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Abstract. We point out that bosonic conformal coset models Gι x Gk/Gι+k for all
semi-simple Lie algebras G have a hidden fermionic symmetry at / = 0 (the
central charge = 0) and may be interpreted as twisted versions of some
superconformal theories.

In a previous communication we pointed out that a series of c = 0 conformal
models of the SU(2) GKO coset construction may be interpreted as a twisted
version of N = 2 minimal superconformal theories [1]. When a conformal model
has a vanishing central charge c = 0, it no longer depends on the complex
structure of the Riemann surface and becomes a topological field theory. It
turned out [2] that the twisted N = 2 minimal theories reproduce the results of
the matrix models [3] when coupled to gravity and thus twisted N = 2 models
appear to play some basic role in the theory of 2 dimensional gravity.

In this article we would like to generalize our previous treatment and ask if a
bosonic coset model G{ x Gk/Gι+k based on a general Lie algebra G has a hidden
fermionic symmetry at c = 0 (/ = 0). We point out that in the case of a Lie algebra
G which yields a hermitian symmetric space G//ίx(7(l) when a suitable
subgroup H is chosen, G-coset model is identified as the twisted version of
superconformal (Kazama-Suzuki) model [4] based on the hermitian symmetric
space G//ί x (7(1). On the other hand in the case of Lie algebras G2, F 4 , £ 8

which do not yield hermitian symmetric spaces, we find a new way of
constructing fermionic symmetry. We identify the bosonic coset models as the
twisted version of the N=\ supercoset theories based on the Wolf spaces
G/H x SU(2). Thus all bosonic coset models with vanishing central charge have a
hidden fermionic symmetry. Furthermore some of the cosef models are identified
as the twisted versions of not one but several superconformal theories at the
same time.

Let us first briefly recall our previous observation on the 5(7(2) GKO coset
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theories,

SU(2)ι *SU(2)k/SU(2)ι+k, (1)

where SU(2)ι denote the affine SU(2) algebra at level-/. In the Coulomb gas
representation the stress-tensor of the theory is given by

T(z) = TZk(z) - i ( # ( z ) ) 2 + ίa0d
2φ(z\ (2)

where ot0 = (// - p)/^/2kpp', p = l + 2 and p' = l + k + 2. TZk (z) is the stress-tensor of
the level-fe 5(7(2)-parafermion theory and φ is the free bosonic field. In terms of
the parafermion fields */Ί(Z), ψ*(z) with dimensions 1 - 1/fe, the screening
operators of the theory are expressed as

S + (z) = ψλ(z)^φiz\ S.(z) = t*(z)e*-+i*\ (3)

where α + =^/2pγfep,α_ = -y/2p/kpf. Screening operators (3) have dimension 1
and have the nilpotency property and are interpreted as BRST operators. They
play a basic role in reducing the bosonic Fock space to the irreducible
representation space of the Virasoro algebra which are given by BRST
cohomology classes [5].

Consider now the / = 0 case. We obtain a series of c = 0 theories labeled by
k= 1,2,3,..., and we expect that the stress-tensor is written as a BRST
commutator

Γ(w)={ίβ(z)rfz,β*(w)}. (4)

Here the BRST current Q is a dimension-1 operator and the BRST partner of the
stress-tensor, Q*, has a dimension h = 2. It is easy to check that the (3,1) operator

Φ3Λ{z) = ψ*{z)e'^^ (5)

/ i Γ~k \
has a dimension h = 2 exactly at / = 0 I α 0 = - /——— ,α+ = >/(fc + 2)/fc I and its

\ 2\j (k + 2) )
anti-commutator with the screening operator S+ reproduces the energy-
momentum tensor. Thus we identify

S+=Q, Φ3.i = β* (6)

On the other hand it is well-known that the stress-tensor and the U(l)
current of the level-fe minimal N = 2 superconformal models has the form [6],

(7)

(8)

where α0 = iy/k/(k + 2). Thus we find the basic relation

(9)

Operators β,Q* have dimension 3/2 and ί/(l) charge ± 1 with respect to (7), (8)
and are identified as the N = 2 supercurrents. Equation (4) is then nothing but
the defining relation of the JV = 2 algebra.

Thus the c = 0 51/(2) coset models are interpreted as N = 2 minimal models
with their stress-tensor twisted by the 1/(1) current. BRST invariant observables
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of the N = 2 twisted models are given by the chiral ring [7] of N = 2 (untwisted)
theories.

