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Abstract. A large class of discrete quasiperiodic operators is shown to be
decomposed into orbits of 5L(2,Z) action with equal densities of states. Moreover
under some natural assumptions all nontrivial representatives of the mentioned
action transform operators with pure point spectrum into those with absolutely
continuous spectrum. Some applications of these results are presented.

1. Introduction

Let us consider the general family of quasiperiodic operators acting in 12(Έ)
through the formula

(HΨ\= Σ Ψt-jfjiΦ + lx), fjedS'loceπW. (1)

This paper is an attempt of outlook on this class as a whole in order to reveal which
almost periodic features are responsible for various spectral properties and thus to
provide some old results with a new understanding.

During the 80's there was a great amount of interest in almost periodic
operators. The balance between generality and concreteness was periodically
driven to either side. Perhaps the most attention was paid to investigations of the
almost-Mathieu operator

(2)

and related models.
The almost-Mathieu equation arose from the model of Bloch electron in the

uniform magnetic field [1] and has been studied extensively both from physical
and mathematical points. It seemed to have very interesting properties but (in
comparison with a related 2D-operator) a simple easy to handle form.

Telex 411628 MITPA SU; Fax (095) 3107032



590 V. A. Mandelshtam and S. Ya. Zhitomirskaya

The rigorous results concerning almost-Mathieu operator can be divided into
two classes. Those which hold for more general operator families [2-5] etc.), and
those which use essentially the almost-Mathieu specificity [6-10]. The theorems of
the first class concern usually the nicer spectral properties but cover mainly the
considerably smaller sets of parameters than the results of the second one. The
specificity used is the symmetry of the almost-Mathieu family with respect to the
Fourier transform (the "Aubry duality") which gives rise to proving the positivity
or vanishing of Lyapunov exponents y(E9 λ) for corresponding values of λ. This
implies that the spectral measure does not contain an absolutely-continuous
component for λ > 2 and there are no pure point spectrum for λ < 2. We will call
such results as theorems "up to" the singular-continuous spectrum because
clearing up whether there exists a singular-continuous spectrum for λ φ 2 and the
proof of the believable pure singular-continuity of the spectral measure for λ = 2
will give a complete description of the spectrum.

The duality argument at first appeared in [6] as a quasitheorem and was
proved rigorously in [7] and [8] by different methods. It has been uncertain what
is the nature of the duality and whether this argument can be extended to the wider
classes of almost-periodic problems.

In this paper we will show that symmetry properties of the whole class of ID
almost-periodic operators are caused by the existence of some gauge group for
related ID Hamiltonians. Thus a physically intuitive connection between almost-
periodic and 2D operators in a uniform magnetic field becomes a mathematical
fact which enables one to find a group of transforms (including the Fourier
transform) that preserves the integrated density of states. These are the results of
Theorems 1 and 2. Theorem 3 shows that under some natural assumptions every
orbit of the above mentioned group action includes at most one isospectral class of
operators with a pure point spectrum, all other operators in the orbit possessing
pure absolutely-continuous spectrum. Theorem 4 is an example of application of
Theorem 3. Theorem 5 relying on Theorem 2 describes the spectral properties up
to the singular-continuous spectrum of some operator family.

Thus the essence of our method is that deriving ID quasiperiodic operator from
the 2D Hamiltonian one should not forget the initial problem. We remark that all
known proofs of the Aubry duality have in fact the two-dimensional nature. All the
latent symmetries become explicit when regarding the related 2D operator.

Let us give now the precise formulations.
We consider an operator H of the form (1). It is connected with the matrix of the

Fourier coefficients B = B(kJ) = \\bkt j\\ appearing in the expansion of the functions

