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Abstract. We study the options for boundary conditions at the conical singularity
for quantum mechanics on a two-dimensional cone with deficit angle ^ 2π and for
classical and quantum scalar fields propagating with a translationally invariant
dynamics in the 1 + 3 dimensional spacetime around an idealized straight infinitely
long, infϊnitesimally thin cosmic string. The key to our analysis is the observation
that minus-the-Laplacian on a cone possesses a one-parameter family of self-
adjoint extensions. These may be labeled by a parameter JR with the dimensions of
length - taking values in [0, oo). For R = 0, the extension is positive. When Rή=0
there is a bound state. Each of our problems has a range of possible dynamical
evolutions corresponding to a range of allowed ^-values. They correspond to
either finite, for R = 0, or logarithmically divergent, for R + 0, boundary conditions
at zero radius. Non-zero K-values are a satisfactory replacement for the
(mathematically ill-defined) notion of cJ-function potentials at the cone's apex.

We discuss the relevance of the various idealized dynamics to quantum
mechanics on a cone with a rounded-off centre and field theory around a "true"
string of finite thickness. Provided one is interested in effects at sufficiently large
length scales, the "true" dynamics will depend on the details of the interaction of
the wave function with the cone's centre (/field with the string etc.) only through a
single parameter R (its "scattering length") and will be well-approximated by the
dynamics for the corresponding idealized problem with the same K-value. This
turns out to be zero if the interaction with the centre is purely gravitational and
minimally coupled, but non-zero values can be important to model non-
gravitational (or non-minimally coupled) interactions. Especially, we point out the
relevance of non-zero R-values to electromagnetic waves around superconducting
strings. We also briefly speculate on the relevance of the K-parameter in the
application of quantum mechanics on cones to 1 + 2 dimensional quantum gravity
with massive scalars.
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1. Introduction

Recently, there has been considerable interest in quantum theory on spacetimes
with conical singularities. The reasons are (at least) twofold: Firstly, in 1+3
dimensions, such spacetimes may be regarded as idealizations [1, 2] of the
spacetimes around certain types of cosmic strings (in situations where the
thickness of the strings may be neglected). Here the prototype spacetime is that due
to the presence of an infinitely long static straight string in a flat spacetime and is
represented by the manifold ^ ^ R x R + x S x I R with metric

g = dt2-dρ2-κ2ρ2dθ2-dz2, (1.1)

where K (assumed to satisfy 0 < K ̂  1) is related to the linear mass density <1 >* λ of
the string by K = 1 — 4λ, and corresponds to a deficit angle δ = 2π(l — K) (see e. g. [3,
35-38,48,54,55] and also the review [1]). The prototype quantum field theory on
such a spacetime is that of the covariant Klein-Gordon equation

(Π\β + μ2)Φ = 0. (1.2)

Many authors have studied a ground state for this system (typically in the case
μ = 0) and calculated, in this state, the expectation value of the renormalised
(typically conformally coupled) energy momentum tensor [4-10, 38].

The computed effect is small; the energy density varies as the inverse fourth
power of the distance from the string, and, in realistic models based on GUT scale
strings, the integrated (i.e. up to a typical string radius) energy per unit length of
string is only of the order of 10 ~8 of the energy per unit length of the string itself.
Nevertheless, the computation is an interesting matter of principle (closely related
to the Casimir effect [11,12]) and may be valuable as a preliminary exercise prior
to tackling possibly more interesting questions such as pair-creation effects due to
accelerated segments of string (cf. [10]).

Also of interest is the corresponding classical field theory of (1.2) which is
related to physically important questions such as the scattering of electromagnetic
waves by cosmic strings (see e.g. [51, 52]).

Secondly, in 1+2 dimensions, it has recently been argued [13,14] that the
equation of relativistic

i-j— = ( μ 2 — A)1/2ψ (1.3)

or non-relativistic <2>

dψ
i— = —Aψ (1-4)

quantum mechanics where A is the Laplace Beltrami operator on the two-
dimensional cone ^ « R + x S with metric

h = dρ2 + κ2ρ2dθ2 (1.5)

(we again assume 0<κ^ 1) plays a key role in the solution of 1 + 2 dimensional
quantum gravity with massive scalar matter (at least in the regime of heavy masses
and slow relative motion). Let us mention that quantum mechanics on a cone (1.4)

The numbers <1>, <2>,... refer to the section entitled Notes at the end of the paper
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has also recently been discussed [15] as an analogue for some aspects of the
problem of canonical quantization of 1 + 3 dimensional quantum gravity where
one expects to have to deal with a wave functional defined on the superspace [16]
of 3-geometries - an infinite-dimensional space with conical singularities.

In this paper, we wish to clarify the question of boundary conditions which, in
all these problems, need to be imposed at the conical singularity - aiming, in each
case, to describe the most general possible dynamical evolution consistent only
with the very general principles (such as unitarity for Eq. (1.4)) which one expects
to hold in a wide range of physical applications. Our essential result will be that
each of our problems admits a one-parameter family of distinct dynamics
corresponding to different possible boundary conditions. Of course, from a
physical point of view, the problems we are posing either (in the application to
cosmic strings) overidealize the situation being modelled, or (in the application to
1+2 dimensional gravity) represent only a building block in a full theory. In
particular, in the cosmic-string application, the very need for boundary conditions
may be viewed as a result of overidealizing the string's thickness as strictly zero. In
fact, in a more realistic model, the string would have a non-singular core of finite
thickness and the dynamics of our field would be uniquely determined by the
details of its interaction with this core. (Similarly, one can think of Eq. (1.4) as
overidealizing some interaction - possibly non-minimally coupled or with the
inclusion of a potential term - between the wave function and a rounded off cone.)
However, what we particularly wish to emphasize here is that there is an intimate
connection between the problem of boundary conditions for an idealized string
and the (uniquely defined) dynamics on such a "true" string or such a "rounded-off
cone." Indeed, as will be discussed further in a separate paper [42], the fact that our
idealized dynamics is labelled by a single parameter may be interpreted as an
indication that, provided one is interested in effects at sufficiently large length-
scales (i.e. sufficiently low energies) the dynamics on any given true string (or
rounded-off cone) will depend, to a very good approximation, on the details of the
core-interaction only through a single parameter. In the application to cosmic
strings (or rounded-off cones) the one-parameter family of options for the
dynamics of our various idealized problems will then be of physical relevance as
providing candidates for the description of the large-scale behaviour of the
dynamics on a true cosmic string (or rounded-off cone).

This use of our idealized problems to model the large-scale behaviour of field
theory around true strings, or quantum mechanics on rounded-off cones will be
treated in Sect. 5 of the present paper, and discussed further later in this
introduction. However, our treatment of the idealized models in the first four
sections of the paper is not tied to this particular application. For example, in
Sect. 2, we shall also briefly consider the application to 1 + 2 dimensional quantum
gravity, speculating that the parameter R may correspond to a new parameter
needed over and above the mass in determining the interaction of each species of
massive scalar particle with gravity.

First, we turn to an outline of our results for the idealized problems. We shall
actually isolate four distinct problems (A-D below) - all interrelated, but each
requiring a separate discussion.

(A) Firstly for the non-relativistic quantum mechanics on a cone (1.4), the
standard ideology (see e.g. [17,18]) reduces the boundary-condition problem to
the study of the possible self-adjoint extensions of (minus) the Laplacian, —A,
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when it is defined on the domain of smooth functions compactly supported away
from the conical singularity in the Hubert space of square-integrable functions on
a two dimensional cone. In coordinates, this amounts to studying

!_ i i. _1_A2

κdρ2 + ρ dρ + κ2ρ2 dθ

on<3>

C^(R+ xS)cL 2 (R + xS,ρdρdθ).
In Appendix 1, we show that this symmetric operator has (for 0<κ^ 1) a one-

parameter family of self-adjoint extensions which we label

{-AR:RelO,oo)}9

each corresponding to a different choice of boundary condition at the conical
singularity. One of these, the extension for JR = O (the Friedrichs extension [18]),
— A0, is a positive operator. It corresponds to wave functions which are regular at
the conical singularity. Each of the others has a bound state with eigenvalue given
by — q2, where <4>

q = 2e ~ CR ~1, C = Euler's constant. (1.7)

They correspond to different strengths of logarithmic divergence

ψ~ const In (ρ/R) (1.8)

of the wave function near the conical singularity. In Sect. 1, we point out that each
choice of parameter R will provide an inequivalent possible quantum dynamics
and begin the discussion (which will be continued in Sect. 5) of their significance.
We also describe how, to each choice, corresponds a different eigenfunction
expansion for the Laplacian - in terms of Bessel functions of the first kind for the
Friedrichs extension and of combinations of Bessel functions of the first and
second kind, together with the above bound state, in all other cases.

(B) Secondly, we point out, still in Sect. 2, that in the case of the relativistic one-
particle dynamics on the cone (1.3), one obtains different acceptable time-
evolutions for each self-adjoint extension, — AR of the Laplacian for which μ2 — AR

turns out to be a positive operator. In terms of q (see (1.7) and Note <4» this
requires 0 ̂  q ̂  μ, and in the special case of zero mass, fixes the extension uniquely
to be the Friedrichs extension.

