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Abstract. The essential spectrum of the transfer operator for expanding markov
maps of the interval is studied in detail. To this end we construct explicitly an
infinite set of eigenfunctions which allows us to prove that the essential spectrum in
Ck is a disk whose radius is related to the free energy of the Liapunov exponent.

I. Introduction

Transfer operators have provided an important tool in the study of several
questions arising from dynamical systems theory. By analogy with their use in
statistical mechanics they have allowed the construction of equilibrium states
(invariant measures) as well as the study of their dynamical properties (see [Bo, Rl,
S]). In particular, they give a very interesting connection between the Fourier
transform of correlation functions for an equilibrium state and the corresponding
weighted zeta function. To be slightly more precise, the large time decay of
correlation functions as well as the analytic structure of the zeta function are
directly connected to the spectral properties of a suitable transfer operator [R2,
PI, H, Ec, K2, Ba].

It turns out that the spectrum of these operators can be decomposed into a
discrete part (i.e. the set of all isolated eigenvalues with finite multiplicity) and an
essential part (cf. [N]), which give contributions of very different nature to the
decay of correlations. For this reason the study of the essential spectrum is a matter
of growing attention [R3, R4, T, Kl] .

In this paper we shall study the essential spectrum for regular expanding
Markov maps of the interval. Briefly, we say that a map / of the interval [0,1] is
Markov, if there exist a finite set of disjoint open intervals Il9...,It whose closure
form a covering of [0,1] and such that the closure of the image of any such interval
under / is again a union of such closures (such a partition is usually referred to as
Markov partition). Moreover, there exist m>0 such that ^ / " " ( J ^ n J ^ Φ O for
every i, j (where λ denotes the Lebesgue measure). We will assume that / is
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piecewise C00, i.e. its restriction to any of the above intervals Iί9..., 7f is C00 and all
the derivatives of/ have limits at the boundary points. We shall also assume that /
is expanding and regular, in the following sense:
i) there are two finite numbers χΞ>ρ>l such that

χ^\f{Is\^ρ for s=l,. . . ,/.
ϋ)

xels

It is well known that such maps have a unique absolutely continuous invariant
measure (see for instance [M], pp. 167-178), whose density φ is a fixed point of the
transfer operator P, defined for any measurable function h by

More generally, given any measurable function ψ, one can define the transfer
operator Pψ by

j y Φ 0 = Σ vOOΛOO (2)
y

.„ t f(y)=χ

It is easy to verify that
Pn

ΨKχ)= Σ "πψ(fj(y)My) (3)
y J=o

fn(y) = χ
and

Pψ{hof) = hPψt. (4)

A consequence of the latter property is that P is dual to / in the sense that

whenever both sides of this equation are well defined.
It follows from our hypothesis on the transformation / that the operator P is

bounded in Cfe, and we will study its essential spectrum in this family of spaces. For
the sake of simplicity we will only consider integer values of fc, and also Markov
maps / satisfying

7 7 [0,l] for s = i,...,I,

the case where / is not full being more delicate. The arguments will be given for the
case 1 = 2, but they obviously extend to any value of /.

The main result of this paper is that under the above hypothesis, the essential
spectrum of P in Ck is a disk whose radius is equal to

expF(-fc),

where F is the free energy of the Liapunov exponent, defined by

F(β)= lim -log}\r(xψφ(x)dx. (5)
n-+<x> Yl 0

We recall that the function F(β) is related to the large deviations (multi-fractal
aspects) of the Liapunov exponent ([BPPV, B, R, C, L]). It is a convex function of β
which is C1 and its derivative at β = 0 is the Liapunov exponent of the invariant
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measure φ(x)dx. Moreover, its Legendre transform is the large deviation function
[El] for the sequence of random variables

Let us note finally that in the context of statistical mechanics formalism F(β) may
also be regarded as the topological pressure of the interaction function
(β— 1) log|/Ί (see [Rl]). We will proceed as follows: first, we shall prove a lower
bound on the essential spectral radius in C° for operators Pψ. This will be obtained
from the explicit construction of an infinite set of eigenfunctions. Incidentally, such
a construction will provide an effective tool to investigate the actual structure of
the essential spectrum, which turns out to be a disk. We will then reduce the Ck

problem to the C° one for a compact perturbation of the operator P. Finally, the
upper bound will follow using a direct estimate.