//*)= Σ bkJexp(ik(x-jx/2)).
j= - 0 0

We will use the notation Hf a for operator (1). (The indices α, Φ would be ignored
in all objects connected with HB if it would not lead to ambiquity in order to avoid
rather cumbersome notations we will sometimes use bι for bkJ, where / = (kj) e Έ2).
Sometimes it will be convenient to deal with a diagram corresponding to the
matrix B, which can be built by omitting all zero coefficients bkJ and providing all
nonzero bkJ with vectors going from the point (0,0) to the point (fcj). Denote by Σ
the set of operators HB such that bι = b_ι and bt e lι(Z2). Let HB(A) be the operator
Hj3 restricted to 12( -Λ,Λ)C 12{%). Denote, as usual, by (2Λ + l)Nβ(A; A) the number
of eigenvalues λ^A) of HB(A) which are less than λ, i.e. Xt(A) ̂  λ.
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Take HBeΣ. It follows from the general facts for the random metrically
transitive operators [11] that
1) HB is an essentially selfadjoint operator defined on the space of finite sequences.
2) There is a deterministic (Φ-independent) measure dNB(λ) which is the weak
yl-κx) limit of the sequence dNB(λ;Λ).
3) Let dE$(λ) be the identity resolution of Hf. Then

ί(i()00) (3)
s1

where the vector e0 e /2, eo(n) = (5(0, n).

2. The Connection Between the Quasiperiodic Operators
and ID Hamiltonians in the Uniform Magnetic Field

Given HBeΣ let us consider the Hamiltonian hB acting in 12(Z2):

(LBΨ)k=Σ n-Aexpίfaβ*.*-,), k = {k\k2\l={l\
leZ2

where the gauge field aΘk ι corresponds to the uniform magnetic field with the flux
α through the unit cell. Immerse the lattice Z2 into IR2. Let x, y be the coordinates
in IR2. Given kJeZ2 consider the vector tkΛe 7^R2 with the coordinates I1 — k1,
I2 - k2. Here TfcR

2 is the tangent space identified with IR2. Fix Θ e yl*R2 being the
differential 1-form such that dΘ = dxΛ dy. The form Θ is defined, uniquely, up to
the gradient of any function / : R 2 - > R . Now we can choose Θkl being equal to
Θ(tkJ). Note that all "physical" values connected with L β are gauge invariant, i.e.
independent on the concrete choice of the gauge field Θkj = Θ(tktl) such that
dΘ = dxΛ dy. The wave functions Ψ(x, y) of operator L j + erad/(*,y) a r e e x a c t l y those
of operator Lf multiplied by the phase factor exρ{if(x9y)}. It turns out that the
group of transformations of the Hamiltonian L β due to the gauge arbitrariness
leads to the decomposition of the set of quasiperiodic operators into orbits
consisting of operators with equal densities of states (Theorem 2). This fact is a
generalization of the Aubry duality which follows within our method from the
symmetry of the lattice with respect to the rotations by the angle π/2.

Consider the ensemble Y of the lattice paths γ = (γ0, ...,γt% yj = (y),y2)eΈ2,
yo = yt = 0, t = \γ\. Here t = \y\ is the length of the path y. Let

e χ P {*«%)} ̂ y

be the statistical weight of the path y. Denote by ΞBta;λ the partition function over
the ensemble Y. It is straightforward that ΞB a.λ = (exp{λLB}epej) for any
j = (j\f)eZ2. Here e^\\Έ\ ej[n9m) = δ(n9j

1)δ{ni9j
2).

It turns out that ΞBt0L.λ can be represented in terms of the operator HB.

Theorem 1. For every irrational a and HBeΣ,

ΞB^λ. (4)

Proof. Consider the area functional S(y) determined on all (not necessarily closed)
lattice paths: S(y) = \Θ,ΘeΛ X R 2 , dΘ = dxΛ dy, y C R 2 is the image of the path y on

y
Z2 after the natural immersion of Z2 into R 2 . Fix Θ = ydx. It is obvious that the
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concrete choice of the functional S(y) is equivalent to the choice of the gauge field; it
will be convenient to consider area formulas instead of gauges.

Fix k e Nu{0}, zl9 z2 e S1 = {\z\ = 1} C <C. Consider the ensemble Πk of the lattice
paths y = (yθ9...9yk)9 T ^ O ^ T ; ) ^ 2 * 7o = 0 with the fixed length k. Let the
statistical weight pB>α;zifZ2(y), yeΠk, be equal to

Π byj-yΛexp{i*S(y)}zl*z$9 fc^O.