(C) The third problem we discuss is that of boundary conditions for the classical
Klein-Gordon Eq. (1.2) on the spacetime around an idealized cosmic string {Jί> g)
(1.1). Our main conclusion is that, to each self-adjoint extension — AR, R e [0, oo) of
minus the two-dimensional cone Laplacian, will correspond a different possible
dynamical evolution - each corresponding to a different translationally invariant
choice of boundary conditions at the string. We shall argue that, for the zero mass
wave equation, only the dynamics corresponding to the Friedrichs extension
(# = 0) can be stable. However, for non-zero mass, the range of extensions with
0^<?^μ (with the possible exception of borderline cases - cf. Note <18» will be
stable.

In an appendix (Sect. A2) we discuss more critically what the necessary
ingredients are for an acceptable dynamical evolution for the classical Klein
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Gordon equation on a string and arrive at the notion of a (translationally
invariant) "global symplectic extension" of the local dynamics. We check that all
the candidate dynamical evolutions constructed in Sect. 3 satisfy this notion - but
leave open the possible occurrence of further "exotic" possibilities. We shall
however ignore this issue in the rest of the paper.

(D) Fourthly, we discuss in Sect. 4, the options for (translationally invariant)
quantizations of the Klein-Gordon equation around an idealized cosmic string.
We find that, to every option for the classical time evolution (and hence, as
explained in Sect. 3, to every self-adjoint extension ΔR of the Laplacian on a two-
dimensional cone) there corresponds an acceptable quantum dynamics in the
sense that one obtains a well-defined field-algebra admitting a time-evolution
automorphism. However, we show that only those dynamics which were
classically stable (i. e. - modulo issues raised in Note < 18 > - for which 0 ̂  q ̂  μ) can
lead to quantizations which admit ground states. This is of course expected since
the existence of a quantum-field-theoretic ground state is intimately related to the
existence of a suitable one-particle dynamics for the analogue of (1.3) on our 1+3
dimensional cosmic string exterior. (As for (1.3), this requires O^g^μ.) We
conclude that in the case of a zero mass scalar quantum field around our idealized
cosmic string, there is a unique <5> quantization admitting a ground state. This
corresponds to the choice of the Friedrichs extension, — Δ°, of minus the two-
dimensional cone Laplacian and coincides with the quantization considered by
other authors (see [4-10, 38]). However, for a non-zero-mass field, there are other
mathematical possibilities with O^q^μ.

To summarize, we find that, in each of the idealized situations (A-D) described
above, the different possible boundary conditions correspond to different possible
self-adjoint extensions — ΔR of minus the Laplacian on the cone. For some of the
problems, the full range, R e [0, oo) of R-values is possible. For others, R must be
further restricted.

We now briefly discuss the significance of the different possible jR-values, and
attempt to relate our work to the existing literature on related topics. It is clear
that, in several respects, the value R = 0 is a distinguished value: It is the only value
for which — ΔR is a positive operator. It is also the only value for which the domain
of — AR consists of continuous functions which take finite values at the conical
singularity. (We shall make this remark precise in the sequel.) Much of the existing
work on spacetimes with conical singularities - be it concerned with scalar
quantum mechanics on cones [13,14] (see also [31]), be it with scalar quantum
field theory around idealized cosmic strings [4-10] in fact - explicitly or implicitly
- regards this latter fϊniteness or "regularity" condition as fundamental, and in this
way, all the just-cited papers arrive uniquely at the R = 0 boundary condition, and
fail to consider the possibilities with RΦ0. (We remark however that the work in
[15] has recently [60] been extended to take into account the possible importance
of non-Friedrichs extensions.)

Actually, if one takes the point of view that R = 0 is a distinguished value, it is
natural to identify the operators — ΔR for R other than zero as corresponding, in
some sense, to perturbing — ΔR by a ^-function potential at the apex of the cone.
(Cf. e.g. [44] where a similar remark is made.) However, we stress that there are
mathematical difficulties with the notion of (5-function potentials in more than one
dimension, and, if one attempts to make sense of them, one is essentially forced
back to consider the operators — ΔR! Note that these are difficulties which persist -
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and must be resolved in an analogous way - even when the deficit angle of the cone
is zero, i.e. for point-interactions in ordinary two-dimensional Euclidean space.
This, and related topics are extensively discussed in the work of Albeverio et al.
[28] (see also [59]) which has many points of contact with the point of view of the
present paper. In view of these difficulties, it seems to us preferable to regard the
case R = 0 as no more fundamental than any other Tΐ-value, but rather to think of
all JR-values as a priori on an equal footing, without prejudging the issue of which
R"value is most appropriate in which application. Indeed, the fact that R = 0
corresponds to regular wavefunctions is perhaps not as significant as it might at
first appear: Even though - say in the case of a string with finite thickness - the true
problem one is idealizing will have regular wave-functions, it is not sound to argue
that this is therefore best modelled by regular wave-functions when one idealizes
the string as having zero thickness. This is just one of several "pitfalls" that we shall
discuss in Note <22> to Sect. 5.2. (see also [42]) and we shall see below that
extensions with non-zero R are indeed often relevant to modelling such true
dynamics.

Another advantage of regarding all R-values as on an equal footing is that this
point of view ought to generalize from the scalar case considered here to the study
of higher spin and gauge fields (including linearized gravitational perturbations)
propagating on cones and around cosmic strings. In these cases, the first step
would still be the analysis of an appropriate self-adjoint extension problem which,
in the general case (and, after a suitable gauge fixing procedure in the case of gauge
fields) would now concern a system of differential operators. In this connection, it is
interesting to note that De Sousa Gerbert and Jackiw [33] have found that in the
case of the Dirac equation on a "spinning cone" there is a one-parameter family of
self-adjoint extensions none of which correspond to regular boundary conditions
at the conical singularity. (It should be remarked that, as these authors explain, this
spinning cone problem involves indefinite inner product spaces, and thus a
suitably generalized notion of self-adjointness is required here.)

Finally, we return to the crucial question of the physical relevance of our
discussion of the idealized problems (A-D) to the problem of wavefunctions on a
cone with a rounded-offapex or of (classical or quantum) fields propagating in the
neighbourhood of a true cosmic string of finite thickness. As we indicated at the
outset, it is natural to make the hypothesis that, for any specific model, say, for the
true interaction of the cosmic-string interior with our dynamical field (or of a
rounded-off cone - here we include a possible potential or non-minimal coupling
term - with our non-relativistic wave function) there would be a particular choice
of boundary conditions - i.e. a particular î -value - for the idealized problem
which leads to a good approximation to the true dynamics. In fact there seems to
be a very general relationship of this type - valid in a wide range of physical
situations - between the possible large-scale effects of a small object and the
options for defining the dynamics for the corresponding idealized system where the
object is idealized as having zero size. A fuller discussion of this relationship, in a
rather general setting, will be given elsewhere [42] (see also [43]). In Sect. 5, we
shall discuss the extent to which this hypothesis is borne out for the specific systems
(true string, and rounded-off cone) under discussion here. The main idea is that the
k-value in the idealized problem should be chosen to equal the scattering length
for the true interaction. Here, we refer to a two-dimensional analogue, which we
introduce, to the familiar three dimensional notion of scattering length <6>. This
idea should be of practical importance when one wants to calculate the extent to
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which the details of the dynamics inside the core of a string (or inside the rounded-
off region of a cone) influence various physical effects. It suggests that - with the
important proviso that one is interested in effects at sufficiently large length scales
- the details of the interaction with the core should be well taken into account by a
single parameter (namely the scattering length).

Section 5.1 states our principal result, which is that, in the case of minimally
coupled quantum mechanics on a purely rounded-off cone, i.e.

i~^ = -^HΨ (1.9)

(JK here denotes the Laplace-Beltrami operator for some smooth metric which
coincides with (1.1) outside some small circle of constant ρ) the scattering length is
zero. (A similar result holds in the case of a classical Klein-Gordon field which
interacts minimally only with the gravitational field in some true cosmic string
interior). On the other hand, the addition of a potential term or non-minimal
coupling term (supported inside the small circle) in Eq. (1.9)

i ^ = -(Δh+V)ψ, (1.10)

or of some non-minimal or non-gravitational interaction with the field in the
interior of the cosmic string, leads to a non-zero scattering length. Such cases might
heuristically be modelled by the addition of a ^-function potential (see above) to
— A0. However, in such an approach, one would discover that the strength of the
required ^-function turns out to be ill-defined, requiring an infinite renormaliza-
tion. Our point of view has the advantage that the scattering length JR is a
physically meaningful finite quantity which may be calculated for any given V.

