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Abstract. As a start in a search for possible undiscovered anomalies which might
break supersymmetry, a general calculation of BRS cohomology for the Wess
Zumino chiral multiplet is performed. The calculation is done using spectral
sequences in Fock space. It encompasses the vector space of all integrated local
polynomials in the fields and their derivatives. This calculation shows that the BRS
cohomology space contains an infinite number of polynomials with ghost charge
one. Examples of these polynomials are given. AH presently known examples
possess uncontracted Lorentz spinor (and possibly vector) indices. A simple
extension of these results to super Yang Mills theory indicates that there may be
previously unnoticed anomalies in that theory.
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Part I. Introduction

1. Discussion

Supersymmetry [6] is an appealing symmetry with some remarkable properties. It
plays an important role in the only known way to reconcile quantum mechanics
with gravitation - the superstring theory [5]. However little basis for comparison
of supersymmetric theories with experiment has yet materialized. The basic reason
for this is that it has not been found possible to understand the breaking of
supersymmetry in a well motivated way. There is little uniqueness in the known
possibilities.

The hope that motivates the present paper (and some others in preparation), is
that there may exist supersymmetry anomalies that have not yet been uncovered
and that these may be useful in unravelling some of the currently outstanding
problems such as the origin of symmetry breaking and "dimensional reduction" in
the superstring, and the origin of the huge mass splitting between weak and
gravitational interactions. Of course it would not be surprising if the correct
application of such anomalies turned out to be something quite different. At any
rate it seems worthwhile to see whether any such anomalies exist, and to examine
their properties if any are found.

It is well known that the invariants and anomalies in all gauge theories can be
classified as elements of the cohomology space of the BRS operator acting in the
space of local integrated polynomials made from the fields and their derivatives



BRS Cohomology of the Chiral Superfϊeld 171

[1]. The anomalies are the elements in the cohomology space that have ghost
charge ^ equals to one (or possibly higher [4]). The cohomology of the BRS
operators in Yang-Mills theory and gravitation is known [2]. There are a finite
number of polynomials in the ^ = 1 part of the cohomology space and most or all
of them correspond to anomalies in the theory. The coefficients depend on the
details of the theory. These anomalies are all of low canonical dimension.

It has generally been assumed that making a theory supersymmetric does not
materially change the anomaly structure of the theory. It has been expected that
anomalies in supersymmetric theories would be simply the old anomalies put into
supersymmetric form somehow. This expectation is based on results which have
been obtained for some specific theories and dimensions. For example the
renormalization of the action for supersymmetric Yang-Mills theory in four
dimensions has been shown to be afflicted by no new anomalies beyond the well
known chiral ones in a supersymmetric form [10]. However it is not known what
happens for other supersymmetric operators which have higher dimension. The
situation for supersymmetric theories in more then four spacetime dimensions is
even more unexplored.

Why take an interest in operators of dimension other than the dimension of the
action? The simplest reason is that the problem is naturally solved using the
present method in this general context. Another reason is that these operators
occur in the operator product expansion and in the effective (non-renormalizable
in appearance) field theories for gravity and supergravity. In turn these are the
effective field theories in the zero slope limit of string and superstring theories [5].

Hence this gives a way to anaylze the superstring for supersymmetry anomalies.
Recall that the gravitational anomalies for the superstring were first found by
analyzing the effective supergravity theory limit. Such an approach is useful
because we don't understand either Lorentz invariance or the action for
superstring field theory very well. The present paper is intended to be the first in a
series which will examine a number of these theories from the point of view of BRS
cohomology.

The only known way to determine whether all the anomalies in these theories
have been found is to compute the relevant cohomology space and rely on the BRS
analysis to deduce that there are no anomalies if the cohomology space is empty. If
the cohomology space is not empty, then one should calculate the Feynman
diagrams that correspond with the objects in the cohomology space to see if there
are anomalies in the theory. In other words the cohomology space tells one where
to look for anomalies.

In [2], a method was described which permits the computation of the local BRS
cohomology of any BRS operator. That paper was devoted to a complete
description of a specific theory - the S0(32) Yang-Mills theory in ten spacetime
dimensions, which was chosen for analysis so that all the details could be described
in a straightforward way. The description of [2] was complete in the sense that all
local polynomials in the fields and their derivatives of all orders were included in
the space that was analyzed.

This paper is devoted to a detailed examination of the local BRS cohomology of
the Wess Zumino chiral multiplet [11] using the Fock space and spectral sequence
methods of [2]. It is quite difficult to analyze the cohomology space of a field
theory in this general way. That is why the simplest example of a supersymmetric
theory has been chosen for this first attempt. It turns out that theories of the Wess
Zumino type in less than four dimensions are rather trivial for present purposes.
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This can be established easily for simple models using the techniques in this paper.
The basic reason for the difference seems to be that 4 dimensions admit complex
chiral spinors, whereas lower dimensions do not. Of course we are not talking
about the string theories here. However the four dimensional Wess Zumino model
is certainly far from trivial.

2. Action and Supersymmetry Invariance

The (free quadratic) action for the Wess Zumino chiral model is:

F2-G2-\, (1)

where A and F are scalar fields, B and G are pseudoscalar fields and ψ is a
4-component real anticommuting (Majorana) spinor field. Conventions and some
useful formulae can be found in Appendix B.

This action is invariant under the following supersymmetry and translational
transformations:

(2)

μ 9 (3)

+ [F + Gy^c + εμδμψ, (4)

, (5)

. (6)

Here c is a constant (spacetime independent) commuting Majorana spinor and εμ

is a constant anticommuting Lorentz vector. If we add the variations:

δεμ=-cyμc, (7)

δc = 0, (8)

then the variations acting on any field (counting ε̂  and c as constant fields) satisfy
the relation:

(52 = 0. (9)

It will be assumed in the following that the reader is familiar with the methods
and results of [2]. See Appendix A for a review of basic results and notation. Recall
that there are two spaces of local polynomials: the integrated local polynomials L
and the unintegrated local polynomials P, and that these are related by the
isomorphism between L and the factor space of Pmod total derivatives:

LπP/dP. (10)

Now clearly the operator δ given by:
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is nilpotent when acting in the space L, because its square is proportional to the
derivative operator and the integral of a total derivative in L is taken to be zero.

The corresponding operator in the space P is:

dμψ)-?-

μ ^ dμG)M -cyμcεl (12)

and the cohomology space HL of (11) in L is isomorphic to the cohomology space
HP of (12) in P. The proof is exactly like the proof given in [2]. The remainder of
this paper is devoted to an analysis of the cohomology of these operators in their
spaces and to the isomorphism. As was done before, we analyze the cohomology of
(11) by solving that of (12).