Denote by P^ α(z l5 z2) the corresponding partition function. Consider the function
φ(zuz2) = Σ \h,ι\z\z2' It follows from the definition of Σ that φ(zl9z2)eC(S1 xS1),
and one can apply the Cauchy theorem to it. Taking into account the estimate

U), (5)

we obtain that the same property of the function P^ a(z l 5z 2) holds. Thus if

P B > I , * 2 ) = Σ C f c

β, a ; j. l j 2z{^
JJJUJ2

Let us introduce the "inverse temperature" A, λ e C Let Π be the disjunct union of
ensembles Πk. Put the statistical weight pB β.Zl zrλ(y\ yeΠkcΠ equal to
λk

— pB α ;z i>22(y). The partition function P β α(z1?z2;/l) over the ensemble Π is of
' λk

course equal to ΣPβ,α(zi,z2)—. It follows from estimate (5) that for any λeC the
value

therefore FB>a(z1,z2;λ) is an entire function of λ, for |z1 | = |z2 | = l. There exists a
natural family of recurrent equations on the partition functions P^ α(z1? z2). In fact
given yik) = (y0, ...,yfc), y{k+ί) = (y{k\yk+i) such that yk+1-yk = (j, /)we have

hence

P B ^ ( Z I . Z2) = Σ hiΛ&i* Z2 exp(iα/ViZ 2 exp(iα/7/2), fe ^ 0,
ίo)

PS,^1,Z2)=1

System (6) is equivalent to the functional-differential equation for P 5 α(z l5z2;/l):

(7)

Jχ = Σ fy. ιP(zi> 22 exp(iα/), A)z{z'2 exp(iα/y/2)

P(Z l,z2,0) = l .

Define Q f ^ ^ e / 1 , ΦεS 1 , AεC as a vector with the coordinates

(Q?,«W), = ? PUe' , eω, 1) exp(-ilδ)dδ.
0

Note that Qf,α(/l) belongs to Z1 because it is a sequence of Fourier coefficients of a
continuous function. For every leΈ the function (Qf,α)j depends analytically on λ.
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Equation (7) can be rewritten in terms of Qf α as a Cauchy problem

where Q ( O )e/\ Q(0)(w) = δ(n, 0).
Note that for every k ̂  0 the vector (H% α)feQ(0) is well defined and belongs to l\

because of the estimate

Σ K . / Q ^ l ^ Σ \bh.mι\ • • K,J = φk(i, l).
leΈ ji,mieΈ

Since Qf>α(A) is an analytical solution of the Cauchy problem (8), hence it equals
exp(/lHj'α)Q(0). Taking into account that

we obtain

o
2 π oo oo

= J J (exp(Ai)^!,it)Q ( 0 ),Q ( 0 )¥^= f (exp(λήdNBJt).
O — o o — oo

Here we exploited formula (3). To prove the legality of changing the order of
integration one should approximate exρ(Λi) by a sequence of step functions fk(t)
such that fk(t)^Qxp(λt) and apply the Lebesgue and Levi theorems. Q.E.D.

3. The "Duality"

Because of the gauge invariance of the right-hand side of (4) it follows that the
measure dNBa(t) is invariant with respect to any area-preserving lattice transform.
Moreover, given homomorphism

let A(i,j)eΈ2 be (ai+bj, ci+dj). Define the induced action of A on the matrices B:

λB(i,j) = B{A-%j)). (9)

Theorem 2. Let A e GL(2, Έ),HBeΣ,oιφ <Q, then

N M α (£) = NB,α d e M(£). (10)

Proof. Given path γ = (yθ9...9yt\ y^eZ2, ^ = ̂  = 0, consider the corresponding
path $ = (Aγo,...,Aγt). Then

χ\y\
—

/l | y |

= p S t β d e t i l f A ( y ) .
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Changing the summation over the paths γ to the summation over γ we obtain
equality ΞχB,a;λ = ΞBθLdetA;λ which immediately gives the statement of the
theorem. •

In particular, if AeSL(2,Έ), then

(11)

The equality (11) turns into Aubry duality when A is ί I and the diagram
corresponding to HB is ^"~ '

1

Fig. 1 A

The generalization of the Aubry duality proven by Pastur [12] corresponds

( )

Theorem 2 enables to obtain results on spectral properties "up to" the singular-
continuous spectrum for different operator families invariant with respect to an
arbitrary automorphism (see Sect. 4 for some examples).