In Sect. 5.2, we point out a number of subtleties in the relationship between the
true and idealized problems. In particular we discuss the case of quantum
mechanics, or a classical Klein Gordon field, with a strong positive potential of
small support. This is of importance as a model for electromagnetic waves
propagating around a superconducting cosmic string [52] <7>. We explain why,
for this problem, the scattering length, while small, should not be approximated
by zero. We also caution that, when one is using our idealized models to
approximate the large-scale behaviour of true cosmic strings and rounded-off
cones, those properties of the idealized dynamics which have to do with small
scales will not be physically relevant (in the language of [42], not "believable").
Such a property is the existence of a bound state for small non-zero values of R
(large values of q) and the consequent classical and quantum instabilities
mentioned in paragraphs C and D above. In consequence, in the scalar analogue
for electromagnetic waves around superconducting strings just mentioned, these
classical and quantum instabilities in the idealized model should be regarded as
spurious as far as the true situation being approximated is concerned. Fur-
thermore, we shall explain how the true quantum vacuum state can be better
approximated at large scales by a "modified vacuum state" with a non-zero
K-value than by the R = 0 vacuum, in spite of the fact (cf. paragraph D above) that
the latter is the only vacuum state which exists when one quantizes modes of all
length scales so as to obey the exact idealized dynamics. At the very end of Sect. 5.2,
we return to the question of the ground state expectation value of the renormalized
energy-momentum tensor for a quantum field in the neighbourhood of a cosmic
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string. We point out (1) that, for an idealized string, one can, in principle, calculate
the expectation value of the energy-momentum tensor in any of the modified
vacuum states just mentioned (i.e. for any R-value). (2) For a given true string, it is a
non-trivial question, which will require further investigation, to decide whether the
result of any of these calculations will well-approximate the true vacuum
expectation value.

To end this introduction, we mention two issues, which, while closely related to
the topics of this paper, will not be discussed here. Firstly, we do not consider the
case of a charged scalar field which interacts with an idealized cosmic string
carrying a non-zero magnetic flux. In this case, one would have to take into
account not only the different possible boundary conditions at the string but also
the non-trivial Aharonov-Bohm [50] magnetic potential. For the scalar case with
boundary conditions which generalize the case R = 0 of the present paper, this
problem has been discussed by Dowker (see [8, 9]). For the Dirac case, see [61]
where the relevant self-adjointness extension problem is discussed. (Note also that
the 1 + 2 dimensional quantum mechanical analogue to this Aharonov Bohm
problem is related to (see [33, 61]) de Sousa Gerbert and Jackiw's problem of
quantum mechanics on a "spinning cone" which we mentioned above.) It might be
interesting to try to give a unified treatment of the Aharonov Bohm problem in
which the (appropriate generalization of the) K-parameter discussed in the present
paper and the Aharonov-Bohm parameter (i.e. charge multiplied by magnetic flux
modulo 2π) appear on the same footing. In this connection, the recent interesting
ideas of Landsman [49] on a class of problems which includes the Aharonov-
Bohm situation may be relevant.

A second problem which we do not treat, but which may be interesting to
explore is how the different choices of boundary conditions isolated in this paper
would arise in a path-integral approach.

2. Quantum Mechanics on a Two-Dimensional Cone

As we explain in more detail and prove in Appendix 1, minus the Laplacian on the
cone, i.e.

(1.6)
r ρ oρ K ρ o(

on<3>

C?(R+ xS)cL 2 (R + x§,ρdρdθ)

has (for 0<fc^l) <8> a one-parameter family of self-adjoint extensions

{-Λ*:Re[0,oo)}. (2.1)

In fact, on each m-sector consisting of functions of form fm{ρ)eimθ, (1.6) acts as the
ordinary differential operator

-*m=-^--l + 4l- (2-2)
dρ ρ dρ K ρ

For m + 0, each of these operators is essentially self-adjoint on the domain
CQQR.+,ρdρ)cL2(R+,ρdρ). However, in the cylindrically symmetric sector m=0,
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it turns out that there is a one-parameter family of self-adjoint extensions,
{ — Ao,Re[0, oo)} characterized by the following boundary conditions at ρ = 0:

= 0, for J?e(0,oo),
ρ^° ' (2.3)

lim(ρίί/<2ρ/o)(ρ) = 0, for R = 0.

(Note that (2.3) is just a more precise form of (1.8).) The case R = 0 corresponds
to the Friedrichs extension [18] of (1.6), —A0, which is a positive operator with
continuous spectrum. In this case, the set of functions

{^,pto^) = (2π)- 1 / 2J | m / κ |(pρ)^θ:/76R+,meZ} (2.4)

(Jv denotes a Bessel function of the first kind [32]) constitute a "complete set of
(generalized) eigenfunctions" with eigenvalues p2 and continuum normalization

ϊ ίΨm,P(Q,θrψm^(Q,θ)ρdρdθ = p-1δ(p-p')δmtm,. (2.5)
0 0

For all other values of R, —Δ° fails to be positive <9>, acquiring the bound state

^ ll2 (2.6)

(Ko is the appropriate Bessel function of the 3rd kind [32]) with eigenvalue — q2,
where

= 2e~cR~\ C = Euler's constant. (1.7)

tions in the m=0 sector must be replaced by the
functions of the first and second kinds

Lβ2(p) +1] " 1/2(Jo(PQ) + β(p)No(PQ)), (2.7)

Also the continuum eigenfunctions in the m=0 sector must be replaced by the
linear combinations of Bessel functions of the first and second kinds

where

«P)=ϊ(.nβ])- ' (2.S,

with eigenvalue p2 and continuum normalization analogous to (2.5). Relabelling
our self-adjoint extensions by using as parameter q in place of R <4>, a complete set
of eigenfunctions for — A{q\ q>0 thus consists of

Mtnd}uW,V peR+}u{φm, p :mφO,pGR+}, (2.9)

where the three terms in the union are defined by (2.6), (2.7), and (2.4) respectively.
Standard arguments based on Stone's theorem and the spectral theorem (see

e.g. [17]) lead us to regard each of the self-adjoint extensions, — Δ{q\ q e [0, oo), as
providing an acceptable integration of the Schrόdinger equation on the cone (1.4) -
and hence implicitly as providing an acceptable choice of boundary conditions
<10>. We may use the spectral Theorem [17] to define, for each q, the time-
evolution operator

For comparison with later developments (cf. Sects. 3 and A2) it is worth
recalling the two reasons why each of these (distinct) time-evolutions may be
viewed as acceptable: First, for each q, U(q\t) provides a formal solution to (1.4).
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Second, Uiq\t) preserves the L2-inner product

<ΨI\ΨI>= ίψfψiQdρdθ (2.10)

(it is unitary). Thus we conclude that quantum mechanics on the cone should
actually be labelled by a new parameter, q, which tells us which self-adjoint
extension is selected.

In the relativistic case <11 >, to make sense of the operator (μ2 — A)1'2, one must
restrict attention either to the case q = 0, where there is no bound state, or to q in
the range

0<q^μ, (2.11)

so that μ2 — q2 and hence μ2 — A(q) is positive. Note that for μ = 0, one is obliged to
take the Friedrichs extension, — A{0\ (See however Sect. 5.)

All computed quantities, for example, the propagator

"<(S(x2)|exp(^l<5(*i)>" (2.12)

will of course depend on the value of q. We remark that the propagator calculated
in [14] (cf. also [31] and references therein) for the non-relativistic case is now seen
to correspond to the choice of q = 0 (the Friedrichs extension) but one could
equally well use the set of eigenfunctions (2.9) to compute (2.12) for any other value
of q.

Two considerations are of general importance in assessing the possible
relevance of the different self-adjoint extensions in different physical interpreta-
tions for quantum mechanics on a cone. First, we remark that, in the case of K = 1
(zero deficit angle) where -A on C J ( R + x S ) c L 2 ( R + x S , ρdρdθ) may be
regarded as minus-the-Laplacian on flat two-dimensional space with the origin
removed, the Friedrichs extension (q = 0) is just minus the usual Laplacian on flat
two-dimensional space (i.e. the unique self-adjoint extension of — A on CQQR2)

CL2(R2) <12». The extensions for q >0, on the other hand, may be interpreted as
describing quantum mechanics on flat two-dimensional space with "non-trivial
physics" supported at a point - or on flat three-dimensional space with
translationally invariant "non-trivial physics" supported on a line <13>.

Our second general consideration is that, in any physical interpretation in
which minus-the-Laplacian on a cone is taken to represent a limiting case of
minus-the-Laplace-Beltrami operator on a smooth (complete) Riemannian mani-
fold in which the conical singularity is "rounded-off" (with no additional non-
minimal coupling, or potential term) then one expects only the Friedrichs
extension (q = 0) to be relevant. On the other hand, if one is using minus the
Laplacian on a cone to represent a limiting case of Eq. (1.10) where one
additionally has a potential term V or (if V represents some multiple of the
Riemann scalar) non-minimal coupling term, then it turns out that non-zero
g-values are relevant. However, we shall postpone a discussion of the sense in
which this is true, and the reason why it is true to Sect. 5.