Now we would like to extend the previous analysis to arbitrary coset models
Gt x Gk/Gι+k. The Coulomb gas representation for the coset model consists of the
G-parafermion theory of level k [8] and the free bosons φ = (φuφ2,".,φr) with
r = rank G. The energy-momentum tensor reads

TG(z) = TZk{G)(z) - \{dφ{z)f + ia0pGd
2φ(zl (10)

where pG is half the sum of positive roots of G, α0 = (p' — p)/<s/kppi, p = g + l and
p' = g + k + l. Here g is the dual Coxeter number of G. The Virasoro central charge
of (10) is

^ (11)

A coset pair (/,fc) = (/,l) describes the usual WG algebra [9]. For the simply
laced algebras the fc = 1 parafermion theory is trivial, however, it is non-trivial for
the non-simply laced case. For G = Bn the level-1 parafermion becomes a free
fermion introduced in [10]. In the G-parafermion theory the parafermion field
φa(z) is defined for each root α among which those associated with the simple
roots oίi (i= 1,2,. ..,r) play the basic role. The screening operators are written as

Saι(z) = Φai(z)eia+aιΦiz) 0'= U , . . . , r ) , (12)

where the dimension of φa is 1 ~ocf/2k and α, = /-—, α_ = — \-—, (there exists
V kp V kp'

another class of screening operators φ_aι(z)eict-αi<^(z) which feature in the off-
critical perturbation theory of coset models [11]).

At c = 0

and we have a G-series of c = 0 theories labeled by k = 1,2, . In order to express
the stress-tensor as a BRST commutator we look for an operator which acquires
the dimension h = 2 right at the "topological" point (13). It turns out that a
vertex operator with exponent — 0, θ being the highest root of G, has exactly this
property. Namely the operator,

φ-ee-^* (14)

has a dimension h = 2 at c = 0. Equation (14) is thus the candidate for the
operator Q* and (12) are the candidates for Q. We use the convention Θ2 = 2 in
this paper.

Let us now consider the first case when the Lie algebra G yields a hermitian
symmetric space (HSS) G/H x U(l) when it is quotiented by its suitable subgroup
H x 1/(1). This is the case with G = An,Bn,Cn,Dn(n^l), E6,EΊ. See Fig. 1. Some
simple examples have already been discussed by Lerche [12]. In these cases, we
choose any simple root α,- out of ocu ,α r which carries the Kac-label 1 in the
Dynkin graph of G (Kac-labels n£ are defined as the expansion coefficients of the
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SUfn+rrt
SU(n)xSU(m)xU(1)

SO(2n+2)
SO(2n)xU(1)

SO(2n-1)xU(1)

SO(2n)
SU(n)xU(1)

Sp(n)

2 1SU(n)xU(1)

E6
SO(10)xU(1)

E7

2 3 4 3 2

Fig. 1. Hermitian symmetric spaces.

r

highest root into the sum of simple roots θ = £ n^. Thus the condition on α,- is

Πj= 1). We then identify

Q(z) = φaj(z)eia+ajφ{z\ β*(z) = φ_θ(z)e~ia+θφ{z\ (15)

One may check that in fact

p)eiΛ-^z)dz,φ.Θ(w)e-i^θ^w)}, (16)
where TG(w) is given by (10). Calculation of the anti-commutator (16) will be
described later. The bosonic form of supercharge operators (15) was first
suggested in [13]. The Dynkin graph of the subgroup H is obtained by deleting
the vertex α7 from the Dynkin graph of G. The U(l) direction perpendicular to H
is given by the vector pG — pH (ρH is half the sum of positive roots of H). If one
defines the U{\) current as [13].

J(z) = 2iao(pG-pH)dφ(zl

Q, Q* has charge ± 1 while the screening operators (12) with
vanishing U{\) charge. Now TG(z) is decomposed as

TN=2(z) = TZk(z)-±(dφ(z))2 + ia0pHd2φ(z),

(17)

/ have a

(18)

(19)
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and we can identify the stress-tensor TN=2 of N = 2 theory. The central charge of
TN = 2 is given by

1 2 ^ ( 2 0 )

Using the Freudental-de Vries formula and a known relation for HSS,
hdimH = 3g/2{dimH+ l )-^#dimG (h is the dual Coxeter number of H\ (20) can
be rewritten as

-h)xάimH _ l

l

k + g
We note that (21) is the formula for the central charge of Kazama-Suzuki

(KS) models [4] based on the HSS G/tfx (7(1). Thus TN = 2 is the bosonized
version of the stress-tensor of KS model. Identification of TN = 2 (19) as the stress-
tensor of KS model can be made directly in the case k= 1. Let us consider, for
instance, the case of Grassmannian SU(n + m)/SU(ri) xSU(m) x (7(1). We first
obtain using identities of conformal embedding [14]

(22)

! x SU{m)ί x U{\) x SU{n)m x SU(m)n x

where F(nm) denotes the algebra of n x m free complex fermions and Wn(m) is the

SU(n)-Walgebra at level m, ^ ( m ) = SU "„* We then use the standard

bosonized form for the stress-tensor of the H^-algebra [9],

τwn = ~ \{SΦ)2 + ix0Psu(n)d2φ, (23)

τwm = - UdΦ)2 + ™oPsu(m}d
2φ (24)

Scalar fields φ have n ~ 1 and m — 1 components in (23), (24), respectively.