4. SL(2,Z)-Action

Here we want to describe the families of ID quasiperiodic operators (1) with
identical density of states, which are generated by the gauge transformations of 2D
Hamiltonians.

Unitary action of SL(2,Z) in L2(S1xΈ) can be defined as follows. Let

(-! ό)
Set

(VAφ)(j8,p) = 7dΦ Σ exp(iΦp + in(β + pa))φ(Φ9n), ΦJeS1; p,neZ-

(the "Fourier transform").

F o r A = = { o i j s e t

(VAφ) 08, p) = exp(φfc(pα/2 + β))φ(β, p). (13)

Proposition 1. The formulas (12)—(13) determine the

SL{2,Έ)-action on L2{SιxZ).

Proof. Set UAB = UAUB. All we need is to decompose the every automorphism
A G SL(2, Έ) into a product of automorphisms of two above types. The correspond-
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ing fact is the discrete analog of the polar decomposition theorem: for every

where kί,...,kr are defined by

ίK (15)

Proposition 2. The following equality holds

U^U^H^. (16)

Proof. It follows from the above that one needs to prove (16) only for the operators

U^ of form (12), (13). Let A be Γ * \ i.e. (AS) (i, j) = b, _ W i y Thus

hence

i = Σ Ψi+jΨjtΦ + fa) exp {- ikj(Φ + h + ;
j= - o o

= Σ
j= - o o

The proof for case (12) is similar to this one.

Note that the group G = \ ( ) > C SL(2, Έ) acts in L2{S1 x Έ) as a group of

operators which are unitary in I2 for every fixed ΦeS1. Thus G preserves the
spectral properties of H 5 . However the action of automorphisms ΛeSL(2,Έ)\G
changes essentially the spectra of H β though it preserves the density of states. The
precise assertion is given in Theorem 3. We need the following definition.

Consider the ergodic dynamical system (M,μ, Tx\ xeZd. The operator family
Lφ:l

2(Zd)^l2{Z% ΦeM will be called the metrically transitive (mt) if RXLΦR^1

= LTχφ, ΦeM, where Rx is a lattice shift to the vector x: {Rxφ)(ri) = φ(n + x),neZd.
We will say that mt-operator L φ possess S-spectrum if the following three

conditions hold:
1) The spectrum of L φ is pure point for a.e. ΦeM.
2) The integrated density of states NL(£) is absolutely continuous.
3) There exist measurable multi- (but a.e. finitely) valued functions

= {Λ1{Φ)9...9A
kiΦ\Φ))9 Λ ι :M-»R,

and X(Φ) = (XH#), , * k ( Φ \Φ)), ^ : ^
the complete sets of eigenvalues and eigenvectors of Lφ can be represented

correspondingly as (J Λ(TXΦ) and (J RXX(TXΦ).
xeΈd xeΈd

Let us emphasize that the existence of the function A(Φ) {X(Φ)) such that the
spectrum of L φ (the set of eigenvectors) can be represented as a union of its values
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along the dynamical system trajectory follows from the mt-property of operator
Lφ and the pure point character of the spectrum. Condition 3) states that such
functions can be chosen measurable and almost surely finitely valued. The
functions Λ(Φ) and X(Φ) were introduced by Sinai [4] (which is the reason for the
letter S). They were studied in [4] for the almost-Mathieu-type situation. Later
they were used in the proof of localization for the ID discrete Schrόdinger operator
with two frequency potential [13]. Similar objects were used to study singular-
continuous spectrum [14]. Following the Frόhlich-Spencer construction [15] one
can build functions A(ω) and X(ώ) satisfying 3) for almost every realization ω in the
Anderson localization regime for multi-dimensional Schrόdinger operator with
random potential.