3. Remarks about Superspace

It might be thought that the superspace techniques that have been so successful in
contructing and classifying the invariants and performing Feynman integrals for
supersymmetric theories would be useful to the present problem. This is no doubt
true. However I have not been able to use them yet in the actual solution of the
cohomology problem. More accurately, an attempt to use superspace with the
present method just results in the results recorded here. Taking derivatives with
respect to an anticommuting Majorana spinor θt is just equivalent to using the
various fields A9 B, ψ9 F, G from the beginning.

Another problem with using superspace techniques here is that they depend on
an anticommuting Majorana spinor et and we are concerned with a commuting
Majorana spinor cx. The useful feature of the anticommuting spinors is that
products of a sufficient number of them eventually are zero. This is of course not
true for a commuting spinor. The possibility of solving the problem in a simple way
using superspace is a very real one, but it seems easier to use a more pedestrian
approach for this initial attempt.

It will be clear however that once one knows something about the solutions of
the cohomology problem, then superspace techniques are a natural way to
construct those solutions.

In many ways it would be better to use a chiral complex notation instead of the
present real notation. The results turn out to be chiral in nature. However, the
present method is certainly equivalent and may well be the only way to solve some
problems, such as D = 10 super Yang-Mills.

A superspace method of doing BRS cohomology can be found in [9]. This
paper has sometimes been interpreted to mean that the local BRS cohomology of
supersymmetric theories must be trivial. However this interpretation is not correct
for two reasons. One is that the methods of [9] are not applicable to chiral fields
since the integral over d*θ of a chiral quantity vanishes even though the chiral
quantity itself does not vanish. The other is that no treatment of combined gauge
and supersymmetry BRS invariance is attempted in [9], and the BRS cohomology
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of a combined operator is related to the BRS cohomology of one of its components
in a very complex way - this is what gives rise to the spectral sequence.

4. Quick Review of Procedure

The techniques used in this paper were introduced in [2]. Here we shall find that
the spectral sequence involves only a few steps. The steps necessary in the present
case are:

• Choosing a grading that generates a useful spectral sequence.
• Calculating Δo and putting it in a useful form for the calculation of its Kernel.
• Constructing the projection operator Πi onto the space £ x which is the Kernel
oϊΔ0.
• Observing that Eί=E2 because c^ =0.
• Finding suitable relations involving d2 that make the calculation of Δ2

reasonably easy.
• Finding a form for Δ2 which makes the form of its kernel fairly transparent.
• Observing that dr = 0 for r ^ 3 which implies that

where H is the cohomology space that we want.
• Describing the polynomials in E^ and the corresponding integrated poly-
nomials in the isomorphic space H.

5. Remarks about δ

As was remarked in [2], it is easiest to analyze the cohomology of the operator in
P. That is our object in this paper. First let us introduce some notation:

μcyμcεl (13)

where:

and:

The most obvious thing to try at the beginning is to simply calculate the
operator:

(16)

and try to find its kernel.
This is the required cohomology space of δ. However the resulting form of Δ is

complicated, and it is not easy to find a form for it that consists of a sum of simple
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operators Ot of the form:

A=ΣOiOJ (17)

which would result in the equations:

0}H = Q. (18)

Since we do not find such a form, it is very difficult to characterize the solutions
of AH = 0. The same problem occurred in [2] of course, and this calls for the use of
the spectral sequence.

6. A Grading Operator and its Spectral Sequence

A grading N that yields a useful spectral sequence is the following:

N = CiC} + ft, (19)

where we define (for future purposes):

—\-2ψι \-F \-G— . (20)

Sometimes we will use the notation:

Γ Λ 1
(21)

The operator δ now splits up as follows:

δ = δo + δ2, (22)

where the operators δt satisfy the equations:

ίN9δ^ = iδt. (23)

The detailed form of these operators is as follows:

5 0 = c ^ + ^ , (24)

δ2 = ciVi-cyμcεl9 (25)

where the operators A and V are defined above. The feature that makes this N a
useful grading is that At contains no derivatives. This makes a calculation of Δo a
reasonably easy task, which will be accomplished in the next section.

Part II. The Space Ex

7. Calculation of Ao and Equations for Et

The operator (50 is our first concern, and we need to calculate
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from it as usual. A straightforward calculation of this operator using the usual
notation of [2] yields the result:

oo X

^ o = Σ 77'
k o /c!

] μ μdl. (26)

This result can be obtained by noting that:

Ao = cf){Ab A]} + Λ]Aj + β" V[3J, dμ-] + dμdl, (27)

and then evaluating the anticommutator using the Fierz transformations to
rearrange the spinorial parts so that they are manifestly a sum of non-negative
operators. An operator analogous to Nx appeared in [2]. Nx is defined by:

(28)

Since the above expression for Ao is a sum of non-negative operators, the
subspace E1 = KeτA0 satisfies the following equations:

(29)

(30)

(31)

(32)

(33)

(34)

(35)

j (36)

Commuting (or anticommuting) the operators appearing in these equations
does not generate any new equations, but commutation of the operators in
Eqs. (33) and (34) does suggest a new form which is equivalent to Eqs. (30)-(32) (the
equivalence can be demonstrated by contracting the free spinor indices (ίj) below
with the complete set of 7 matrices):

[Vίμ1μ2...μΛ-Vpμ1μ2...μk(75)pi(y5)jΛ] t£1=0. (37)

8. Ghost Degree, Form Degree, and Dimension

In the corresponding calculation for Yang-Mills theory at this point it was possible
to solve the equations for Ex and for E2 in a general way using simple algebra and
the known results concerning the cohomology of the classical Lie algebras. It is not
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very easy to write down the general form of the solution of the equations for E1

above. The problem is harder than the corresponding problem for Eί or for E2 in
Yang-Mills theory.

Nevertheless the problem can be solved and the solution is presented below.
Here we shall mention a few operators with nice properties that will be useful in
classifying the solutions.

Note that the following set of equations generate all the equations for Eγ\

O, (38)

(39)

(40)

since the commutators such as:

generate all the fields with more derivatives, and the commutator of Ai and the
operator in (33) generates Eq. (37) which is equivalent to Eqs. (30)-(32); and then
the anticommutator of Λt and the operator in Eq. (37) generates Eq. (29).