II. The Essential Spectrum in C°

1. Theorem. Let ψ be a function whose restriction to any of the intervals of the
Markov partition is Cα (with oc>0) and bounded away from zero. Then the essential
spectrum of the operator Pψ in C° is the disk of radius eF[ψ\ where F^ is defined by

F | v | = lim -log j "Π \ψ(fj(x))\ IΓ'WIΦ(x)dx.
n-+tχ>n 0 7 = 0

Before we give the proof we need some auxiliary results.

2. Lemma.

l imsup- sup log|PJl(x) |^ lim - sup logPjl

v,l(x) = F M ,
n->oo ftχe[0,l] n->αo ftχe[0,l]

see [Rl, Chap. 7], for a proof.

Remarks. (1) Note that the first limit provides an upper bound for the logarithm of
the spectral radius of Pψ.

(2) According to the above discussion, the second limit gives the topological
pressure for log|φ| (see [Bo]).

3. Lemma. For each integer q^l, kerP* is infinite dimensional (the functional
space Pψ is acting on being C°).

Proof f q has 2q monotone branches denoted by fl9 ...,/2 β. They are monotone
on maximal open intervals denoted respectively by K1,...,K2q. Let rx be a
continuous function with support in the open set Kv

Define the function r,. (where 1 ̂ j^2q) by

0 otherwise.

is obviously C° with support in Kj.
For any integer /, 1 ̂ l^2q — 1, we define a function hι

q by

i

Π vί/'M)
7 = 0
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It is straightforward to realize that these functions are linearly independent and
satisfy

pih1 = 0

Furthermore, by changing the function r1 we can construct infinitely many such
independent functions. However, since the parameter / will not prove really useful
in the following, we shall limit ourselves to consider the functions hq = hι

q where,
say, J = l.

4. Lemma. 3K>0 such that V<?>0

Proof. The proof is the same as the proof of the distortion lemma. See, for instance
[GH].

5. Lemma. Any point in the open disk |z|<infP^|l(x) is an infinitely degenerate

eigenvalue of Pq

ψ in C°.

4 - 1

Proof Let hq e C° such that P%hq = 0. Let χ(y) be the sign of [] ψ ° fJ(y)- Then, for z
j=o

as above we define a function eqz by

eq,z= Σ Z

.Π
The absolute convergence of this series is guaranteed by the condition \z\

< inf Pι[ψ\ί(x). Moreover, using properties (3) and (4) listed in the Introduction, it is
JC

easy to verify the relation

Pqe =ze
± \frqtz ^^q,z '

It remains to check that eqz is continuous. This is obvious in the case where ψ is a
strictly positive function (so that χiy) = 1, Vye [0,1]). In the general case, let us

ϊ - l lq

note that Π χQ o fjq is constant on the intervals of \7 / ~ss/, where si denotes the
j=0 s=0

Markov partition. Moreover, hq <> flq has support inside the union of these open

ί1'1 Λ
intervals. Hence I f] χq o fjq (hq o f l q ) is continuous. We then have a uniformly

V/=o /
convergent series of continuous functions which is therefore continuous.
Remark. In the above construction it is implicit that xp is real-valued. One can also
make things work for complex-valued weights. For the sake of simplicity, let us
consider the case where ψ is a strictly positive function. Thereafter we write ψ = eu

and introduce a countable set of functions ψι = eti+ί{l+1)v, where / = 0,1,2,... and
u,veC".
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We shall describe the essential spectrum of the operator

(PΨoh)(x)= Σ
y

f(y) =

Let us first note that

Let ftqeC°[0,1] such that i*Λβ = 0, as before. If \z\^ infP«l(x), then
X

. ϊΓ~ffV^+>-« (v/ίβ)
π (ni)°/j?