It seems that generically pure point spectrum of mt-operators satisfies
S-conditions 2), 3). The only counterexample we know corresponds to the ID
Schrόdinger operator with random discrete-valued potential which possesses pure
point spectrum but has the singular component in the integrated density of states
[16]. It has been already mentioned however that the case of the discontinuous
function on the phase space M needs generally speaking a special approach and
the results presumably are principally different from those for the continuous
function. Furthermore, the results related to the Maryland model (see [17]) and
Kotani theorem [18] concerning the almost periodic Schrodinger operator with
discrete valued potential give rise to a natural question: does there exist an
operator of the form (1) with essentially discontinuous functions / and absolutely
continuous spectrum? Our conjecture is no.

We will show now that quasiperiodic operators (1) with S-spectrum turns under
the transforms of SL(2,Z)\G into an operator with absolutely continuous
spectrum. It seems that the symbol S in all considerations may be replaced by
"pure point."

To avoid some technical difficulties let us restrict ourselves to the case of finite
matrices B. Denote by 21 the class of H β e Σ with finite B. Every HB e 51 is self
adjoint.

Theorem 3. The decomposition of 91 into orbits O of SL(2,Έ)-action satisfies the
following properties:
1) NB is constant along the orbit O.
2) There is at most one class of operators with S-spectrum in the every factor-set
O/G; if it exists then all other classes in O/G correspond to operators with absolutely
continuous spectrum.

Proof Statement 1) is a corollary of Theorem 2. Let us give the proof of 2).
Define the unitary action on lL2(iS

rl x Έ) for some transforms belonging to
SL(2,Q).

(U

UA Λ K^S1 xZ)-»IL2(S* xZ) for r = p/q. Here S* =ΈL{mod2πq\ S1 = S{.

Given C e § there exist (not unique) r l 5 r 2 e Q , C1eSL(2,Z):
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Set

It can be shown easily that the definition of U c is independent of the concrete
representation (17) of C. Let q = q{C) be the common denominator of c and d.
Define CB(i,j) = B(C'1{iJ)),ίeZ/qJeZ, r=p/q, BeΣ. Here B(ίJ) is assumed
to be zero for iφΈ or jφΈ.

Lemma 1. Given Ceξ>, BeΣ then the operator family H j β , ΦeS* ( C ) of form (1) is
well defined. The functions f} in the related formula (1) belong to C(β\\ — oo <j < oo.
The operators Hf, Φ e S 1 and Hfβ, ΦeS^ are conjugated through the unitary
operator U c . Besides that

Proof. Define H^ β through formula (1) with functions Jfx) of the form

Σ (CB)(kJ)exp(ίk(x-ja/2)), xeS^fce-Z.

It follows that fj{x) is equal to

It remains to repeat the arguments of Proposition 2. To prove the equality of
integrated densities of states it suffices to consider random walk on Έ\ which is
{(m/q, n\ m,neΈ}, and to repeat the proof of Theorem 2.

Note that UAC = UA\JC for A, C.ACeξy. Every automorphism

NC a)

can be represented in the form

(a b\ fί ac\fθ -l\fc 0 \/l d/c

c dj \0 ίj\ί OJ\O ί/cJ\O

As far as operators UΛ λ are unitary in I2 for every fixed ΦeS1 (they don't

"mix" Φ) it suffices to study the action of U/o -iVc o

Denote the matrix I I by Dc. It is straightforward to check that the

operator XJDc acts as follows:

(VDcφ) (j8, n) = φ(β/c + α{n/c}, [n/c]), c e Έ.

Lemma 2. 1) If the operator H 5 e 9 I has pure point spectrum then the spectrum of

H ^ c B = U 2 ) c H β U J ^ c

1 is also pure point.
2) The S-property is also preserved under the \JDc conjugation.