The process of searching for the general form of the subspace Eγ can be made
systematic to some degree by noting the existence of the following operators and
commutation relations:

IN19S]=O, (43)

[A £1 = 0, (44)

DM] = <5, (45)

l&9δ]=δ. (46)

Here Nί is the operator defined in Eq. (28), D is the dimension operator with the
following assignments of dimension: c: — \, ε: — 1, A: 1, B: 1, ψ: §, F: 2, G: 2, d: 1,
x: — 1 & is the form degree operator, and # is the ghost degree (sometimes called
ghost number or charge) operator:

^ = <yί + βμfiί, (47)

<$ = cic} + εμεl-4 = &'-4. (48)

For the grading chosen below, all polynomials of interest will have N(ε) = 4, so that
in the spectral sequence that we use we will have 2F = N(c) + 4 and ^ = N(c). D can
be written in Fock space form as follows:

(49)

where D(f) is the contribution due to the fields and has the form:

(50)
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The relations above give rise to the following relations for the operators dr of the
spectral sequence:

[iV1?dr] = 0, (51)

[A^] = 0, (52)

ί^dr] = dr, (53)

and of course there is the relation

ίN,dr-]=rdr. (54)

Hence one can look at the sectors of fixed JV\ and D when examining the spaces H
and Er and the operators dr. First we note that Eq. (40) is easily solved. Its solutions
have the following form:

c^ (55)

where:

(56)

Here Pί are polynomials dependent on the variables indicated and no others. The
part Pι[c, ε] which is independent of the spacetime dependent fields A, B, ψ, F, and
G is of no interest at present and its form will be ignored in this paper.

Another way of writing this result is:

E1 = lΠNi>0Πε=0 + ΠNί = 0-]PlΛ,B9ψ9F,G,d,c,ε], (57)

where the projection operators Πε=0 and ΠNι = 0 are projection operators of the
general form Πx=0, which we define to satisfy the relations:

(58)

as well as the usual relations satisfied by an orthogonal projection operator:

Πx=o = Πx=o = Πx=o. (59)

The projection operator ΠNί > 0 is of the general form Πx > 0. All operators X which
will appear in these expressions are hermitian and non-negative, so that this
projection operator can be defined by:

Πx=0 + Πx>0 = l, (60)

where 1 is the identity operator in the Fock space.
An explicit form for these operators in terms of the Fock space operators will be

given below.
Clearly the ε dependence of the interesting part of E1 is trivial and the problem

now reduces to finding the general solution Px of the following equations:

i = 0 , (61)

(62)

(63)
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9. Projection Operators Π1 for the Space Et

9.1. A Useful Form of the Equations for E1

There is a myriad of ways to write these equations and some ways are more useful
for some purposes. The form given above is manifestly a sum of positive definite
terms. The following form is useful for deducing the projection operators Π1 that
project onto the space Et:

^ # 1 = 0 , (64)

0, (65)

jO, (66)

N^-ε/JΠ^O, (67)

where we define the operator Q by:

Q = {NίN'1-NίN'ί}Π1. (68)

Equation (65) above is equivalent to Eqs. (29)-(33) and can be obtained from
them using rearrangement and Fierz transformations. The operators in 68 are
defined below.

We already know the solution for (67). It turns out that we can construct the
total operator Πγ as a product and sum of simpler projection operators. The first
task will be to find an operator to solve the A equation, and this will be done in the
next section.

9.2. Examination of the A{ Operators

By writing out these operators in components, using the representation of the y
matrices given in Appendix B, we find:

oo I

1 ~~ ΣJ ~j^y-~

(69)

L j^\-Ψ3μιμ2...μk

"T" Γ μ i μ 2 ...μkψ2μίμ2...μk

oo \

"•" μιμ2">μkψ3μiμ2 ' μk~~^Jμ].μ2 μkΨ'Lμ\μ2 μkl '

00 1

y x 4 La 1 j LΨlμίμ2...μks
χμ1μ2...μk ΎZμχμ2...μkXJμ\μ2-~μ

' Γ μ1μ2...μkΨ4-μιμ2 ' μk~' ^ μιμ2 ••• μk^P 2μιμ2... μk-i >
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where the first index i on ψiμiμ2 μk is the spinor index in the column spinor:

(73)

These operators and their adjoints obey the following algebra:

{ΛbΛj} = 09 (74)

{A}, Λj} = δijNί + (y sXj iVΊ, (75)

where N1 was defined in Eq. (28) and Nί is defined as follows:
00 1

Ni= Y —[A B1 -B A1

k = o /c!

00 ^

~~ 2J Ί7\\-J^μιμ2...μk μiβ2...μk~~ ^fίιβ2...μk^μ\μ2...μk

μp\y5'ijΨjμιμ2 ...μh

F f - F Gf 1, (76)
t i t JU1 i i2 Mfc MlM2 Mfc ̂ ^̂  M lM2 PΊc-^ ' V /

and we note that:

JV^-iVί, (77)

ΛΓ^Nί, (78)

and we also note that:

[4, #!] = (), (79)

[^.j7V1] = 0, (80)

[ΛΓ 1,N 1]=0. (81)

9.3. The Projection Operator ΠΛ=0

With the help of the foregoing, we can construct the orthogonal projection
operator onto the subspace satisfying the equation:

Λ = o = ΛiΠΛ = o = 0. (82)

It is

where the non-negative hermitian operator T is defined by:

(84)
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An illuminating way to see that Tis non-negative is to write the operators in the
form:

(85)

j?. (86)

Here i, j = 1,2 (not to be confused with a spinor index) is an index that distinguishes
the fields in each "pair"

(A, B; G, F; ψ^ψύ ψ2, ψ4) (87)

from each other and the index a, b distinguishes the different pairs of fields from
each other and also summarizes all the other indices (μx ...μk). It is then an easy
exercise to show that T is non-negative using the simple identities:

Zifiki = δikδji-δnδ}k- (88)

The projection operator ΠΛ=0ΛT>0) has the form:

Π
 Λ Λ Λ

+ ψ A\A\A\A\A^AZΛ2A1, (89)

where the generalized inverse operator — = 2 | ~τ2 is defined to satisfy

1

We shall not need the explicit form of this operator in the following, and will just
leave it in the form given.

The other projection operator is:

(91)

(92)

The demonstration that this latter operator satisfies the necessary equations uses
the fact that:

Luz = AMAxAsy

satisfies the identity
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when T=0 and since Lx 3 is the square of a hermitian operator of the form OO\ it
entails that 0 itself is zero:

when T=0. Similarly one finds the identities (valid when Γ=0):

iV1[^1^ί + ̂ 3 4 ] = iV 1 [^34-^i^ t 3] (93)

and

f t . (94)

A similar argument works for L2Λ etc. and we note from 75 that L 1 3 and L2Λ

commute.