J = I

is well defined and satisfies Pq

υoeqtZ = zeqfZ.
Proof of the Theorem. From Lemma 2 and Lemma 4 we have

lim »loginfPfv,l(x) = F H .
g->oo <? x

Then, let us prove that for any number η<eFM we can find infinitely many
eigenvalues of Pψ on the circle of radius η. Indeed, from Lemma 5 we have that if q
is large enough, then any point of the circle of radius η9 is an eigenvalue of P%.
Therefore one of the qth roots of this number must be an eigenvalue of Pψ.

We can actually say more. Let z be a number of modulus ηq. By modifying, if
necessary, the function r1 used in the definition of hφ we can assume that the
vectors

P p p Pq~ιe

are linearly independent. They generate an invariant finite dimensional subspace
for Pψ and the corresponding eigen-equation is

Therefore, all of the qth roots of z are eigenvalues of Pψ. On the other hand, a
sufficient condition for a complex number λ to belong to the essential spectrum of a
linear operator T, is that (J ker((T—λΓf) is of infinite dimension (see [N] for

alternative definitions). Thus, passing to the limit g->oo in the above setting, we
conclude that the essential spectrum of Pψ contains the disk of radius e F M .

From Lemma 2 it follows however that the spectral radius of Pψ is ^ eF]ψl, and
the theorem is proven.

Remarks. (1) Note that the eigenvalues constructed above, besides being of infinite
multiplicity, are not isolated, and this is already a sufficient condition to be in the
essential spectrum (we thank the referee for this remark).

(2) From the above discussion it follows that the essential spectrum of Pψ in C°
coincides with its spectrum. This raises some interesting questions about the decay
of correlation functions for observables living in this space.

(3) Theorem 1 implies in particular that the essential spectrum of the operator P
(that is Pψ with ψ = \f'\~1) in C° is the unit disk in the complex plane.
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III. The Essential Spectrum in Ck

6. Theorem. The essential spectrum of P in Ck is the disk of radius eF{~k).

Proof The strategy is to reduce the Ck problem to the C° one. Indeed, it is easy to
prove recursively that

h{k)(v) k~ί

(Phfk)(χ)= y — w — r + y y G,(y)ft(i)(y)
f(y) = χ f(y) = χ

where the functions Gt(y) are C° and h{k) denotes the fcth derivative of h.
Furthermore, since we have chosen h in Cfc, it is clear that the second term is
compact in C°. More precisely, we can write the above formula in the following
way:

fc-l Λ - l

ψ 1 = 0 1 = 0

where

ψ=\fT1(fTk.
The Rz's are bounded linear operators given by

(RIΛ)(x)= X G^ΛCv)

and Kk_z is a suitable composition of compact integral operators of the type

hik\x)^] h{k\u)du--h{k'1\0).
o

In other terms, for any k^. 1, we have

(P/z)(fe)(x) = Pψh
{k)(x) + Tfc/z(fe)(x) + SfcΛ(x),

where 7̂  is a compact operator in C° (since it is obtained by composition of a
bounded operator with a compact operator), and Sk is of finite rank.

Now, since the essential spectrum is not modified by a compact perturbation
(see [Ka], p. 244), the essential spectrum of P in Ck and of Pψ in C° (with ψ as
above) are identical. The final result follows from Theorem 1 and the expression (5)
for F(β).

Remarks. (1) Using a similar reasoning, one can prove that for any k (even not
integer), eF{~k) is an upper bound of the essential spectral radius.
(2) Since we have assumed |/ ' | ^ ρ > 1, then F( — k)^—k logρ. This means that the
essential spectral radius tends to zero when fc-> oo. (For related results, see also [T,
R3, P2]).
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