It is natural to ask what relevance, if any, the extensions with q > 0 may have in
the application to 1 + 2 dimensional quantum gravity with (say) one species of real
scalar particles [13,14]. This is usually expected to be labelled by a single
parameter - the particle mass. However, we speculate that it may actually sit inside
a richer two-parameter family of theories - labelled by both the mass and the
g-value. q would represent a new attribute of each species of scalar particle, needed,



Quantum Mechanics on Cones and Fields Around Cosmic Strings 113

in addition to its mass, to specify its interaction with gravity. In view of our two
general remarks above, the case of q = 0 would then be interpretable as
corresponding to particles which interact "purely minimally gravitationally" while
other g-values would correspond to particles which also have a non-trivial zero-
range interaction or non-minimal coupling.

Assuming that our model is physically realizable, one should be able to measure
the value of q which is physically selected by measuring the "phase shift" for the
scattering <14> of m = 0 sector waves as a function of energy. For the Friedrichs
extension q = 0, this is energy-independent. For general q, one may use the
standard asymptotic formulae for Bessel functions [32] to easily see that the
eigenfunctions (2.7) behave for ρ->oo as

ψ$p~(2π)-\(l +β2(p))pρΓil2((l - jf lpjy <"-*/*>+ (1 + ifi{p))e'^'^ (2.13)

(~ indicates terms of order ρ~ι are omitted),

from which we may read off that the "change in the phase shift" (defined to be zero
for <2 = 0 - see Note <14» is y(p\ where

exp(2iy(p)) = (1 + iβ(p))"1 (1 - iβ(p)). (2.14)

Explicitly

y(p) = π - arcctg β In M ) (2.15)

(where the arcctg is defined conventionally, taking values between 0 and π).
One may read off from this formula that, for non-zero values of q, γ(p) starts at

the positive value of π at p = 0 and decreases towards zero for large values of p.
(Thus Levinson's Theorem [39,40] holds <15>.) Note that the formula (2.15)
depends on the value of q but not on the deficit angle of the cone (i.e. not on K).

In the special case of zero deficit angle (K = 1) the same asymptotic properties of
Bessel functions easily lead to the formula

2n\fp\
2 = n2p-\\niq/p-])2 + n2IA)-' (2.16)

for the total cross-sectional length for scattering by a point interaction which
corresponds to the boundary condition (2.3) (where q is related to R by (1.7)). In
fact the scattering amplitude, fp in (2.16) is determined from the obvious two-
dimensional time-independent-scattering-theory ansatz

ψ ~ exp(ip x) + fp(θ) exp(ipρ)/ρ1/2

when one imposes the boundary condition (1.8)/(2.3) on ψ. (The resulting fp(θ) of
course turns out to be independent of θ)

To end this section, we remark that the above discussion by no means exhausts
all the possible ramifications of the topic of quantum mechanics on cones. In
particular, we draw attention to Notes <10> and <16> which indicate two different
directions in which it might be appropriate to extend the above mathematical
framework. Note <10> is concerned with modelling physical situations which
involve the possibility of absorption of the wave function at the conical singularity.
Note <16> draws attention to the possibility that, depending on the physical
application, it might be correct to include in the quantum Hamiltonian a potential
term representing the gravitational and/or electromagnetic "self-force" experi-
enced by a classical particle moving on a cone. (Other directions for generalization
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include consideration of "spinning cones" [33] as well as the related Aharonov
Bohm problem [61] as we mentioned at the end of the introduction.)

3. The Classical Klein-Gordon Equation Around
an Idealized Cosmic String

In this section, we discuss the mathematical options <10> available for integrating
the classical Klein-Gordon equation (1.2) on the 1 + 3 dimensional spacetime Jί
with metric g (1.1) which represents the locally flat region around an infinite
straight cosmic string in the idealization of infinitesimal thinness. The relevance of
our results for a "true" cosmic string will be discussed in Sect. 5.

We treat the case of a real scalar field φ. It is convenient to think of the
problem in terms of the first-order form equations for Cauchy data φ = φ and
π = dφ/dt,

dt \n) \Aμ O; \π,

with
Aμ = μ2-A-d2/dz2, (3.2)

where A is the Laplacian on a two dimensional cone, and we view the string's
spatial geometry as the product of this two-dimensional cone and the real line.

Clearly the support of smooth Cauchy data, initially compactly supported
away from the string, can (with a maximum speed of 1) eventually reach the
"string" (i.e. the conical singularity) at ρ = 0 where it will require a boundary
condition to tell it how to evolve further. Our aim is to find all possible options for
this further evolution subject only to the requirement that the boundary
conditions to which they correspond respect the translational invariance of the
problem in the z-direction "along the string."

As might be expected, this problem is at least partially solved by means of the
same family of self-adjoint extensions — A{q\ ge[0, oo), which solved the analog-
ous problem for the Schrόdinger equation in Sect. 2. For each μ and q, let Aiq) be
the self-adjoint extension <17>

A(q) = μ2-Aiq)~-d2/dz2 (3.3)

of Aμ on the real Hubert space

tf = L 2(R+ x S x R, ρdρdθdz) (3.4)

and extend the space of time-ί Cauchy data (φt,πt) = (φ(t), φ(ή) from C^(R+ x S
x R) x CQ>(R+ x S x R) to the domain

in J f φ Jf. Then it would appear that the global time-evolution

^~μq)(t):{φo,πo)->(φt,πt), ί e R

mapping D(q)-+D(q) according to

i(q)ί/2t\ A(q)~1/2 sin(Aiq)1/2φ

1/21) cos(A(q)1/2t)
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(where the functions in (3.6) are defined via the usual functional calculus using the
spectral theorem [17]) is an acceptable solution to our problem. Note that due to
the addition of the — d2/dz2 in (3.3), the spectrum of Aiq) will (in contrast to that of
— Aiq)) now always be purely continuous. In the case q=0, it will be supported in
the interval [μ2, oo) and otherwise in [μ2 — q2, oo) (see (2.7)). Note also that the case
q = 0 where one takes the Friedrichs extension [18] of — A clearly also corresponds
to the Friedrichs extension of Aμ.

We emphasize that A(q) is not in general positive. Nevertheless (3.6) will still
make sense since, in spite of their appearance, the functions appearing in (3.6)
clearly do not depend on any particular square root operation. The fact that A{q) is
bounded below suffices for D(q) to be an invariant (dense) domain.

Formally, ̂ q){t) clearly solves the first order form Eqs. (3.1) with the boundary
condition (2.3).

It is an interesting question to set up a suitable precise ideology for what one
means by an "acceptable global time evolution" for this problem and to check that
the above construction actually fulfills this ideology. We sketch how this can be
done in Sect. A2. We recall that, in the case of the Schrόdinger equation dealt with
in Sect. 2, we relied on the familiar ideology - based on Stone's theorem and the
spectral theorem (see e.g. [17,18]) - to immediately reduce the problem to a self-
adjoint extension problem. For the present problem, it is not so evident whether
Hilbert-space methods are always appropriate, since the natural conserved
product for the Klein-Gordon equation is no longer an L2-inner product (cf. (2.10))
but rather the symplectic combination of the relevant pairs of time-ί Cauchy data

σ((<Pi, πx); (φ2, π2)) = <^i |π 2 >- <%|<p2> (3.7)

(here < | > denotes the inner product in 3tf (3.4)). Thus it is reasonable to enquire
whether (for a given mass μ) in addition to the ̂ q\t) constructed above there may
not be further "exotic" options for (z-translationally-invariant) acceptable global
time evolutions. In Sect. A2, we pose this question in a precise form, but do not
answer it. (We shall ignore the possibility of such "exotic" options in the remainder
of this paper.)

Here, we give a brief discussion of the global time evolutions SΓ^ which we have
constructed. The qualitative behaviour will depend crucially on whether or not
A(q) (3.4) is a positive operator. In the positive case, O^q^μ, the conserved energy

^X<P, π) = i«π |π> + <φ|4«V» (3.8)

is positive, indicating good (i.e. bounded <18» large-time behaviour. When Aiq)

fails to be positive (i.e. when q>μ) on the other hand, one expects there to be
initially small solutions (say with CQ initial data) which grow exponentially at late
times ("runaway solutions"). To demonstrate this, it is convenient to first consider
the z-integral

00

$(t,ρ,θ)= J φ(t,ρ,θ,z)dz (3.9)
— oo

of such a solution, which will of course obey the 1+2 dimensional Klein-Gordon
equation

$ 0 (3.10)
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(A(q) as in Sect. 2.) Assuming that q$ + $ and the bound state φ{?o

}

und (2.6), have at
some initial time non-vanishing overlap <#$ +$|ψί?ound) (in the inner-product
(2.10)) $ will split at late times into the sum of a well-behaved (we suppose bounded
<18» piece and a non-zero runaway component

const exp((42 - μ2)112 t)φS»nd >

which would first start to become noticeable around the time the wave packet first
hit the string. Using finite propagation speed (in the z-direction) to estimate the
integral (3.9), one infers that the solution itself will satisfy

^ (3.U)

Thus for the non-positive self-adjoint extensions of Aμ (3.2) the dynamics is
expected to be classically unstable. (Note however, that, as we shall explain in
Sect. 5, in modelling the behaviour of waves propagating on true strings, this
instability in the idealized model can sometimes be spurious.)