9.4. The Projection Operator Πτ=0

We will not need this explicitly, but we indicate briefly how to construct it. What
one does is write N1 and Nί in the form:

N1=M (95)

and

#!=/*«//, (96)

and then one sees that:

T=Nl + Nl = N0ι2 + N2,0, (97)

where we define:

Then the projection operator has the form:

k,p = O

where the coefficients can be calculated by the requirement:

TΠτ=o = 0 (100)

plus the requirement that the operator be the maximal projection operator that
satisfies these equations. There is no doubt a more elegant way to write this, if the
need arises.

9.5. The Projection Operator ΠQ=0

In order to construct the projection operator for the subspace Q = 0, we proceed as
follows: The operator that occurs in Sect. 7 can be written in the useful form:

N1N'1-N1N'ί, (101)
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and we also define the operator

<2s = Φ5)kic) {Λb Λ)} = NγN\ +ft1N
r

1, (102)

where we define:
N'^cd, (103)

^ (104)

If we assume that we are already in the subspace generated by ΠΛ.=0, then it is easy
to see that we require the equations:

0, (105)

fi 0, (106)

and that these imply the equations:

QE^QsE^O, (107)

which in turn imply the relations:

= 0, (108)

O, (109)

and this means that we can write:

(110)

= 0,(Λ = 0)= ) ^Ni = 0 + ΠNI >OL^NΊ = ()ΠΛ = 0

1 Γ N N' Ύi

and this is the relevant projection operator.
Let us now introduce the abbreviations:

/ = | , (in)

fit'
<3Γ AT' '

which are meant to summarize the fact that these operators act like the square root
of (—1) in our Fock space once it has been projected onto Ev / and f will
frequently appear in this role below. We also note that

(113)

9.6. The Projection Operator ΠT = Q

It can be verified using the Fierz transformations that the following identity holds:

where we use the notation:

vμ = cyμc. (115)
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Now we observe the identity:

v y = %δμv [1 + JV'J + 4c/y oy V + ty J, (116)

and using this we see that the projection operator can be written:

Πτ=o= Σ a2kM2k, (117)
k = 0

where

M o = 1 ' (118)

k = lvμιvμ2... υμj lυμίvμ2... vμJ
t (k^ 1),

and

9.7. The Projection Operator ΠNί = 0

The construction of this operator was given in [2] but will be repeated here for
completeness:

Π*1=o=jo^ΛΓ*, (120)

where for any relevant set of fields φt and their adjoints φj,

(121)

ΦikT- (122)

It is easy to see that:

NM^kNi + N^, (123)

and this enables one to show that

^ 7 7 ^ 0 = 0, (124)

which is the desired property for the operator.

9.8. The Projection Operator ΠNl = q

This is easily constructed from the above:

ΠNi=q = lΦiιΦh...φiq]ΠNι=olφilφi2...φiqT, (125)

and it satisfies

N.Π^^qΠ^,. (126)

Let us also note that

(127)
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and

ΠNι>q= Σ ΠNl=k. (128)
k = q+l

9.9. The Operator \/Nι

Frequently we need the operator

τ j - = Σ <hffk (129)

which satisfies the relation:

-ί-IV^l-Π^o^.fWo. (130)

This set of equations define the coefficients ak. The first few values are:

βi = l , (131)

α 2 =-i (132)

α3 = ΐέ, (133)

aA=-ϋs. (134)

We do not need the general form, or indeed any of the coefficients for present
purposes. They are given here just for an example of how things work. In practice

we leave this operator in the form — which is easiest to work with. It should be
^ 1

noted that if one does not think carefully, it is easy to start generating this series
(usually mixed in with other things) without realizing what it is, and that can lead
to considerable obfuscation of simple results.

9.10. The Projection Operator for the Subspace where dμ3j = 0

One of the equations for the subspace Π1 is:

( 5 ^ = 0 (135)

and the projection operator that satisfies this equation is:

1 ^ , (136)

which in full is:

tf*t=o= Jo { ^ [ U Γ V L - W , (137)

where the term with fc = 0 is defined to be 1. This is easily seen to satisfy the
Eq. (135) using the identity:

[3iA] = M T i , (138)

which was used in [2] and also to establish 26.
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9.11. The Projection Operator Πε

The orthogonal projection operator that projects onto the space of polynomials
proportional to Tε

4 is:

i7 ε =Γ ε

4 [T ε

4 ] t . (139)

9.12. The Total Projection Operator i71 = i72

We have now constructed all the operators necessary to project out all the
solutions of the space Ev This total operator is:

^ i = ^ N 1 = o + ^iv1>o^ε=o^at=o

i Γ T Γ T J T Γ T IT \ (i A(X\
' λ l N\> 011 T = 011 T = 011 Λ = O,(T = 0)11 Q = 0, (Λ = T = T = 0)1 J V 1 H Λ J /

and the equation:
ί 7 1 = i 7 2 (141)

holds because the operator dγ must be zero as a consequence of the fact that δγ is
not present in the decomposition of δ in Eq. (23), so that

d t = 7 7 ^ 7 7 ! = 0 . (142)

Now we are ready to proceed to the calculation of d2, A2 and the spaces E3.

Part III. The Space E3 = EO0

10. The Operator d2

The operator δ2 was written out in Eq. (25) above and the operator d2 is defined by:

d2 = Π2δ2Π2. (143)

From the previous section we know the form of Π2. It is useful to note the following
identity at this point:

[(52?iV1] = 0 (144)

and indeed the more general equation:

[<5,iV1]=0 (145)

also holds for the complete operator defined in 12.

