show that we can choose a(x) such that (3.9) is strictly positive
and such that ^(x)>0 on (- oo,Sτ(e) + σ2]. By construction of 02,supp0'2n
(- co,ST(e) + σ2] = lST(e) - σ l5x0]. In this region E - V(x) > 0, EeI0,g'2(x) ^ 0,
so it suffices to choose a(x) such that f2(x) - f^x) ^ 0 on this region where

£(Sr(*)-*ι) + l/ιMIi W I (3.10)

(3.11)

(3.12)

(3.13)

on [Sτ(e) — σ l 9x 0] where κ>0. Hence we choose cί = κ~'1\Sτ(e) — σl\ so by (3.8),

We choose a(x) such that

a(x) = α V'(x) ^0, α > 0

for xe[ST(e) — σ1?5Γ(/Q )] and such that

a(x)-*a0>0

as x-> - oo. It then follows from (3.3) and (3.11) that

E-I- Y/ 2
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(3.10), and(3.13), (f (x)>0. Moreover, on [Sτ(e)-σl9Xo],min(a(x)gί(x) + (ε/2)g2(x))
is strictly positive, thus, the lower bound on S(f, x) follows from (3.9), (3.11)-(3.12).
Finally, we take δ0 = σ2. Π

4. Spectral Deformation

We construct analytic type A families of operators associated with H(h, F) and
Hι(h,F) (and, consequently, H0(h,F)) using the vector field constructed in Sect. 3.
The method of spectral decomposition using the flows generated by smooth vector
fields was developed in [HiSi and Si2]. Here, we use an infinitesimal version of
the theory due to Hunziker [Hz].

Let /:R-*R~ be the vector field constructed in Theorem 3.2. We recall that
/ depends on E. For ίeR, consider the map α^R-^R defined by

<%,(*) = * + */(*). (4.1)

Because supp/c(— oo,SΓ(e0) + £ι]» αt leaves W\ and W2 separately invariant.
Note that OLt\W2 is the identity map. The map αf is a C^diffeomorphism of R for

/ \-ι
|f 1 < M15 where M! = max|/'(x)l . We define an operator I/,, ίeR and |ί| <M1?V χ*R )
on L2(R) or L2(W1) as follows (we use the same symbol to denote either operator).
Let Jt(x) be the Jacobian of α,:

Jt(x)=l + tf'(x). (4.2)

For 0eC£(R) or C£(HΊ), let

Jt(x)ll2g(*t(x)). (4.3)

Since Jt(x)^0 for | ί |<M l 9 it is easy to show that Ut extends to a unitary
transformation on L2(R) or L2(W1) for |i|<M!. Similarly, we define Ut on
^0 = ̂ 2(^ι)®L2(R)by

Ut(u@v)= Utu®v.

Then Ut9\t\< M1 extends to a unitary operator on J-f0; again, we write Ut for Ut

for simplicity.
Since /eCfc°°(R), Vt,\t\< M1? preserves the core CJJ>(R) of H(h, F) and the core

of H i(/ι, F) in L2(Wl). By a simple calculation, if pt = UtpU~ l = J~ 1/2pJ~ 1/2, we
obtain:

= pJ-2p + Gt, (4.4)

where G,eC*(R) for |ί| < M t is given by:

G( = i(JΓ3^)' + έW2)2- (4-5)

We define distorted Hamiltonians for ίelR, |ί| < Mj on domains CJ(IR) and C1;


