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Abstract. In a previous paper the authors showed that the space of (first order)
polarized functions on the Virasoro group is not, in general, irreducible. The full
reduction was explicitly achieved by taking the orbit of the enveloping algebra
through the vacuum. This additional step provided the proper quantization in the
"strong-coupling" domain 0 < c ^ 1. In this paper we introduce the concept of
"higher order polarization" as a generalization of that of polarization. We prove
that the imposing of the additional (higher-order) polarization conditions is
equivalent to the taking of the above-mentioned orbit. This demonstrates that the
generalized (higher-order) polarization conditions suffice to obtain the irreducible
Hubert spaces. We also discuss the need for higher order polarizations in terms
of anomalies.

1. Introduction

The standard geometric methods for quantizing a phase space (symplectic manifold)
make use of the concept of polarization. Generally speaking, given a symplectic
manifold (M, ω) the corresponding quantum Hubert space is the space of sections
of a line bundle (whose first Chern class is [ω]) once the polarization conditions
are imposed. A polarization P is an isotropic differential system {ω{X, X') = 0 if
Xf,XeP) and the polarization conditions are

Vxψ = 0 if XeP, (1.1)

where ψ are sections of the line bundle and V is a covariant derivative whose
curvature is given by the symplectic form. The conditions (1.1) are always first-
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order differential equations. From the physical point of view the polarization is
required in order that the "wave functions" do not depend on both momentum
and position variables. Otherwise the wave functions would violate the uncertainty
principle and would provide, in addition, a highly reducible representation of the
algebra of observables. Typical simplectic manifolds for which there is a general
way for quantizing them are cotangent bundles and Kahler manifolds. The latter
case has a special significance in different branches. If a Kahler manifold M is the
quotient of a compact simple group G (or the central extension of the loop group
LG) by its maximal torus T, the holomorphic sections of a line bundle over M
carry the irreducible unitary representations of G (or LG) via the Borel-Weil-Bott
Theorem [1]. This result arises as a particular case in the coadjoint orbit method
[2]. On the other hand Kahler geometry also arises in the standard quantization
of field theories; in this case the complex structure J of the phase space comes
from the Fourier decomposition of the field into positive and negative frequencies

[3].
In reference [4] we showed that the standard (first-order) polarization equations

(1.1) do not provide, in general, enough conditions to obtain the irreducible
representation of the Virasoro group. This fact was verified for what would naively
be (see Sect. 3) the quantization of the orbit diΰS1/S1 in the strong-coupling
domain 0 < c ^ 1 (h ̂  0). The proper quantization was achieved by working
on the Virasoro group manifold and by taking the orbit of the enveloping
algebra through the vacuum, which turned out to be irreducible. This mechanism
provided a way out of the problem formulated by Witten [5] of quantizing the non-
Kahler orbits diffS7SL(Γ)(2,R), r = 2,3,... (SL(r)(2,R) generated by <L_ r,L0,L r>).
In fact, the representations initially thought of as associated with the orbits
diffSVSL(Γ)(2,R)- those having null vectors at level r - c a m e from the proper
quantization of the (diff S1/Sί orbit of the) Virasoro group.

The aim of this paper is to prove that the full reduction can equivalently be
accomplished by imposing additional (non-standard) "higher-order" polarization
conditions. "Higher-order polarizations" are subalgebras of the left enveloping
algebra rather than subalgebras of the Virasoro left algebra and thus will be
imposed by means of higher-order differential operators. A vector field X of a
standard polarization defines a first-order operator (i.e. a derivation) by means of
the covariant derivative Vx. The concept of a "higher-order polarization" will be
introduced in a natural way in the context of a "group approach to quantization"
which had been already used in reference [4] (see also [6]).

In ref. [7] a third way of obtaining all the irreducible representations of the
Virasoro group is proposed. It is based on the geometric quantization (and/or
path integral approach) although it is formulated on the so-called, model space.