The following identities are simple to establish by calculation:

(146)

(147)

(148)

(149)

(150)

5)Λ> ( 1 5 1 )
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where we define the new operator dμ by:

00 \

Vμ~ 2J 77 \Aμιμ2...μkμ*'μ1μ2...μk~*'μiμ2...μkμJ™-μιμ2" μk
k = 0 Λί

+ G F f — F G f

i^μiμi' μkμ1 μiμi - μk λ μιμ2...μicμyjμiμi- .μh

+ Ψίμιμ2...μkμ(y5)ijψ]μιμ2...μk} ' (152)

The following equations are also easy to establish by calculation:
[Λ fΛ] = 0, (153)

[4Λ] = 0, (154)

[ ^ F J = ( y o / 7 5 ) ^ t , (155)

[^]=0, (156)

[ 5 ^ v ] = ̂ viV1? (157)

C^^v] = ̂ viV1, (158)

and together with the form of 77^=0 given above and the following equations:

Π2ΛJ = O, (159)

Π2dμ = 0, (160)

which are the adjoint of equations found above (since 771 =772), we see that

d2 = Π2 lei Vt - cyμcεl~] Π2 = ΠNί = 0(- cγμcεl)

which can also be written:

d2 = ΠNl=0(-cyμcεμ)

~^"ΠΛ=0 ^τ=0)ViΠQ=0 ^Λ = τ=τ>==O)ΠΓ = ociΠNί>0Πε=0Πdi =0Πτ=0. (163)

In writing the above, the following identities are useful:

CiΠ2 = Π2Cι = ΠQ=o, (yi = Γ=Γ' = o)Πr = ocfli

2 ' (164)

(165)
as are their adjoints:

(167)

(168)
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In the foregoing, we have used the identity:

ΠΛ=0Πd,=0ViΠ2 = ΠΛ=0ViΠ2 (169)

which is a consequence of (147). From now on we will forget about the sector where
AΓX = 0 since it is of no interest at present.

11. First Expression for A2

Given the foregoing the computation of Δ2 yields:

where we define the "chiral projectors":

and
Pϊ=Kδij-f(ys)ij]- (172)

To derive this we need also to note that as a consequence of Eqs. (29)-(33):

0. (173)

12. Evaluation of the Anticommutator

It is straightforward to evaluate the expression:

ϊ ίwμμ2... „ j " y 5 c ] ίψyμ2... μky
 vy 5 c ] f

ϊ ΪΨμμ2 ...fίkc + ψσμ2... μJμc\ ίψμμ2... μk

s)ipGμμ2 ...μJ

ίΦoy%Fμμ2...μk+Φoy
f'ys)ipGμμ2...μkV} • (174)
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Note that some of the above terms occur with negative coefficients. However all of
these disappear using the properties of Πl9 when this expression is placed between
two operators Πί9 which is the next step.

13. Second Expression for Δ2

Using the above and the properties of Π2 we get

Δ2=Π2

C] [χpμιμ2... μ

+ k ίΦ0γ%Fμμ2... μk + φ0y
μy5)ipGμμ2... „ J

^ 2 . (175)

Note that this operator is still not in manifestly non-negative form. If the last term
preceded by the - sign were not present it would be easy to deduce that no c
dependent terms survive in £ 3 = Ker^2- However c-dependent terms are in fact
present, and in a sense that is why this form fails to be manifestly non-negative.

14. Second Form for the Anticommutator

The relevant anticommutator at this stage can also be written in the form:

{ Vb V}} = δuM + (y^M + | ( v ) y L μ v + έ(iW S ) Λ , ,

where the operators are defined as follows:

+ (2 + k) (ψμιμ2... J (ψμιμ2... „ /

+(4H-fc)[(F μ i μ 2 . . . μ k )(F μ i μ 2 . . .J t + (C? μ i μ 2 . . . μ J(G μ i μ 2 . . . μ t )t ] } , ( 1 7 7 )

and

^ = Σ -μ{kl(Aμiμ2..,μk)(Bμiμ2 μJ — (βμ i μ 2...μ f c)(-4μ i μ 2...M k) ]

+ (2 + fc)(φiμiμ2...μk)(y5)fj<VJ μ i μ 2 . . . J t

+ ( 4 + f c ) [ ( G μ i μ 2 . . . μ k ) ( F μ i μ 2 . . . μ / - ( F μ i μ 2 . . . μ k ) ( G μ ι μ 2 . . . μ / ] } (178)
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and:

°° 1 v t μ t

i ί Ώ \ί DV \t / D \ / Dμ \t

mμ 2... μk/ Wμχμ2... μk/ ~ vVvμiμ2 . . . μk/ Wμiμ 2 . . . μk)

μμiμ2...μk/V-1 μiμ2...μk/ VJ vμiμ2 ...μk/V-1 μiμ2...μk/

μJ(Gμiμ2 μJ f ~(^vμiμ2 μk)(^μiμ2 μk)
f} (179)

and:

~ V ^ H ^ )

"" (Ψivμiμi... μfc) (if s)ij{ψjμiμ2 . μ J

. μk) V^Jμiμ2... μ J ~~ V^ vμiμ2... μ J• (•** μμiμ 2 . . . μ ) V ^ J J ~~ V

/ ( 1 < ) ( ^ i μ 2 . . . μ k r } . (180)

We record the following commutation relations for future use:

[LφLyδ\ = {ηatLβy + ηβyLrt-ηaγLβs-ηβtLty} (181)

and
ίLφ Lγδ] = {ηJLβy + ηβγlaδ - ηaylβδ - ηβδLay} (182)

and
ίLφ Lyδ] = {ηaδLβy + ηβyLaδ - ηayLβδ - ηβδLay} . (183)

Equation 181 is familiar. These equations contain two noncommuting copies of
the commutation relations for the Lorentz group.

15. A Simple Form for Λ2

By using the above and utilizing the equations in Sect. 7 we can rewrite Δ2 in the
form:

L^}Π2, (184)

where we define:

L'μv = \Φμv)if) = Wίjfifi] - (185)

This operator has been normalized so that it also satisfies the relations:

[Lφ L'yδ] = {ηaδL'βy + ηβyLaδ - ηayL'βδ - ηβδL'Λy}. (186)

The operator M can be written in several useful ways:

M = D(f) + ϊN1-ift1= 4N(F) + 4N(G) + 2N{ψ) + N(d), (187)

where N(δ) is the operator which counts the number of derivatives. The
commutation relations of M can be deduced from those of these operators.
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16. The Operators dr are Zero for r*£3

It is easy to prove that the operators dr are zero for r ̂  3 using the fact that all these
operators contain the terms:

dr=Π,δ2δl±-...Πr. (188)
Δo

Now in the present case, this has the explicit form:

J-...17Γ = 0, (189)

where we use the (anti)commutation relations and the properties of the Πr

operators established above:

0. (190)

It follows that we will be finished when we have analyzed £ 3 , which we now
proceed to do.