4. The Klein-Gordon Quantum Field Theory Around an Idealized String

In this section, we discuss the mathematical options for quantizing (1.2),
continuing to treat the case of a real scalar field. It is appropriate to distinguish
between two levels of structure: the "algebraic structure" and the "ground state
structure" (cf. e.g. the general discussion of quantum field theory in curved
spacetime in [30] or the more recent discussion in Sect. 3 of [22]). We shall show
that, for each choice of classical dynamics ^q\t) constructed in Sect. 3, will
correspond a quantization of (1.2) at the algebraic level by taking the equal-time
CCR algebra over Diq) (3.5) and imposing the classical time evolution &£9)(t) on the
quantum φ's and TΓ'S. However, not all these possible algebraic quantizations will
admit a ground state. For this (as for classical stability) we shall see that positivity
of the operator Af (3.3) will be needed.

To make precise the quantization at the algebraic level (cf. e.g. [23, 22]) we
begin by defining the time-zero CCR algebra A^ jis a *-algebra with identity I
generated by Hermitian (i.e. satisfying R(φ,π)* = R(φ,π)) objects

R(φ,π), with (φ,π)eDf (see (3.5))

(to be interpreted as the "symplectically smeared combination" - cf. (3.7) -

R(φ9 π) = <φ|π> - <π|φ> = σ((φ9 Λ), (φ, π)) (4.1)

also writeable as φ(π) — τt(φ)% satisfying, for all (φ^π^, (φ2,π2)eD^\

>1? π j , R(φ2, π2)] = i K φ J π ^ - ( π j φ ^ ) J. (4.2)

We then represent the time-evolution by algebra automorphismsβ^\t): A^-> A(*\
mapping the time-zero fields to time-ί fields according to β(μ\t): R(φ, π)\-+Rt(φ, π),
where

f ) ) (4.3)

(with the interpretation Rt(φ,π) = φt(π) — πt(φ)). For each mass μ, we thus have a
whole family (A^\β^\t)) of inequivalent possible quantizations of (1.2) at the
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algebraic level (or "^-dynamical systems") corresponding to the different possible
options for the classical time evolution.

The next question is whether the system (A^\β^\t)) admits a ground state;
equivalently whether A<?} admits a representation ρjf * on a (complex) Hubert space
#" with "vacuum vector" Ω such that β^\t) is implemented by a (strongly
continuous) positive-energy unitary group exρ(—iH^h) in the sense that

ρf{βf{t)B) = exp(iH%h)$\B) exp( - iHft) V£ e Kf (4.4)

with H^Ω = 0. The answer is that, over (A^\ βfi\t)) such a ground state structure
can exist only for those μ and q for which A{f is positive (i. e. only when 0 ̂  q ̂  μ). In
fact, one can argue quite generally that (setting aside possible subtle pathologies)
for linear Bose systems such as ours, positivity of the classical energy is a necessary
condition for the existence of a quantum ground state. We give a heuristic
argument for this ignoring domain questions. (For a related, but maybe over-
restrictive, rigorous result, see the Corollary to Lemma 6.1 in [22].) The argument
(which generalizes to any linear Bose system) is based on the "infinitesimal"
versions of (3.6) and (4.4) from which we have (now dropping sub- and super-

scπpts) liHρ(R(φπm U(£(H<Pπ)), (4.5)

where h is the classical generator of time evolution (cf. (3.1), (3.6))

,π) = (-π,Aφ). (4.6)

Assuming the existence of a ground-state structure, one then calculates that the
manifestly positive expression

, π))Q> = ±<fl| ίρ(R(ψ, π)λ [H, ρ(R(φ, π)]] Ω>

= (by (4.5) and (4.2))|σ((φ,π),h(φ,π)),

which, by (4.6) and (3.7), is precisely the classical energy (3.8). Thus we only expect a
ground state to exist when A^ is positive. We remark that in Sect. 3, this was
argued to be the condition (modulo the fine point mentioned in Note <18» for the
classical time evolution to be stable. (As for the classical stability result, note,
however, that caution is required in interpreting the significance of this condition
when one uses these idealized quantizations to model the options for ground states
on "true" strings. See the discussion in Sect. 5.)

To actually construct such a ground-state structure (see [24] and also Sect. 3 in
[22] for the full general theory) we deal first with the cases where the spectrum of
Aiq) is bounded below away from zero so that A^ has a bounded inverse. This will
hold when q < μ. In these cases, the key step is to define the following map (Jtf̂
below denotes the complex Hubert space L^(R+ x§xTSt,ρdρdθdz)):

(φ, π) ̂ 2-^2(A(f/4φ + iA^~ 1/4π). (4.7)

This will have the property of intertwining the classical time-evolution ^\)
with the positive energy unitary group l/(f) = exp(—iA{q)'1/2t) so that Jtf^ may be
regarded as a suitable one-particle Hubert space (the elements ψ of which satisfy
the "relativistic Schrόdinger equation" (cf. (1.3))
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One may then build up a ground-state representation ρ(f, taking as Hubert
space ^ the Fock space over J ^ with its Fock vacuum vector Ω by defining in the
usual way

$\R(φ, π)) = - i(a\Kf(φ9 π)) - (a\K*$>(φ9 π))*), (4.8)

where α1" is the usual creation operator on J* satisfying

Thus, for μ > 0, corresponding to each value of q in the range 0^q<μ there will
be a distinct possible quantum dynamics admitting a ground state <5>. Different
such choices of q will, of course, correspond to different "physics." This is clearly
seen if one calculates the spatially smeared two-point function

0i, zl9 t)φ(ρ2, θ29 z29 0))β> M Q 1 9 θl9 zr) f2(ρ2, θ29 z2)

- Ufmt)(2Af)-1/2/2>^, (4.9)

which essentially characterizes the theory. In particular, one may use (4.9) as a
starting point for a computation of the renormalized ground state expectation
value of the energy-momentum tensor operator (cf. [25] where the case μ = 0, g = 0
is treated in detail. Note that [25] also calculates an explicit analytic form for (4.9)
in this case confirming the result of [6].) One expects of course to obtain different
results for different values of q. (See also the remarks at the end of Sect. 5.2.)

So far, we have left out of consideration the "borderline cases" q = μ, where the
spectrum of A(f begins at zero. As with the discussion of classical stability (see
Note <18» one expects the technical issues here to be more delicate. In the
important special case of zero mass and zero q (the Friedrichs extension of (3.2)) the
existence of a ground-state structure may be established by replacing the domain
Df (3.5) in the case μ = 0, g = 0 by

D(

0

0) =

One easily checks that this is an invariant domain for $~k°\i) (3.6). Also the map
X(

0

0) (4.7) and the formula for the two-point function (4.9) will make sense on this
domain. Finally, one checks that Z)(

0

0) is an extension of the domain of smooth,
compactly supported, time-ί Cauchy data C?(IR+ xSxR)xC^(lR + x S x R ) .
The non-trivial property that has to be checked for this latter to hold is

C?(R+ xSxR)C®( |4 0 ) Γ 1 / 2 ) . (4.10)

We give a proof that this holds for cones with 0 < κ ^ l in Note <19>.
We conclude that there is a unique (up to the issues raised in Note <5»

z-translationally-invariant quantization admitting a ground state in the case of
zero mass. One easily sees that this quantization corresponds to that of Ref.
[4-10, 38]. Note however, that, in Sect. 5, we shall point out that, if one is
interested in modelling the "true" quantum ground state on certain types of "true"
cosmic string, the restrictions on possible ^-values obtained above for our
idealized string (and in particular the implication that there is a unique possibility
in the case of zero mass) may be misleading. We shall briefly discuss there how one
could e.g. better plausibly model the ground state for a massless field on such a true
string with a non-zero g-value.
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5. Quantum Mechanics on Rounded-off Cones
and Fields Around "True" Strings

In this section, we discuss the relevance of the various idealized problems treated in
Sects. 2-4 to problems such as the Schrδdinger time-evolution of wavefunctions on
a rounded-off cone and (classical and quantum) field theory around a "true"
cosmic string of finite thickness (still assumed to be infinitely long, straight and
static). Such a true string will of course itself consist of a special configuration of
fields interacting with each other according to some suitable theory. To a good
approximation, this configuration will be describable as classical and smooth. We
shall restrict our attention to models for strings where it is also a good
approximation to assume that these fields are confined to a narrow tubular region
(and, we shall assume, translationally invariant in z). Typically these are "local
strings." The gravitational field of such a string will also be essentially confined to
the same narrow tubular region where the metric will be curved but smooth - the
spacetime outside the tubular region becoming rapidly isometric to the locally flat
spacetime (J(9 g) (1.1). (Appropriate references for the above remarks are e.g. [1,3,
35-38, 48, 54, 55].) To get closer to true physics, one should replace the model
discussed in Sects. 3 and 4 by a (we shall assume still scalar and linear) field φ
propagating on the spacetime of such a true string and interacting either only with
the gravitational field or also with the other "matter" fields making up the string.
Motivated by these remarks (but simplifying the model a little further) we shall
intend in what follows by the "interaction of a true string with our scalar field 0"
the equation

(Π~g+V+μ2)φ = 0. (5.1)

Here •# is the Laplace-Beltrami operator for the spacetime (jf«R 4,g), where

g = dt2-K-dz2 (5.2)

with K the metric of a "rounded-off cone" - i.e. some circularly symmetric smooth
metric on R2, which with a suitable choice of polar coordinates (ρ, θ) coincides
outside a certain value of ρ (we shall say outside its "roundedness support")
precisely with h (1.5) and V is a smooth (we shall assume circularly symmetric and
translationally invariant) "potential" with compact support which represents a
possible interaction with the "matter" fields in the string or (through V=const R,
where R is the Riemann scalar for K) a non-minimal coupling to the gravitational
field. Explicitly, K will be given by

n=dρ2 + κ2(ρ)ρ2dθ2, (5.3)

where κ(ρ) is a smooth function on R + (smoothly extendable to a smooth
symmetric function on R) which takes the value 1 at ρ=0 and the constant value K
outside the roundedness support.