2. Higher-Order Polarizations on the Virasoro Group

The idea of the "group approach to quantization" [4] when applied to the
Virasoro group is to perform the quantization from the group manifold itself
instead of its coadjoint orbits [5]. One starts with the complex functions on the
Virasoro group ./(diff S1, <C). A naive quantization (or prequantization) is achieved
from the right-invariant vector fields X^ acting on / (difϊ S1, <E). Of course this
representation is highly reducible. Non-trivial operators commuting with the
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representation can be found; in fact they are the left-invariant vector fields XL,
which commute with the representation Z R (as a consequence of the relation
[X L ,X R ] = 0). In order to reducejthe representation we look for a maximal set of
compatible conditions on ^/(diffSSC) thus trivializing the action of the left-
invariant vector fields XL. More precisely, we impose the maximum number of
compatible (first-order differential) equations of the form XLφ = 0, i.e. we impose
a (first-order) polarization (the group analogue of Eqs. (1.1) on the phase space).

As we have already mentioned, the space of (first order) polarized functions
(the analogue of holomorphic sections in Kahler quantization) on the Virasoro
group is not, in general, irreducible although it does not contain null vector states.
The full reduction is achieved by taking a well defined invariant subspace Jf(CfΛ),
i.e. the orbit of the right enveloping Virasoro algebra through the vacuum |0>,

jr(c,h)^<xln/-xljoyy nk>o, 7 = 1,2,.... (2.1)

The irreducible carrier space J^{Cih) is a proper subspace of the space of (first-order)
polarized functions for those values of c and h for which the Kac determinant is
zero [8]. Of course this fact does not hold for compact simple groups (finite-
dimensional Lie groups and loop groups) because of the Borel-Weil-Bott Theorem
[1]. In these cases the (first-order) polarization conditions are already sufficiently
restrictive so as to lead to the irreducible Hubert space. In the next section we will
reinterpret the requirement of imposing higher-order polarization conditions in
terms of anomalies.

Following the above given argument for introducing the first order polarization
we can argue that any element in the left enveloping algebra commutes with the
representation (\_XL -XL,X^] = 0). So we can further reduce the representation
by imposing additional (higher-order) differential equations of the form.

Σcnu...,nkXl-Xlψ = 0. (2.2)

The comments above make natural the introduction of the concept of higher order
polarization.

Definition 1. A first-order polarization [4] P on the Virasoro group is a maximal
left-sub algebra of the Lie algebra containing a subalgebra of the kernel, &Θ, of the
central extension diff S1 -•diffS1, and excluding the central generator Ξ.

The subscript θ stands for the connection 1-form on the principal bundle
diff S 1-* diff S1, whose curvature dΘ is the symplectic form on diff Sί/&θ and &Θ

generates the characteristic module of Θ. The actual structure of &θ depends on
the particular values of c and d (or h = (c — c')/24) in the Lie algebra:

[ * £ , X f ] = - i(n - m)Xϊn+m -^(cn* - dn)δΆt-mΞ. (2.3)

Definition 2. A higher-order polarization P H O on the Virasoro group is a maximal
subalgebra of the left-enveloping Virasoro algebra containing a first-order polarization
and excluding the central generator.

First order polarizations were classified in ref. [4] and are essentially determined by

<Xf- > if cΦc' (/i#0), (2.4a)

<X£ s i > if c = c' (Λ = 0). (2.4b)
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The structure of a higher-order polarization is given by the following proposition.

Proposition 1. A higher order polarization is a left ideal of the left enveloping algebra,
UV, of the Virasoro algebra V generated by a basis of a given first-order polarization
as well as a set of higher-order operators

ZLN(CM= . + Σ _N W)ιι.....ιPxt xϊ,r> (2 5 )

whose parallel combinations Z_N(c,h) = Y^λ(c,h)iu ipL-h--L_ip in the standard
Verma module approach [8] create null states of level N (which are not induced from
null states at a previous level) from the vacuum (highest-weight vector).