17. A Set of Equations for the Space E3 = EO0

Let us look for solutions E3cE2 for which:

π^oViPμ^o. (191)

By commuting this equation with the equation:

c]V]E3 = 0, (192)

which is a consequence of the relations (166) and (167), we obtain:

{2(M-4)cJ + Lμv(yμv)ijC}}E3 = 0. (193)

Now let us multiply this equation from the left by cf and by cjiy^β. This produces:

{2(M - 4)N\ + 2LμvL
ffιv} E3 = 0 (194)

and

{2(M-4)N\-ε^δLaβLyδ}E3=0. (195)

The first of these already appears in 184. The second is used in deducing the
equations below. Now let us multiply Eq. (193) from the left by cfy^j and then
reduce the product of γ matrices using (173). We get:

{4(M - 4)Lmβ - 2L*βN\ - εaβyδLyδN\ + 4BμL
ffiβ - 4Iβ

μL
flΰί} E3 = 0. (196)

ontract this equation from the left successively with L
d (195) we get two equations as follows:

{2LμvU» - fs*β*δLaβLyδ - 4(M - 4) (M - 2)} E« = 0,

Now we can contract this equation from the left successively with Laβ and L'βa and
using (194) and (195) we get two equations as follows:
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These two and Eq. (194) can now be written in the form:

0, (197)

0, (198)

where the commutation relations of the L operators and various properties like the
following identity have been used:

LyδN1Π2. (199)

Here we define

ΐ —T — -p Tyδ—T — ± & P τyδ ΠύCύ

and

ΐ' —T' —±F 7fyδ Γ201Ϊ
L^dβ — J^'xβ 2c'aβγδ±-' ' x^^1/

Note that there are really only three operators (in each case) that are independent
here:

LOi=-±fεijkLjk (202)

and

2oι=-t/*ufljk. (203)

In accord with standard notation we denote them by:

(204)

(205)

Here of course ij, k take values in the set 1, 2, 3. Now the commutation relation
takes the form:

(206)

Γ V VΛ— ΦP V ΠVΠ\
\_<J fo J ίj — ^ Of jjς*/ j^ ? y^yJ i )

and we also note that:

JΪ = Jt, (208)

J'i^J'i. (209)

Let us now define a "total angular momentum operator" by:

Ji = Ji + Jfi (210)

and observe that :

/ /' — λ (P — /? — V2\ Γ211 ^
i i ~~ 2 \ i i i ί * \ )

Our equations now take the form:

3 = 0 (212)
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and

(M-4)|^.^^)-t/'ίj;j£3=0 (213)

and

{f-«2+*a["-2+Λr,]_Vιμ_0- (214)

Note that the Jt and the J form hermitian representations of the rotation group in
three dimensions. This group is not the usual rotation group although it is related
to it. The eigenvalues and eigenvectors of JJi are of course well known. Evidently

we are generating here something related to the (0,-1 representations of the

Lorentz group. However, once again, things are not quite so simple since there is
no term in Lμv that "rotates" the spinor according to the Lorentz group.

18. Summary of the Equations for E^

Now we can collect together all the equations for E^ in one place. First we have the
equations that determine the subspace Eί:

^ ^ = 0 , (215)

^ o o = 0, (216)

N^XE^O, (217)

6£ o o = {iV1iV'1-iV1iV;}Eoo=0. (218)

For the polynomials that have N\ ̂ 1 we also have the equation:

TE^O. (219)

For the polynomials that have N\^.2 we also have the equation:

TΈo o = 0. (220)

Next we list the equations that come from the conditions on £ 3 :

P+JΠ^VJE^O. (221)

For the polynomials that have N[^l we also have the equations:

oo = 0, (222)

oo=0, (223)

oo = 0, (224)

where we introduce the abbreviations:

W=2LμvL^ - fε^δLaβLyδ - 4(M - 4) (M - 2), (225)

W = \LμyL
 v« - N\ (N\ + 2)] (M - 4), (226)

W=(M - 4) JVi + LμvL
ftιv. (227)
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19. Solutions of the Equations for E3

19.1. Superfίelds and the&=0 Sector of E^

At this point we will consider the construction of some solutions to this set of
equations. The easiest place to start is with matters that are already well known -
the construction of the ghost degree zero polynomials in H. The best general
known way of doing this is to use superspace methods. This is well explained in
many references [7]. Here we only review the changes needed in our own context.
There are three kinds of superfields:

1. Complex chiral superfields S, which are composed of complex component fields
and complex chiral spinors and satisfy the relation:

^ ά S = 0, (228)

where 2^ is the antichiral superspace covariant derivative in the two component
notation.
2. Complex antichiral superfields S, which are composed of complex component
fields and complex chiral spinors and satisfy the relation:

^ α S = 0, (229)

where 2a is the chiral superspace covariant derivative in the two component
notation. If S is a chiral superfield then its complex conjugate S is an antichiral
superfield.
3. Real general superfields V, which are composed of real bosonic fields and chiral
spinors in pairs to make Majorana spinors. They satisfy the relation:

V=V. (230)

In the present paper we have started with the complex chiral superfield S of the
form:

S = exp( - iθ β) l(A + iB) + 2(θaψ") - εaβθ
aθβ(F + JG)] (231)

and we are permitted to make other superfields from it according to the following
rules:

1. The product of two superfields is a superfield, and multiplication of superfields
is associative, so that the product of any number of superfields is a superfield.
2. The chiral derivative 2a of a superfield is a superfield.
3. The antichiral derivative @A of a superfield is a superfield.
4. The spacetime derivative of a superfield is a superfield.

The following criteria determine the nature of the superfield so formed:

1. The product of three or more chiral derivatives is zero, because of their
anticommutativity.
2. The product of three or more antichiral derivatives is zero, because of their
anticommutativity.
3. Superfields formed by taking a product or a chiral derivative or some
combination of both are not in general either chiral or antichiral or real. To form
one of the three irreducible kinds of superfields one can do the following
(sometimes the result is zero):
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(a) A chiral field can be formed from this object by acting with the operator
(b) An antichiral field can be formed from this object by acting with the operator

(c) A real superfield can be formed by taking the real or imaginary part of this
object.

4. Superfields may have uncontracted Lorentz or spinor indices. This does not
affect their status as superfields. Such indices may arise in the present case from
uncontracted chiral or antichiral or spacetime derivatives.

Once one has constructed superfields, one can then construct superspace
invariants from them by doing superspace integrals of them. Chiral superfields
must be integrated over chiral superspace and real superfields must be integrated
over all of superspace. The chiral integration of a chiral superfield is a complex
quantity of course. It is just the "F + Ϊ'G" part of the superfield. Normally one picks
out the real part of this complex quantity and ignores the other one. An alternative
is to take the imaginary part G. This will also be a superspace invariant. It will have
the opposite parity to the F part. This is important for our purposes. Real
superfields must be integrated over all of superspace - both chiral and antichiral
parts. This picks out the D part of the real superfield. No "G" type invariant exists
in this case.