We shall thus be interested in the relationship between the discussion of
Eq. (1.2) in Sects. 3 and 4 and the dynamics of (5.1). Similarly, we shall attempt to
relate the discussion of Eqs. (1.4) and (1.5) in Sect. 2 with the 1-1-2 dimensional
equations

^ (5.4)
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and

^ ) l l 2 ψ . (5.5)

Note that in (5.5) some condition is required on V to ensure the positive square-
root exists. A sufficient condition would be that V were bounded below by — μ2. In
parallel to the "idealized problems A, B, C, D of the introduction, we shall thus
have the counterpart "true" problems - A, B, C, D say. For these latter true
problems, there is of course no need to impose boundary conditions at ρ = 0; each
of Eqs. (5.1), (5.4), and (5.5) determines a unique dynamics - with suitable smooth
initial data remaining smooth under time-evolution.

As we discussed in the introduction, it seems natural to make the hypothesis
that, for each true problem (A, B, C, or D) - and each specific choice of h and V -
there will be a particular allowed R-value (equivalently q-value, see Note <4» for
the corresponding idealized problem (A, B, C, or D) for which the idealized
dynamics well approximates the true dynamics at sufficiently large length scales. In
the remainder of this section, we shall discuss the extent to which, and sense in
which, this hypothesis is true. Section 5.1 contains the main ideas and our principal
result. In Sect. 5.2 we find that, when one looks how things work out in detail, a
number of subtle points arise. We shall attempt to clarify these (see also Note <22>
to Sect. 5.1) paying special attention to the case of large positive potentials, which
is relevant to the scattering of electromagnetic waves on superconducting cosmic
strings. Further discussion of closely related issues in a more general context will
appear in [42] (see also [43]).

5.1. Main Ideas and Principal Result. We turn first to non-relativistic quantum
mechanics on a "true" cone (Eq. (5.4)). For this problem, the sense in which our
hypothesis holds may be summarized by the following two points:

1. For a given choice of metric ΐί and potential V in (5.4) one should choose the
JR-value for quantum mechanics on an idealized cone (1.4) so as to match the
logarithmic derivatives (i.e. ψ'^^dψ/δρ) of the static (i.e. "zero-energy") circularly-
symmetric (non-normalizable) solutions to the true and idealized problems at any
radius ρ = a which is outside both the roundedness support of K and the support of
V.

2. The idealized dynamics for the resulting Λ-value will then well-approximate the
true dynamics at sufficiently large length scales.

In clarification of point (1), we first remark that, for the true problem, we assume
our static circularly-symmetric solution, v>tίϋec s aY> t o (5-4) to be smooth. It will
then be unique up to a constant, since it will be determined by integrating the
radial equation

( ^ | 4 ^ - = 0 ' (5 6)

using the property (as opposed to "boundary condition"!) that ψfrl^
c will be finite at

ρ = 0. On the other hand, for the idealized dynamics labelled by R, i.e. with the
boundary condition (2.3)/(1.8), one will obtain (by (1.7) and (2.3)) the solution, ψR
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say,

ψR = const ln(ρ/R). (5.7)

(In the special case R = 0, (5.7) should be replaced by ψo = const.)
Outside the radius ρ = α, tptίueic will, of course, take the form of Eq. (5.7) for some

R. This is the R-value which our procedure selects. It is clearly determined by the
"fitting formula"

b^ ) (5 9)

For a given K and Ϋ9 we shall refer to the parameter R, obtained in this way, as the
"scattering length," since it is closely analogous to the familiar three-dimensional
notion <20>.

Concerning point (2), we remark that the procedure in (1) may be viewed as
fitting the dynamics <21) of the idealized problem to coincide with that of the true
problem for scattering states at zero momentum. In consequence, one expects it
will continue to approximate the true dynamics well at sufficiently low momenta
or energies. This is what we mean by "sufficiently large length scales." On the other
hand, for a given true problem, one would not expect features of the fitted idealized
dynamics which have to do with small scales to be believable. It is of course of great
importance, in applying this idea to practical calculations to make this notion
more quantitative by expressing the believability of the fit at any given scale as a
function of the parameters of the potential. Such matters will be discussed further
in [42].

Our principal result is that, in the case F=0, the above fitting procedure gives
an R-value of zero. The proof is extremely simple: Using (5.6) one sees that a static
circularly symmetric solution of (5.4) with F = 0 will satisfy

This is uniquely solved (again using the property of finiteness of at ρ = 0) by ψs

x

x£lc

= constant.
Thus it is correct (in the sense that one will obtain a good approximation at

sufficiently large length-scales) to model (minimally coupled) quantum mechanics
on a rounded-off cone with no potential term by the "usual" self-adjoint extension
— Δ° of — A on an idealized cone <22>.

Turning to the true classical Klein-Gordon equation (our true problem B) one
expects the true dynamics for Eq. (5.1) to be well approximated by the idealized
dynamics described in Sect. 3 where one simply chooses the parameter R to fit the
potential V in the corresponding 1+2 dimensional non-relativistic problem. In
particular, our above principal result implies that the value R=0 will be equally
appropriate for approximating the dynamics of Eq. (5.1) in the case F=0. Similar
remarks apply to our true problems C and D.

5.2. Non-Zero R-values and Superconducting Cosmic Strings. We now look in a
little more detail at the case where there is a non-zero V term in Eq. (5.1) or (5.4), in
which cases, according to the above discussion, one expects the idealized dynamics
for non-zero values of the K-parameter to be relevant. Some of the points we make
below will be very brief. For further discussion see [42].



122 B. S. Kay and U. M. Studer

We begin with a number of (easily demonstrated) observations concerning the
question of which .R-values fit which V. We continue to confine the discussion to
spherical symmetry and assume V is supported inside some radius a.

1. In the case that V is non-negative, it follows from the fitting formula (5.9) that R
is bounded by a.

2. A true potential V which is non-positive will always have at least one bound
state. By varying the depth of such a potential, one may achieve any value of R. As
the depth crosses a threshold for a new bound state, the fitted R-value jumps from
zero to infinity. (Since such potentials always bind, the first such threshold is at
zero potential!)

3. For sufficiently weak potentials (the criterion is that the integral in (5.10) below
should be very much less than one) the fitted R will be well approximated by

] V{ρ)κ(ρ)ρdρ\ (5.10)

In the case of a weak non-negative potential, we remark that the formula (5.10)
leads to a value of R which is "exponentially smaller" than a. As a tool to
approximate the physics at large scales (i.e. at scales much larger than a) the
idealized dynamics for such a value of R will differ little from that for R = 0, and, for
many purposes, it would be reasonable simply to take R = 0.

In the case of a very weak non-positive potential, it may at first sight appear
paradoxical that one obtains, from (5.10), values of R which are exponentially
large. The resolution is that at "medium scales" (i.e. a few orders of magnitude
larger than a but not exponentially larger than a) the dynamics for such a value of
R will differ very little from the dynamics for the case R = 0, and again it would
often be reasonable to simply approximate the true dynamics - as far as such
medium scales are concerned - by the idealized dynamics for R = 0. This is related
to the fact (see Note <4> and the remarks at the end of Appendix A) that, with a
suitable notion of limit, the limit as R tends to infinity of the idealized dynamics
labelled by R is equal to the idealized dynamics for R = 0. (For a fuller
understanding of this point, see the discussion of "effect" versus scale for two-
dimensional potentials in [42].)