Proof. Set Xr

k(β,m) = Ψk( , )δ(r,m(modc)), Og;r<c, for an eigenfunc-
V c c )

tion Ψκ(β) of the operator H^ α with the corresponding eigenvalue Ek(β). Then

\\Xr

k(β)\\=Σ\Xrk(β,n)\2

neZ

ψ
V c

< O O
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/ n, \

for any β e S^ It is obvious that H ^ aX
r

k(β) = Ek ί J Xr

k(β). The completeness

of the eigenfunction system {Xr

k{β)}k= _ ̂  0 ^ r < c , follows immediately from the
completeness of the system {Ψr

k{β)}k= _^ f° r every 0^r<c.
Statement 1 of the S-property is already proven. Statement 2 follows from

Lemma 1. Go on to the proof of Statement 3.
Let Λ(β) and X{β), β e S 1 , be measurable functions related to the operator HB.

Set
Λ(β) = Λ(β/c\ X(β, m) = X(β/c, m/c)δ(0, m(modc)), β e S*.

It follows from Statement 1 of the lemma that the spectrum of H^ c B α can be

represented as (J (J Ek ( ), where {Ek(β)}keZ is the spectrum of Hβ

B α. Hence

the spectrum of Hf>cB α can be written as follows:

U Λ(*±?- +ka) =
Z \ C Jr = 0 keZ \ C J keZ \ C / keZ

The set of eigenfunctions of HβDcB,a can be represented in an analogous way:

-hαr m — r\
J U xίM= u U 5
Zr=0 keZr=0

= I) U X ( h feα, k I δ(r, m(modc))
r = 0 keZ \ C '

keZ V C ' C J keZ Q R D

Denote by I the symplectic matrix ( I.

Lemma 3. Assume H ^ α e 2ί possess S-spectrum. Then the spectral measure μB(E) of
HfBa is purely absolutely-continuous for almost all /?e[0,2π], the generalized
eigenfunctions being spectrally almost surely quasiperiodic in the I2 sense.

Proof Using Statement 3 of the S-property write the sets of eigenvalues and

eigenfucntions of WBa in the form (J Λ(β + ma) and (J X(β + moί,n — m) for
meZ meZ

measurable functions A(β) and X(β) on S1. Mimicking Delyon-Chulaevskii's
argument (which uses effectively up to this moment only conditions 1, 3 from the
S-definition rather than almost-Mathieu specificity) we obtain for the dense set of

Ψ(β, n) = 2jf dΦG(Φ, β, n) Σ G*(Φ, β, q)Ψ(β, q), (19)
0 qeZ

where

G(Φ,β,n)= Σ exp(ϊΦn + im(/J + rcα))X(Φ,m) (20)
meZ

is a multi-(but a.e. finitely)valued function. Relation (19) assumes the summation
over all branches of multivalued function G(Φ, β, n) which is
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in correspondence with the branches (Λι(Φ\...,Λkm(Φ)) of function A(Φ). One
can easily check that for a.e. β the function G\Φ, β, n) is a generalized eigenfunc-
tion of H?£ α with eigenvalue A\Φ). Relation (19) yields that the type of the

2π k(Φ)

spectral measure μB of H? β α is measure μ, which is μ(Λ) = j dΦ j χ(Λfc(Φ), ̂ ) f° r

o k = i

the Borel subsets ^4cR {χ is the characteristic function). Thus μβ

B do not depend
on β and taking into account (3) one obtains the spectral type oϊHβ

B to be equal to
dNB(λ). The S-condition 2 gives immediately the statement of the lemma.

The assertion 2 of Theorem 3 follows from (18) together with Lemmas 3, 2
because of unitarity in I2 of operators U/i Λ. Q.E.D.

Let us describe the spectral properties of SL(2,Z)-orbit of almost-Mathieu type
operators as an example of application of Theorem 3.

Let HB be the operator of the form (2) with cosine replaced by φ: S1 -+R - the
trigonometrical polynomial having exactly one nondegenerate maximum and
minimum (see [4]). The last condition can be expressed in terms of algebraic
inequalities for the coefficients bh 0 of φ(x) "Fourier expansion," setting actually
some decreasing property.

Theorem 4. For sufficiently small λ, typical oceS1 and A e SL(2, Έ)/G the spectrum of
^AB,a is purely absolutely continuous and is a Cantor set of positive Lebesgue
measure.