The concrete values of c and h for the existence of those singular higher-order
operators (2.5) are given by the well known Kac formula [8]: h= 1/48 (13 — c)
(k2 + s2) ±(c2 - 26c + 25)(k2 - s2)- 24/cs - 2 + 2c, where k and 5 are positive integers
such that k-s^N.

The proof of Proposition 1 is as follows. We consider only the first-order
polarization P (2.4a) because the polarization (2.4b) could be considered as a
particular higher-order polarization. Since P H O z> P, any operator in the left ideal
UVP is in P H O . By definition, none of the first-order generators X\m>Q is in P H O ,

so that only linear combinations of higher order operators X\ X\.X\ >

would be in P H O . We can restrict our analysis, without any loss of generality, to
those operators for which iί ij>09 otherwise any operator X\, with negative
index ίk^0 could be moved (by commutation) to the first place Ίfrom the right,
thus providing one term in UVP and the other ones with only positive indices.
We arrive this way at the general form (2.5) and we have to prove now that the
coefficients λ's characterize the null vector states of the standard Verma module
associated with c and h.

Let us consider the set of all operators O^(c, h) of the form (2.5), not necessarily
associated with null vectors, contained in the polarization P H O . The vectors
O_N(c, h)\θy, where O_N(c, h) are the Verma module analogues of O^(c, h\ generate
a submodule of the Verma module. In fact Ln>0O-N(c, h)\0} = [Lw > 0,0_N(c, /z)] |0>
because L n > 0 | 0> = 0, and the commutator [LM>0,O_N(c,/z)] of P H O , can only give
rise to either 0_N+n(c,fe) or an element of UVP which again annihilates |0>. This
ensures that O_N(c,/ι)|0> are null vectors since, as it is well known [8], any
submodule of a Verma module is made out of null vectors.

Having proved that any higher operator of the general form (2.5) that belongs
to P H O is in correspondence with a null vector of the standard Verma module, the
only thing which remains to be proved is that all null operators (of the form (2.5))
are in P H O . In fact, any null operator Z_N(c,ft) in the Verma module approach
verifies, by construction, [{Lπ^0}, Z-N(c,h)~] g UV{Ln^0}, which when translated
to our scheme, means that [P, Z^(c, h)~\ <= UVP. It is straightforward to realize that
the operators Zχ(c, h) also close when we consider them with the rest of P H O which,
at most, consists of null operators and of UVP. •

The next task now is to find the space of higher-order polarized functions, i.e.,
complex functions on diff S1 satisfying:

Ξφ = iφ

Xφ = 0 VXePHO. (2.6)
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Proposition 2. The space of higher-order polarized functions coincides with J f(c>Λ).

Proof The non-trivial point to be proved is that any function in J^(Cth) satisfies
the higher-order polarization equations (2.6). Moreover, given the structure of the
subspace Jf?iCth)9 the problem can be reduced to checking that the vacuum wave
function |0> = ζW (see ref. [4]) satisfies (2.6). In fact, any operator XePHO belongs
to the left enveloping algebra and therefore commutes with any operator in the
right enveloping algebra.

In ref. [4] it was proved that Jf {c h) does not contain any null vector state and
hence it follows that the functions

Σ λ{c,h\ Xf ...X? ζW, (2.7)

where the coefficients /Γs are those of Proposition 1, are identically zero!. Making
now use of the general diffeomorphism g-+g~ι, defined for any Lie group, we can
interchange the roles of the left and right generators. We could thus think of
Xfn>oζW = 0 as if the wave function of the vacuum, ζW, were a (right) first-order

polarized function. The orbit of the left Virasoro algebra through the vacuum can
then be seen as an irreducible carrier space for the Virasoro group and, accordingly,
the functions

i + Σ. _/(c>hK..,tPK'''xlζw> (2 8)

where the coefficients A's are again those of Proposition 1, are identically zero.
This establishes that the vacuum ζW is a higher-order polarized function, thus
demonstrating the first part of the proposition.