We remark that, in the relativistic case, Eq. (5.1), with any true potential Ffor
which the operator —A^+V has a bound state, one easily sees by a similar
argument to that given for the idealized dynamics in Sect. 3, that, in the case, say of
a massless field φ9 there will be runaway solutions. Thus one would expect massless
fields on true cosmic strings not to be modelled by such potentials (and in
particular not to be modelled by non-zero non-positive potentials) since if they
were, they would be expected to lead to an instability of the string (although for
sufficiently weak such potentials, the characteristic time could be very large). Note
in fact that, in the case of a very weak non-positive potential, a good
approximation for q will (by (1.7) and (5.10)) be

V(ρ)κ(ρ)ρdρ\ (5.11)

so that the bound state energy will be (see after Eq. (2.6)) - q2 and the characteristic
time for the runaway solution for the massless relativistic field will be (by (3.11))
q'1 for this q-value.
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It may at first sight appear paradoxical that, even in the case of true potentials
which are non-negative (and hence have no bound states) the fitted idealized
dynamics will (since R will never be precisely zero) always have a bound state. The
resolution is that, in view of the bound R ̂  α, the bound state (with energy, by (1.7),
— q2= — 4e'2CR~2) is a feature of the idealized dynamics which has to do with
length scales of the order of a where, as we discussed above, the fit should not be
expected to be believable. Thus, for example, when one uses the idealized dynamics
for a non-zero R-value to approximate the behaviour of (say massless) waves in
interaction with a cosmic string described by a non-negative V, the runaway
solutions derived in Sect. 3 should be regarded as spurious. We shall return to this
point at the end of this section.

We now focus attention on the case of potentials V which are both non-negative
and strong in the sense that the value of the integral in (5.10) is of the order of unity.
For such potentials, the approximation (5.10) will break down, but one sees
directly from the fitting formula (5.9) that the value of R will now be of the order of
(and no larger than) a (rather than exponentially smaller than a). Such potentials
are particularly interesting since, in the zero-mass relativistic case, they may be
regarded as models for the dynamics of the electromagnetic field around a
superconducting cosmic string. In fact, ignoring gravity (i.e. setting K = 1 - which
we shall do from now on) and in the Lorentz gauge, each component of the vector
potential Λv will satisfy Eq. (5.1) in the case μ = 0 (see e.g. Eq. (43) in [52] <23»
where V now represents the "local mass" term for the photon inside the string.

Possible mechanisms for such a term are e.g. cosmic strings with certain types of
non-abelian gauge-field configurations [57] or with an electrically charged Higgs
field with a non-vanishing vacuum expectation value inside the string radius (the
bosonic model in [52]). For other possible mechanisms see e.g. [52, 56, 57].

The point we wish to emphasize is that, to obtain a good approximation for the
dynamics for such a potential at medium scales (i.e. a few orders of magnitude
greater than α), it is important to take the idealized dynamics for the correct value
of R, and not to replace R by zero. The situation here is very different from the more
familiar behaviour of (say spherically symmetric) positive potentials of small
support in three dimensions, where again one sees (this time from the three
dimensional fitting formula - see Note <20» that the scattering length (this time L
as defined in Note <20» is bounded by the radius of the support a. In this three-
dimensional case, it would make little difference at large scales whether one
approximated the dynamics for such a potential by carefully fitting L or simply by
setting L=0. The reason is that, in three dimensions, one can show [42] that the
"effect" of such a potential falls off at large scales as the inverse square of the scale.
In two dimensions, on the other hand, the "effect" falls off only as the inverse
square of the logarithm of the scale, and would thus still be considerable at scales a
few orders of magnitude greater than a. (In these relations, the appropriate unit of
scale is the scattering length.)

As an application and illustration of these ideas, note that, for a superconduct-
ing string with local mass term V one expects a good approximation to the
scattering cross section per unit length of string for z-translationally-invariant
electromagnetic waves to be given by (2.16),

2 π | / / = π V Hlnfo/p])2 + π 2/4)" 1, (2.16)

where q is determined by Eq. (1.7) and the fitting formula (5.9). (Comparison with
Eq. (55) in [52] shows that the parameter A in [52] should be identified with this
value of q.)
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Finally, we point out that the special features of two-dimensional potentials
that we have discussed above (see also "Pitfalls 2 and 3" in Note <22» imply that
sometimes (notably in the case of the problems we denoted by D and D) the
relation between the idealized and "true" systems is not as clearcut as would be
suggested by our initial "natural hypothesis." (This was the hypothesis that, for
each "true" problem, there will be a particular allowed JR-value for the
corresponding idealized problem which led to a good approximation.) Consider
the situation for quantizations admitting ground states of Eq. (5.1) - again in the
case where μ = 0 and V is a strong non-negative potential. One knows that each
such true problem will have a quantization admitting a ground state. (We shall
assume our quantizations to have vanishing one-point functions. Up to possible
fine points which we wish to de-emphasize here, these will then be unique, cf.
Note <5>.) For the corresponding idealized system ([Jgφ = 0 on an idealized cone)
we showed, in Sect. 4, that there is a unique allowed R-value (namely R — 0) for
which this admits a ground state. If one would take our hypothesis literally for this
case, it would seem to suggest that the vacuum states for all strings in the class we
are considering of a given radius a (i.e. independently of the values of K and V inside
the string radius) should coincide to a good approximation at large scales. The fact
is, however, that (again because of the logarithm in the relation between "effect"
and length scale) one expects the approximation will only be good at exponentially
large scales, and not "good enough" at "medium scales."

To understand why our hypothesis fails to apply very well in this case, one must
recall the reason why R = 0 is the only allowed jR-value for the idealized problem:
This may clearly (see Sect. 4) be traced back to the fact that, for all other ̂ -values,
— A R fails - because of its bound state - to have a positive spectrum. However, the
bound state of — ΔR will (when one is modelling a non-negative potential of small
support) have to do with very small length and time scales where the idealized
dynamics is not a believable approximation to the true dynamics. The failure of
our idealized system for the appropriate fitted K-value to admit a ground state
should thus be regarded as spurious, in the same way that, as argued above, the
classical runaway solutions in the fitted idealized dynamics to the corresponding
classical problem should be regarded as spurious.

In order to overcome this problem and obtain a better approximation to the
vacuum state of (5.1) at medium length scales, one reasonable way to proceed
would perhaps be to introduce a modified idealized dynamics in which one simply
projects out the bound state, i.e. replaces — ΔR - for the appropriate fitted R-value
- by — AR(I—Pb), where Pb is the one-dimensional projector onto the bound state.
(This new dynamics would be non-local, but the non-locality would be only on
"small" length scales of the order of the string radius a.) If one were to follow
through the construction of Sect. 4, replacing — ΔR by — ΔR(I—Ph\ one would
presumably obtain a "modified" vacuum state which much more accurately
approximates the true vacuum state at medium scales. (The bound state - which
would now be a zero mode - would require special treatment. There would also be
some additional infra-red technicalities to investigate - cf. Note <19> ) It may then
be interesting e.g. to calculate the expectation value of the energy-momentum
tensor in the vacuum states which one obtains in such a way for non-zero jR-values.
Note however that the question of "believability" for quantities such as the energy-
momentum tensor is expected to be particularly problematic, since it involves an
integral over all scales, and it may be that, for certain types of interaction, one
cannot satisfactorily summarize the effect of the V term by a single parameter. In
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order to investigate this question, it would be interesting to study further the recent
results obtained by Allen and Ottewill [58] who calculate the renormalized
expectation value of φ2 in the case of a non-minimally coupled (massless) scalar
field on various types of model cosmic strings with rounded-off interior metrics. In
particular, it would be interesting to see how well their results could be "mocked
up" by choosing the appropriate non-zero K-value for an idealized string, as
discussed above.

Appendices

Al. Details on the Self-Adjoint Extensions of the Cone Laplacian

We give some mathematical details behind the results in Sect. 2 on the self-adjoint
extensions of — A (1.6) on the domain

D = C£(R+ xS)CJf = L2(R+ xS, ρdρdθ).

Especially, we justify in detail all the statements up to Eq. (2.3). We shall rely on
some results in [17] and [18] and especially in the Appendix to Sect. X.I in [18]
which we shall denote below by [X]. In the special case of deficit angle zero (K = 1)
an alternative discussion (leading to equivalent and further results) may be found
in Chap. 1.5 of [28], cf. also the discussion of related topics in [19].