Theorem 4 is an obvious consequence of [4] and Theorem 3.
Let us describe an explicit form of the almost-Mathieu SL(2, Z)-orbit.

Let Hfα be an almost-Mathieu operator (2). For A=(m P)eSL(2,Z)
\n qj

operator H% α has the form

Corollary. 1) Under the condition of Theorem 4 the spectrum of H%npq,α is purely
absolutely continuous and is a cantor set of positive measure.
2) For a dense Gδ of pairs (α, λ) the spectrum is a nowhere dense set.

Assertion 2 follows from the results of [19] and Theorem 2.
Let us emphasize that Theorem 3 contradicts the belief that pure point and

absolutely continuous spectra are dual to each other under the discrete Fourier
transform. Indeed the operator \Jj transforms the pure point spectrum into an
absolutely continuous one, though the latter is preserved (generically) under the Uj
action.

Example. Consider the family Hf α of the form

This family is related to the model with pure diagonal hoppings. The "Fourier
transform" U7 turns the operator Hλ α into HA j_α though assuming λ or ί/λ
sufficiently small and Φ e S 1 being typical the spectrum of HΛ α is pure absolutely
continuous. It follows from the fact that HΛ α belongs to the SL(2,Z) orbit of the
almost-Mathieu operator HΛ 2 α of the form (2).
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5. The Next-Nearest-Neighbor Model

In this section we will study spectral properties "up to" the singular continuous
spectrum of the certain family of the operators HB, i.e. we will prove the absence of
absolutely-continuous (point) components in the spectra depending on the
parameters given. We will use the equalities on N(E) together with the connection
between the Lyapunov exponent y(E) and the measure dN(E) in the same way as it
was done in [8,7]. Here we will deal only with the second order operators H rather
than with the general case. Under such a restriction the Lyapunov exponent y(E) is
defined as

y(E) = sup l m n ^ l n l i ί + tt^l1'2 (21)
/?e[0,2π] «->oo

for the solution un of the Cauchy problem

Hu = Eu (22)

with the initial data

W_1 = COSJS, uo = sinβ. (23)

The limit in (21) exists almost surely and is nonnegative for every mt-operator due
to the multiplicative ergodic theorem [20]. The connection between γ(E) and
dN(E) in the Schrodinger case is called the Thouless formula. We need a slightly
different version of it valid for all mt second order operators of the form

For bounded stationary processes aw qn and a.e. E e R it follows that

y(E)= -<ln|αj>+ J ln\E-E'\dN(E'), (24)
— oo

where <, > denotes the mathematical expectation.
Consider the operator family H Λ l 4 related to the next-nearest-neighbor walk

in Έ2. The corresponding diagram is

λ

and the family acts in I2 through the formula

4 , β n = 2A1cos(α/ + Φ)!Pί

3 + λ2 exp {ί(oc(l +1/2) + Φ)} + λ4 exp { - ί(a(l +1/2) + Φ))} Ψt

Set λ = max(Al5 λ3, λ2 + λ4).

Theorem 5. For any irrational a and a,e. ΦeS1,
1) For λ = λί being a strict maximum there is no absolutely continuous component in
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the spectrum of H j ^ ^ . The Lyapunov exponents (if any) on the spectrum are
given by the formulas:

2λΊ

y(E) = 2πln —
2λ4

A2 ^ Λ 4 , A3

A2 < Λ4, Λ3 -|- /L2 j

2) For λ = λ3 being a strict maximum there is no pure point component in the
spectrum of H*1_4>α. The Lyapunov exponents (if any) are equal to zero.
3) For λ = λ2 + λ4 being a strict maximum the Lyapunov exponents (if any) on the
spectrum are equal to zero.

Remark. 1. Setting λ2 = λ4 = 0 turns Hf1_4>α into the almost-Mathieu operator for
which the results of Theorem 5 were proved in [7-9].
2. The case when λ is not a strict maximum has codimension 1 and seems to
correspond to the purely singular continuous spectrum (see below).

Proof According to (24) for a.e. £eIR the Lyapunov exponent y(Ax_4;E) of
operator H f l 4 α is equal to

f \n\E-E'\dNλι_4(E'). (25)

Denote by σ the transposition (1,3). According to Theorem 2 N λ l_4(E)
= N λ σ ( 1 4 ) ( £ ) , thus (25) can be rewritten as

dx.