We have thus proved that the space of higher-order polarized functions contains
the orbit J f { c h y The only thing which remains to be done is to observe that,
in the finite dimensional space of first-order polarized functions of a given level

m, iΓ

(OT) = {|/m>,|/w-i,/i>,|/m-25ί2XI'm-2Wi5ΊX }» t h e number of independent
linear algebraic equations coming from the higher-order polarization is, at least,
as big as the number of independent null vectors of level m in the standard Verma
module. On the other hand, the dimension of the subspace of level m of J^iCth) is
equal to the number of first-order polarized functions minus the number of null
vectors, of level m. Since the orbit Jf(Cth) is already a solution of the higher order
polarization conditions it exhausts all the solutions. •

3. Relation with Anomalies

This section is devoted to the interpretation of the need for higher-order polarizations
in quantizing physical systems in terms of anomalies. In standard terminology, and
roughly speaking, a physical system is said to be anomalous if the classical symmetry
is modified in the quantization process (see refs. [3,9-12]). In our quantization
approach we say that the system is anomalous when there is no (first-order)
polarization which contains the entire characteristic subalgebra $Θ, i.e., the
subalgebra associated with those parameters for whom classical Noether invariants
can be written in terms of the basic ones (co-ordinates of the classical phase space).
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In these cases polarizations containing only a proper subalgebra of ^Θ allow us
to continue the quantization procedure. The price paid for using these non-full
polarizations is, in general, the non-irreducibility of the space of (first order)
polarized functions on the group and a further step leading to the irreducible
representation is required. A partial solution had been found for systems for which
a vacuum can be naturally defined. The orbit of the right enveloping algebra
through the vacuum provides the irreducible subspace [4].

The generalization of the concept of polarization to higher orders opens the
possibility of finding (higher-order) polarizations leading directly to the irreducible
quantum representations. Those higher-order polarizations are especially suitable
for anomalous systems without a natural vacuum (i.e. a highest-weight-like vector).
At the same time we can apply our new approach also to the systems endowed
with a natural vacuum. In this case the new approach brings out very clearly the
anomalous character of the theory.

Let us illustrate the algebraic meaning of anomalies in the present approach
and, in particular, the connection with higher-order polarizations, with the example
of the bosonic string in Minkowski space. The underlying symmetry for this
dynamical system is essentially characterized by the (centrally extended) semi-direct
product diffS1 © (Loops on R 1 ^ " 1 ) whose Lie algebra is given by

[ * # *«;] = nδn, -mΞ, Ξ = central generator,

lXlXU=-ί(n-m)Xt^-^(cn*-c'n)δn^mΞ. (3.1)

It is well known that for the classical values c = 0 = d the space, (diff S1 © Loops
on JRM~1)/DiffiS'1 cannot be quantized without violating the symmetry (3.1). The
reason for this obstruction is that the group diff S* does not preserve the polarization
{X$<0} of the Loop space. In other words, the generators <Xfm,Z^< o,meZ>
do not close a (first-order polarization) subalgebra. We have to consider~only half
of the Virasoro generators (half the algebra ^φ) to close a first-order polarization
subalgebra P = (Xf< ,X£μ< ,meZ}, even though all the Virasoro generators

have classical Noether invariants which can be given in terms of the basic ones,
i.e. those of αjf, neZ. The wave functions polarized with the subalgebra P provide
an irreducible representation where, unfortunately, the operators associated with
the Virasoro parameters X1^ cannot be realized as functions of jf Jjj. This fact is a
manifestation of the anomalous character of the theory.