Now let us make contact with the formalism of this paper. The invariants in H
with ^ = 0 give rise to polynomials in E^ with ^ = 0 and J Γ = iV(ε) = 4 as follows:
Denote the F, G or D term of any superfield by F , G' or D' respectively. Write these
(illustrated for F only) in the form:

F'=k~ΣFq, (232)

where the summands are eigenstates of the grading operator N:

NFq = qFq. (233)

Then FqiTε

4 will always be in E^. For simple cases it turns out that the terms of the
form F and G' give rise to polynomials in E^ with T=0 and the terms of the form
D' give rise to polynomials in E^ with T> 0.1 conjecture that this is a general rule.
Since the F , G', and D' can have uncontracted Lorentz or spinor indices, so can the
polynomials found in E^.

19.2. Construction of Multiplets

The theory of construction of superspace invariants is simplest in superspace and
was discussed above. However to make contact with our previous formalism, it is
easiest to revert to the old style of construction of invariants using the
"multiplication of multiplets" method. This is equivalent to the superspace
method. As is well known, one can multiply two chiral supersymmetry multiplets
to get a third. In our notation this takes the form:

A" = AA'-BB',

F" = FA1 + FA + GB' + G'B - ψψ',

G" = GA' + G'A - FB' - FB + ψy5ψ
f, (234)
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and it satisfies the equations:

δA" = cψ"+εμdμA", (235)

δB" = cγ5ψ" + εμdμB", (236)

δψ" = $ \_A"+B"γ 5 ] c + IF" + G"y 5] c + εμdμψ", (237)

(238)

?" (239)

whenever the corresponding equations are satisfied for the superfields S and S'.
This is simply what one obtains by multiplying two chiral superfields and then
writing down the components of the resulting chiral superfield.

193. Some Polynomials with & ^ 1: Solutions with no Spacetίme Derivatives

Let us collect together and list all the equations that must be satisfied by the
polynomials P in E3 = Eo0 that have # = 1:

Λ,P = 0, 3jP = O, ΓP = 0, N l f i χ P = 0, [ 1 - / / ' ] P = O. (240)

These express the requirement that P is in the 9 = 1 part of the subspace Ex = E2.
The simplest solutions are those which contain no spacetime derivatives. For these
the equations of the subspace E2 reduce simply to:

Π^oVftP^O (241)

and

(M-4)P = 0 (242)

since the absence of derivatives makes the equation:

LμvP = 0 (243)
automatic.

The solutions of these equations are easy to find. First one considers all the
possible elements of H with ^ = 0. These can be constructed using superfields or
multiplet combination as outlined above. We want only those for which the lowest
N part of the superfield is free of spacetime derivatives. Since we want T=0, we
take only the F' and G parts of chiral multiplets. Then the equation M = 4N(F)
+ 4N(G) 4- 2N(ψ) + N(d) = 4 means that the required lowest N part of the superfield
F\ G' or D' components must be a sum of terms linear in F and G and bilinear in ψ.
So we want terms that are the F' and G components of composite chiral multiplets,
and are linear in F and G or bilinear in ip.

Then we have to satisfy Eq. (218) above. This is easy to do with the
combinations below. The number of A or B fields is unconstrained by the M — 4 = 0
equation. The first few solutions in the infinite series that is so generated are:

(244)

*, (245)

-B2)F + 2ABG-ψ(A-Bγ5)ψ}Ci

{(A2 -B2)G- 2ABF+ψ(B + Ay5)ψ} (y5)iΛ} Γe

4. (246)
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Now these correspond simply with the following objects in H:

(247)

f d4x {IAF+BG-1 ψφ] Ci - IAG -BF + \ ψy5ψ} (y 5 ) i Λ ] } , (248)

J d*x {{(A2 - B2)F+2ABG - ψ(A - Bγ5) ψ} c,

- {(A2 -B2)G- 2ABF + ψ(B + Aγ5)ψ} (γ5)ijCj}. (249)

It is easy to see that the first of these objects is indeed in the cohomology space H,
but this is not so evident for the second or third. This can be verified simply by
acting on these polynomials with the operator δ* as defined from Eq. (12) after it
have been projected with the operators Πdt=0 and Πc=0 corresponding to the
spectral sequence generated by the grading operator N = cfl as is done in [2] to
prove the isomorphism of the cohomology of δ in the spaces P and L. This shows in
a straightforward way that these objects are indeed in H and provides some
independent confirmation of the long derivation above.

There is clearly an infinite series of such objects all of which are in E3 and which
correspond simply with objects in H. They all have the property that they satisfy
the equation:

LμvP = 0 (250)
trivially by virtue of the fact that they contain no derivatives. We note that these
solutions generalize easily to higher values of the ghost charge. One simply takes
combinations like:

Fcyμvc-Gcγμvy5c (251)

and a similar discussion can be given. It is easy to verify that the equation:

T'cγμvc (252)

is satisfied. There appear to be solutions of this kind for all values of the ghost
charge up to oo.

Part IV. Conclusion

As was stated in the Introduction, the hope that motivates the present paper is that
there may exist supersymmetry anomalies that have not yet been uncovered, and
that if these exist, they may have some use. The result of the analysis here is quite
encouraging. It indicates that the cohomology space for the simplest supersym-
metric BRS operator is far more complicated than the cohomology spaces of
Yang-Mills theory and gravitation. In particular there are an infinite number of
polynomials in the ^ = 1 sector of the cohomology space.

This is a bit of a surprise because it has generally been assumed that making a
theory supersymmetric does not materially change the cohomology structure of
the theory. It has been expected that the ghost charge one polynomials in
supersymmetric theories would be simply the ghost charge one polynomials put
into supersymmetric form somehow.

Hence this result casts some doubt on the conjecture that there are no
anomalies beyond these supersymmetric versions of the known anomalies.

Since the cohomology space is not empty, the natural reaction to this result
would be to calculate the Feynman diagrams that correspond with the objects in
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the cohomology space to see if there are anomalies in the theory. The cohomology
space of ghost charge one tells one where to look for anomalies. The present result
indicates that there are an infinite number of places to look (assuming that one can
construct appropriate operators of ghost charge zero) and it describes them.