2π

2π
- | ln|A3 + A2^

xH-A4έ
0

2π

rtΛσ(1_4);£) + 2π J In
0

λί+λ2J* + λAe-i'
λ3 + λ2e

ίx + λ4e~ix X

0 0

>~ix\dx+ J l n | £ -
— oo

A -4-A eixΛ-λ e~ix

1 ' 2 ' 4
Q i Q ΐx 1 ~ix

A-\ ~τ" A>2^ ~l~ AAC

b v /̂  Γyl ^Denote 2π j In
o

Since y(£) cannot be negative the positivity of L(λί _4) implies the positivity of
7(A1_4;£)for a.e. E.

The straightforward calculation shows that

L(/11_4) =

L(At_4) =

2A7

ι V ^

A1+t/Aj-4A2A4

A3 + l/λl-4λ2A4

-f- A29
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4 , λ2>λ4,

It remains to use the argument of [21] to obtain assertion 1. Assertions 2,3 can be
proved by the argument of [9] which being repeated in our situation shows that
y(λ1_4;E)>0 implies y(λσ(1_4);E) = 0. In fact

and it remains to notice that Delyon's argument exploits only the properties of the
Fourier transform. Q.E.D.

Let us restrict ourselves to the case λ2 = λ4. Setting λi = l we obtain the
following diagram in the plane λ2, λ3

Fig. 3

Domain I corresponds to the absence of the purely continuous part in the
spectrum, Domain II to the absence of the pure point component, and Domain III
cannot be studied by our methods but it seems to correspond to the singular-
continuous spectrum.

The latter model was considered in [22] where the expressions for the
Lyapunov exponents were announded in the domain λ3 > 1 and the numerical
computations for the {IIIn{A3>l}} were fulfilled. The results of computations
give rise in regard to the spectrum of operators corresponding to III as singular-
continuous.

It can be stated more for the case: /12 = O, which is reverse in a sense to the
previous one. It turns out that operator H λ l _ 4 in this case corresponds to the
random walk on the triangular lattice.

Indeed consider the lattice Zζ2 with the cell of the form of a parallelogram having
sides α, b and the angle β e [0, π]. We regard the area of the unit cell ab sin β as being
equal to 1. The argument used to prove Theorem 1 repeated with appropriate
changes shows that under some "rationality"^ conditions the corresponding
partition function ΞB α ; ί (defined with respect to ΊL2 in the same way as ΞBta;t with
respect to TL2\ see 2) is independent of α, b, β and is equal to ΞBa.t. The "rationality"
condition mentioned is that fr2sin2/?eQ. Thus all "rational" in the above sense
lattices are equivalent.

The triangular walk can be regarded as a walk on the lattice Z 2 with parameters

= \L- (which implies fc2sin2/?=l). Hence the corresponding
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diagram is

V

Fig. 4

λ 2 λ2λ3.
and the corresponding operator is H λ l λ 2 λ 3 θ : = H λ l

Theorem6 (the triality). Given transposition σ = (σuσ2,σ3) the following equality

holds:

Proof. The partition function ΞBta;t corresponding to the lattice X2 with
parameters a, b, β defined above is invariant with respect either to the π/3-rotations
as to reflections in the axes {x = 0}, {y = 0}, {3; = — x} which together with (3) gives
immediately the desired equality.

Theorem 7. For irrational a, almost every ΦeS1 and λ2>λu λ2>λ3 there are no

pure point component in the spectrum of H* _3Λ.

Remark. All the other domains in the space (λuλ2,λ3) are already regarded in
Theorem 5.

Proof It follows from Theorem 5 that for λ1>λ2,λ1>λ3 the Lyapunov exponent
y(A1_3;E) is strictly positive for E belonging to the spectrum. It remains to note

that Hf2λlλ3,a = Hyβ

φ_α for J = ί j I , UB = H Λ i _3, and to repeat the reasoning

of Theorem 5. Q.E.D.
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