Equations (23) and (24) together with T l 7 ( 1 ) = - | ( ^ Φ ) 2 Φ = / - ^ ^ — ~ ( P G - P H ) Φ
give V V 3 «m

Note the operators β, β* factor into products of primary fields of the alge
b r a s TWn9 TWrn, i[/(i) j

eia + oinΦ = eia + {- Λ^_1- Λ™ + 2lnm(pG -PH))Φ^

e - ia + θφ _ ^ i α + ( - Λ" - Λ™_ t - 2/nm(pG - PH))Φ
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where A"1,A"-i are the fundamental weights for the vector and (n- l)-fold anti-
symmetric tensor representation of SU(ή), respectively. We denote

iα+Λ;φ), (28)

n) = exp ( - ΐα+A\ _ x φ\ (29)

/ 2

Π ( )+ (pG p H ) H (30)

Then Q = φtu(n)Φsu(m)Φua) a n d Q* = Φsu(n)Φtu(m)ΦΪi(i) are conjugate to each
other.

The operator product expansion (OPE) of β, g* can be calculated using the
OPE of its component fields

\ 2^TWn{W){z~wγ + ... j , (31)

g 7W>)( )2 + | (32)

(33)

where hn (hm) is the dimension of ψSU(n) (φSu(m)) referring to the stress-tensor TWn

{TWJ. cn (cm) is the central charge of TWn {TWJ. Similarly hU{ί)is the dimension
of the (7(1) vertex operator φU{l) and the (7(l)-current J is defined by

r _ . c N = 2 2 α + /

nm
(34)

Note that since the Wn, Wm algebras do not contain U{\) current, the OPE (31),
(32) do not have a term at the first order in (z — w)-expansion. The coefficient 2h/c
in front of the 2n d order term is fixed by the associativity of the operator algebra
[6].

After a simple computation we find

ί) '(„-„, ( 3 5 )
27

2

g

( I ) ' ( . - , l ,36)
2gr

"•[/(I) s\ 5

2nm
and

m(m+l)N.
1 ( 3 8 )
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where g = n + m. Thus

K_hm_hU{1)_ §
Cn cm CU(1) CN = 2

(Note that hn + hm + hua) = 3/2, cn + cm + cua) = cN = 2.) Hence

165

(39)

(40)

and we recover the N = 2 algebra.
It is somewhat surprizing that the anti-commutator (16) gives the same result

independent of α,- as far as it is chosen from the vertices with Kac-label 1. This
can, however, be understood as due to the diagram automorphism which
permutes vertices with Kac-label 1. The stress-tensor should be invariant under
such transformations. Equation (16) implies that a bosonic coset model with c = 0
"ramifϊcates" in general under untwisting operation and generates several
inequivalent N = 2 theories.

SUCni
SU(n-2)xSU(2)xU.(1)

SO(n)
SO(n-4)xSU(2)xSU(2)

Sp(n)

Sρ(n-1)xSU(2)

G2

SU(2)xSU(2)

F4

* •

Sp(3)xSU(2)

E6
SU(6)xSU(2)

E7
SO(12)xSU(2)

E7xSU(2)

2 4 6 5 4

Fig. 2. Wolf spaces
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Now let us turn to the Lie algebras G2, F4, E8 which do not have vertices
with label 1 in their Dynkin diagrams (see Fig. 2). In these cases we can consider
the following construction; first we take the highest root θ and define as SU (2)
subgroup by Eθ, E_θ, [£ θ, £ _ θ ] , where EΘ(E_Θ) is the lowering (raising) operator.
We then define a subgroup H whose root vectors span an orthogonal subspace
to θ in the root space of the group G. Then G/H x SU(2) gives a Wolf space, a
symmetric space with a quaternionic structure [15]. In the case of a Wolf space
the Weyl vector ρG has the following decomposition:

PG = PH + (1 ~ g)Psu{2)> Psu(2) = ~ θ/2. (41)