More accurately, the result would indicate where to look except that there is a
supersymmetric regularization for the simple Wess Zumino multiplet [8].
However if this multiplet is coupled to a theory like supersymmetric Yang-Mills
theory, then we might expect the objects found here in the cohomology space to be
anomalies. In the case of supersymmetric Yang-Mills theory, no-one has ever
succeeded in constructing a manifestly supersymmetric and gauge invariant
regularization procedure.

In [3] it is shown that the present analysis does in fact generalize to super Yang-
Mills quite easily, and the consequences of that are discussed there.

This in turn raises the question of what happens in a theory such as the
superstring. Is there a chance that the "compactification" of the superstring or the
breaking of supersymmetry in variance is driven by supersymmetry anomalies in
some way? Only an evaluation of the BRS cohomology of these theories can
provide an answer.

Part V. Appendices

A. Summary of Basic Results and Notation

The techniques in this paper were introduced in [2]. This appendix is a reminder of
the results and notation established there, and it also summarizes the new notation
used in this paper.

Lis the linear vector space of integrated polynomials in the Wess Zumino fields
A, B, ψ, F, G, their derivatives dμ of all orders and the spacetime independent
commuting Majorana spinor supersymmetry ghost field c. P is the space of
unintegrated polynomials in the Wess Zumino fields A, B, ψ, F, G, their derivatives
dμ of all orders, the spacetime independent commuting Majorana spinor c and the
spacetime independent anticommuting translation ghost field εμ. The combination
ε0ε1ε2ε3 is denoted T*.

The variables that we use are of the form Aμiμ2^μk which is an abbreviation for
dμidμ2...dμkA. We promote these to independent variables in Fock space, with
commutation relations:

V *" ^ M i V 2 ^ M 2 V i * * * "μkvk ~" •••/ >

where the sum is performed over all fc! permutations of the variables. Note that the
weight is as shown. There are fe! terms here and no factor of 1/fe! in front.
(Anti)commutation relations for the other variables are all defined the same way.

The nilpotent operator δ is defined by 11 when acting on L and by 12 when
acting on P. The cohomology of δ in Lis denoted by HL, and the cohomology of δ
in P is denoted by HP. These two are isomorphic as is shown in [2].

The advantage of using the positive definite inner product in Fock space is that
the following isomorphism holds:

(253)

where A is defined to be the non-negative operator:

ψ (254)
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The spectral sequence is generated by a grading operator N. It consists of a
nested series of spaces Er which are subspaces of P. A sequence of nilpotent
operators dr acting in the subspaces Er can be constructed. Each space Er+ίis the
cohomology space of the operator dr acting in the space Er. It can be computed
using the formula Er+ί = £ r n K e r Λ n where Ar = (dr + d])2. The orthogonal projec-
tion operator Πr onto the space Er is needed to define the operator dr. The spectral
sequence is said to converge to Eq for some positive integer q when dr = 0 for r ̂  q.
Then we denote the resulting space EO0 = E4. The important theorem is that this
space E^ is isomorphic to HP which in turn is isomorphic to HL.

We defined Ax and V{ to be pieces of δ in Eqs. (14) and (15). The dimension
operator D and the ghost ^ and form !F degree operators are defined in Sect. 8.

The operator N1 is the counting operator. It counts the number of fields in a
polynomial. f}t is a "twisted" counting operator defined in 76. Other "twisted"
operators are frequently defined and used in the paper. The twisted operator is
always closely related to the untwisted one with the same symbol. Tis defined as an
abbreviation of Nf + Nj. The notation N(A) is used for the counting operator for
the field A alone. The operator JVi is the counting operator for the c field. It counts
the number of c fields in a polynomial. N^ is a twisted counting operator defined in
104. T is defined as an abbreviation of N'f + Nf.

The operator Q is defined as an abbreviation ofN^Ί —Λ îVΊ. The operator /
acts like ί = ]/^T. It is defined by f = N1/Nί. The operator / ' is defined by
/f = N\/Nf

1. It acts like — i= — j/—T. The notation vμ stands for the important
combination cyμc. The frequently used[notations Πx==0 and Πx>0 are defined in
Sect. 8. The operators M, M, Lμv, and Lμ^are all defined in Sect. 14. The operator
Lμy is defined in Sect. 15. The operators Lμ v and L'μv and the angular momentum
operators J i 5 J'b and J e are all defined in Sect. 17. The operators W, W\ and W are
defined in Sect. 18.

B. y Matrix Conventions and Formulae

The γ matrices in this paper are in a real (Majorana) representation and the
Lorentz metric is defined by the relation:

vμ=ημX*v = - A+A+A+A (255)
The y matrices satisfy the following relation:

{yμ>yv}=2*?μv (256)

We also use the "Kronecker delta" which is defined by:

XμXμ = δμvXμXχ = + A + A + A + A ' (257)

The matrix y5 is defined by:

75 = 70717273, (258)

and the following identities hold:

?„ = # , (259)

Wo = tf = Λ (260)

y s = y ? = - y L (261)
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where * denotes the complex conjugate and T denotes the transpose of a matrix.
For convenience we record the following relations which are easily derived:

y | = — i , (262)

(yo)τ=-y<» (263)

(264)

(265)

, (266)

/ (267)

where we define:

7,v = l[V7v] (268)

The Fierz identity for commuting spinors takes the form:

ADCB=i [ABCD - Ay5BCy5D + AyμBCyμD

+ Ayμy5BCy»y5D - i % v 5 C / v 2 ) ] , (269)

where we use the usual notation:

ABCD = AfBfyάifiϊDJyώn, (270)

and of course in this representation for Majorana spinors we have:

A = A*. (271)

The following identities are easily proved:

VμvVs^tμvλσV*", (272)

ηaγηβδ+^Vs+y^Py+y^n^ - y*ynβδ - yβδVaγ, (273)

yjβy=n*βyy - n*yyβ - ε*βyσy
σy5, (274)

yμy
v=-12, (275)

yμy
μ=4, (276)

] , (277)

where we choose the convention εOί23= — ε o l 2 3 = +1 and εμvλσ is the totally
antisymmetric tensor in four dimensions. All of the above is independent of the
specific choice made for the y matrices so long as they are real. We use the following
specific (block matrix) four dimensional representation for the γ matrices:

τ)

' 2 )»)
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- σ 3

0

where the 2 x 2 sigma matrices are defined as usual:

-.-(? j).

*-[* -\) (285)

and the two dimensional unit matrix is of course:

(286)
\υ 1/

We note the useful identity:

cγμccγμ = 0 (287)

which follows from the Fierz identity for commuting spinors c.
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