A natural way of "incorporating" all the Virasoro generators in a "polarization"
is by allowing those higher-order operators (of the left enveloping algebra)
whose leading terms are linear precisely in the generators A^> Qto appear in it.
However such a higher order polarization P H O exists only ϊoτc = d = d( = dimension
of Minkowski space), thus modifying the classical values (c = 0 = d). PHO is a left
ideal of the left enveloping algebra of (3.1) generated by the first order polarization
P = {X^m<o,X^μ<o} and the higher-order operators Z # > 0



Higher-Order Polarizations on the Virasoro Group 439

Let us note in passing that the expression (3.2) is closely related to the Sugawara
construction of the Virasoro algebra [13]. The arguments of Sect. 2 applies to this
particular case and it can be shown that the analogous states Z_ N |0> in the
Verma module (see the analogous notation in Sect. 2) are null vectors. The higher-
order polarized functions also provide the irreducible carrier space for the central
extension of the group diff S1 ©(Loops on R M ~ 1 ) . This space coincides again with
the orbit of the right enveloping algebra through the vacuum. The Virasoro
anomaly is then related to the requirement of higher-order polarizations. In ref.
[14] the critical values of the string theory appear, in the context of BRST
supergroups, as those for which all the Virasoro generators can be solved in terms
of the basic ones. Nevertheless, the basic wave functions |0>, Xfκ\0} depend
on both α£ and lk parameters.

In the case given above the anomaly was associated with commutators between
non-symplectic generators and this is the usual situation (chiral anomaly, Faddeev's
anomaly, etc.). The quantization of the Virasoro group itself presents, nevertheless,
an anomaly attached to the properly symplectic generators and for this reason the
standard geometric methods run into grave difficulties [5]. We will now discuss
this anomaly in just the same manner as in the previous example. The structure
of the characteristic subalgebras $Θ of the Virasoro group has already been
discussed in ref. [4]. When the constants c, d satisfy

c'lc = r\ r = 2,3,4,..., (3.3)

the characteristic subalgebras &$ are sL(r)(2,JR) and the corresponding classical
phase spaces (which are non-Kahler coadjoint orbits) are given by

diffS7SL(r)(2,R). (3.4)

The subalgebras ^%>l) cannot be enlarged to a (first-order) polarization - and this
is how the anomaly appears - so that we are forced to consider a non-full
polarization containing only a subalgebra of ^%\ actually {Xf_r,Xf0}. The only
allowed polarization turns out to be P={X^<o} which is independent of the
specific value r. Like in the previous example the wave functions polarized with
that P carry an irreducible representation for the classical values (3.3) of r. Once
again, this representation suffers from the drawback that none of the operators
X? can be written in terms of the symplectic ones Xf . The problem can

«±r J ^ lnΦ±r,0 r

also be solved trying to "incorporate" the generator X\+r in the polarization
conditions. This is accomplished by means of a higher-order polarization operator
whose leading terms is linear in X[+r. However, this is only possible for some values
of c and d ~ the quantum values - different from the classical ones (3.3). The
classification of these higher-order polarizations has been given in Sect. 2.

We see from the analysis given above that there are two important features
which deserve further comments. First of all, the polarization P does not depend
on the value r which characterizes the classical phase space and, what is more, it
can be used for the case r 2 ^ N 2 (diffSV-S1). The second point to be noted is
that the quantum modification of the values of c and c', initially associated with
a phase space in (3.4), could be seen as classical values associated with another
classical phase space (diffS1/^1)- Therefore we must conclude that, in general,
quantization is not properly associated with individual orbits in the group but
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rather with the whole of the group. This conclusion is also supported by the fact
(see Sect. 2 and ref. [4]) that even the quantization of the orbit diff S1/S1, which
admits a first-order full polarization, requires a higher-order polarization (or
requires the taking of the orbit of the left enveloping algebra through the vacuum)
to obtain the irreducible Hubert space in the strong-coupling domain 0 < c ^ 1.

Finally we would like to add that the notion of higher-order polarization
introduced in this paper could be extended to the standard geometric quantization
provided that the underlying "classical manifold" is presymplectic rather than
symplectic.
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