Then the c = 0 stress-tensor decomposes as

Tc=o = TZk{G) - \{dφf + ioc0(pH + Psu(2))δ2φ + iot0(-g)Psu(2)d2φ (42)

The sum of the first three terms in (42) is identified as the stress-tensor of the
supercoset model based on the Wolf-space G/H* Si/(2) which has N=\
superconformal symmetry,

TN= t = TZk{G) - \{dφ)2 + i<xo(pH + pSUi2))d2φ. (43)

Its central charge is given by

?2- ( 4 4 >
The above construction (43) is not limited to the cases of G2, F 4 and E8 and in
fact works for any Lie algebra. Thus the bosonic coset models with c = 0 have at
least N = 1 hidden fermionic symmetry.

The N=l supercharge operator is given by

Q(z) = ψγe
i«^φiz\ (45)

where γ is the unique simple root of G which has a non-zero inner product with
θ. y has a Kac-label 2 as we see in Fig. 2. (This is except for the case of
G = SU(n). In the SU(ή) case there are two simple roots γl9γ2 with non-zero
inner product with θ and both have label 1. Supercharge operator is defined by
ρ = ψ^+yi* + φy2e

iΛ+y^). Q has a dimension ft = 3/2 referring to TN=1 (43). We
note that, unlike the HSS case, where e~~ict+θφ was conjugate to e^^yφ^e~

iίX^θΦ j s

now an SU(2) current operator and has ft= 1 when referred to TN=ί.
OPE of Q with itself can be evaluated as before by factoring Q into a product

of fields and computing OPE for each of its components. Let us consider the case
of the A-D-E algebra at k = 1 for simplicity. In this case the para-fermion fields
are absent and the stress-tensor is decomposed as

TN = I = TW(H)^~TW{SU{2)). (46)

Corresponding to the decomposition

y = θ/2-w, (47)

where w is the highest weight of some fundamental representation of //, Q is
factored as

, (48)
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α \
— i—pΦ , φH = exp( — ioc+wφ). (49)

Here Φ = y/2ρSU{2)φ. φSu{2) i s identified as the (2,1) operator of the Virasoro
algebra TW(SU(2))= — ̂ dΦ)2 + il/-s/2aod

2Φ with the central charge c= l-6/g(g+l).
In the case of D and E algebras, w is a weight of some self-conjugate repre-
sentation and φSu(2p ΨH a r e both self-conjugate fields. In the case of A-type
algebras, on the other hand, w1 = θ/2 — y1 and w2 = θ/2 — y2 are weights of
conjugate representations. Thus fields φHi defined by e~

ιa+Wiφ are conjugate to
each other. Hence the N=l supercharge operator Q = ΦSU(2)(ΦH,I + 1I/H,2) i s a

self-conjugate field. Using the OPE's as in (31), (32) and

-*?-. (50)
() cH 4(g-2)

we find

^ ^ w)2 + ..-), (51)

which is the N = 1 algebra.
In the above we have evaluated the crucial commutation relations (40), (51)

using the OPE of the theory of PF-algebra. If instead we try to compute them
directly using the free-field realization of supercharge operators, we must take
into account the screening operators of the c = 0 theory. The relevant BRST
operator QBRST> for instance, is given by a multiple-integral of the screening
operators

r

GBRST = ΓΊ ί ί <M^i)eία+M>(Zj>l) Ψ^y^^dz^ . dzJtHj (52)
i

where n, is the Kac-label of the vertex α,- and the product over j runs over all the
simple roots of G. The integration contour of (52) is chosen as in [5]. The stress-
tensor of the c = 0 theory will then be expressed as

Tc = oM = {QBRsτ,Ψ-θMe-i"+θφiw)l (53)

Let us consider the relation (53) in the case of HSS = G/# x (7(1), where the
subgroup H is obtained from G by deleting a simple root y = oij. In this case (53)
is reduced to our previous formula (16),

Tc = 0(w)= {§ψy(z)eίa+yφiz)dz,ψ _θ{w)e-ia+θφiw)}. (54)

This is because nγ = 1 in this case and we have used the fact that the operators
φa.e

ιa+aiφ(i Φ j) are also the screening operators of the N = 2 theory and thus may
be identified as identity operators. On the other hand, if we consider the case of
an N= 1 theory based on the Wolf space G/H x 5(7(2), where H is obtained from
G by deleting a vertex γ, we obtain

This is because ny = 2 in this case and the fields φ^e'"*"' (γ φ α, ) are the screening
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operators of the N= 1 theory. The formula (53) was first evaluated by Mizoguchi
in the case G = SU(3) and has been checked in some other examples.
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