Al.l. First, we prove that the self-adjoint extensions of this operator are the same as
those oi —Δ on the somewhat smaller "product domain" (cf. [17] Sect. V 111. 10)

consisting of finite linear combinations of functions of the form f(ρ)g(θ), where
+

where D§ = j£ am exp(zmθ): m e Z, finitely many am + O

To show this, it clearly suffices to show that both operators have the same closure,
i.e. that for all ψeD, one can find a sequence {φj ED such that

Ψi^ψ and —Aψi-^ — Aψ inJ f. (Al.l)

We use a geometrical trick to reduce the proof of this to a standard theorem
(Theorem VIII.33 in [17]) which says that a polynomial in essentially self-adjoint
operators is essentially self-adjoint on the appropriate product domain. The trick
is inspired by the observations: (i) that the lack of essential self-adjointness of — A
is "caused by" the failure of our Riemannian manifold (#, h) (1.5) to be complete - a
failure which is due to its behaviour near the (missing!) point ρ = 0. (Note that it is
the missing point which causes the problem; the problem persists for κ = 1 when
there is no conical singularity.) (ii) That the support of any ψ in CQ(K+ X S) will
have a minimum radius ρmin, and the existence of the sequence {i/̂  } will be
unaffected if we modify the geometry of the cone at smaller radii. The trick is as
follows: First choose ψ (with its ρmin) and choose ρ0 with 0<ρ o <ρ m i n . Then
consider minus the Laplace-Beltrami operator, —A' on the (now complete)
Riemannian manifold consisting of IR x S with metric

ds2 = dρ2 + r(ρ)2dθ2,
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where r(ρ) is smooth, everywhere positive, and equal to ρ for ρ ̂  ρ0 while it takes a
constant positive value for all negative ρ. — A' on the domain D' = C^(lR)(x)Z)s in
J^ = L2(JR.,rdρdθ) consists of the polynomial

A®1+B®C where A=-—Ύ — —, B=-~, and C=-^—~.
dρ r dρ dρ r oθ

One easily shows that A and B are essentially self-adjoint on CJ(R) C L2(R, rdρ)
(for A, one could use the methods in [26] as used in [24]) and that C is essentially
self-adjoint on D§. Thus, extending ψ from R + to R by setting it to zero for
negative ρ and applying Theorem VIII.33 in [17], (Al.l) must hold with D
replaced by D\ ffi by «#" and — A by — A'. Clearly the resulting sequence {tpj can
be chosen so as to have support in ρ > ρ0 and will thus satisfy (Al.l) in its original
version.

A1.2 (cf. Example 4 in [X]). Defining Lm = Se®Km, where Jέ? = L2(R+, ρdρ) and Km

is the one-dimensional subspace of L2(S) spanned by eιmθ, we may clearly write — A
on D in Jf as

0 - Λ W ® I on © ( Q ( ) J 0
mεZ meZ meZ

where — zlm is given by (2.2). We now study each of the terms in this direct sum, or
rather the equivalent operators

-Am on C£(R

It will be useful to study the equivalent (under
φι-»ρ1/2tp) operator

~ d2 ( 1 m2

on C^(R+) C S£ = L2(R+, dρ). By Theorem X.8 in [18] this is in the limit point case
at oo for all meΈ.By Theorem X.10 in [18] it is also in the limit case at 0 for m + 0
<8>. However, for m = 0, it is in the limit circle case at 0 since — Ao then takes the
form — d2/dρ2 + F(ρ), where V decreases with decreasing ρ (see Problem 7 in [18]).
We conclude that, for mφO, —zlw is essentially self-adjoint, whereas for m = 0, it
has deficiency indices <1,1) and hence a one-parameter family of self-adjoint
extensions. In consequence, cf. Problem la in Sect. X of [18] - the original
operators — A on D, and by Sect. Al.l, — A on D will also have deficiency indices
<1,1>, and hence also have a one-parameter family of self-adjoint extensions.

Aί.3. To explicitly characterize all these self-adjoint extensions of — Ao, we first
note that one easily shows (e.g. applying Proposition 2 in [X] to Ao) that the
domain 2{—A%) of the adjoint (which certainly extends all the self-adjoint
extensions) consists of functions ψ in J? which satisfy

(i) ψ is continuously differentiable, ψ' (' = d/dρ) is almost everywhere differentiable
and — A% acts "classically" - i.e. as
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(ii) Moreover, by the calculations,

and

we have that both ρεψ for all ε>0, and ρψ' are bounded in the vicinity of ρ = 0.
Using Property (i), one finds that the two normalizable functions (with equal

norms)

(Ko denotes the appropriate Bessel function of the third kind of imaginary
argument [32]) satisfy

and hence span the deficiency subspaces of — Δo (here, the bar denotes closure).
Standard theory (we use a trivial extension of Corollary (6) to Theorem X.2 in
[18]) now assures us that the self-adjoint extensions (which we temporarily denote
{— Δψ: δ GC, \δ\ = 1}) of — ΔQ stand in one-to-one correspondence with complex
numbers δ of modulus 1 - a core for the extension —Δψ being

Dδ = {ιp + c(ψ++δψ-):ψeC£(R+\ ce<£}

(and —Δψ acting on Dδ as —Δ%).
Clearly, the full domain of —Δψ is then equal to

A simple integration by parts shows that this is equal to

[ψ e ®{- Δ I): lim (ψδρψr - ψρψf

δ) = 0\,
I β-o j

where ψδ = ψ+

One may use the asymptotic formula (for zJ,O)

K0(z) = - ln(z/2) - C + O(z2 ln(z)),

where C is Euler's constant to see that

Exchanging δ for the real label q (ranging over [0, oo)) defined by

(by convention, we take q = 0 when δ= — 1) this may be written conveniently as

_ ίconst(ln(^ρ/2) + C) + 0{ρ2 lnρ) if q e(0, oo)
ψδ ~ [const + O(ρ2 lnρ) if q = 0.
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We may thus finally re-express the domain of — Δψ (which we now rename — Δ^
as

in case q e (0, oo), and

γ G ° 'ρToQΨ " }
in case g = 0. (Note that to show that the terms O(ρ2 lnρ) do not affect this limit, one
may use Property (ii) above.) Finally, exchanging q for R by (1.7) (see Note <4»
one sees that we have arrived at a rigorous justification of the boundary condition
(2.3).

To end this subsection, we remark that, quite generally, a symmetric operator A
will have self-adjoint extensions only when its deficiency indices are equal and, in
the case of deficiency indices <n, n>, these extensions are necessarily labelled by the
unitary group U(ή) (see e.g. Sect. X.I in [18]). If in this general case, one denotes the
extension corresponding to the label α e U(ή) by Aa, then it follows easily, e.g. from
the results in Sect. X.I in [18], that, given any convergent sequence

in the labelling group, one will have convergence of the operators Aaj,

in the sense that, for all ίelR and vectors ψ in the Hubert space, the sequence
exp(Aajήψ converges to Qxp(Aaήψ. Adopting this notion of convergence, and
applying this result to our case of interest (minus the Laplacian on a cone with
K ̂  1), where U(ri) becomes a copy of the circle, and our parameters q and .R become
different ways of relabelling points on the circle - one sees that — Δ(q)-+ — Δ° as
q->0and — ΔR^ — Δ° as R->0 (in other words, — Δ(a)-^—Δ° also as g-»co). These
remarks justify the point made at the end of Note <4>. (See also [42] for further
discussion.)

Aί.4. The remaining statements (after Eq. (2.3)) in Sect. 2 may be given a suitable
rigorous justification by e.g. supplementing the methods of [17,18] with
appropriate aspects of the theory of ordinary differential equations - see e.g. [27].
(Useful heuristic techniques for arriving at the complete sets of eigenfunctions ((2.4)
for g=0, (2.9) for c?Ξ>0) and for quickly determining the correct normalization
factors may be found, e.g. in Chap. 7 of [19]. See also [25].) In particular the
"complete sets of eigenfunctions" (2.4) for q = 0, (2.9) for q^O may be shown to
provide spectral representations for each of the self-adjoint extensions — Δ{q\
Thus, in case g = 0 (K = 0), the map

F ( 0 ) :L 2(R+ xS, ρdρdθ)-> 0 L2(R+,pdp)

meZ

where

1 7 ΨmjQ, θ)ψ(ρ, θ)ρdρdθ
0 0
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and, in case q ̂  0 (R ̂  0), the map

F ( β ):L2(R+ x§,ρdρdθ)-> φ L2(R+,pdp)φC
mεZ

bound JΨ ®
meZ\{0}

where tp(

o

β)(p) is defined by (A1.2) with ψ0 p(ρ) replaced by y>(

o

β)

p(ρ) (cf. (2.7)) and (cf.
(2.6)) 00 2 , '

Abound = ί ί Ψbound(Q)ψ(Q,θ)ρdρdθ
0 0

are isomorphisms which intertwine — A{q) with a multiplication operator

( 0 p ^ )
meZ

(p2 the multiplication operator on L2(R+,pdp).)
Note that (i) We have chosen all the eigenfunctions to be real, (ii) The sums

and integrals ((A1.2) etc.) are to be understood with a suitable notion of
L2-convergence. (iii) In the cases q = 0 and/or mφO, the ρ-integral in (A1.2) is just
the well-known Hankel transform. For g=t=O, m = 0, the eigenfunctions ψ$e thus
lead to a kind of generalized Hankel transform.

A2. "Symplectic Ideology"

The main purpose of this appendix is to give a suitable notion of "acceptable global
time evolution" in the case of Eq. (1.2) on the static spacetime around an idealized
cosmic string (Jί,g) (1.1) <1) There may be several ways to do this.

We choose a way that relies on the finite-propagation-speed property of
hyperbolic equations such as (1.2). For any initial data

(φ,π)eQ>(R+ x S x R) x Q?(R+ x S x R )

there will be a time-interval δφπ (the minimum distance from the support of the
data to the cosmic string, i.e. the minimum time for the data to reach the string)
within which the Cauchy problem will be well posed in the sense that there will be a
unique solution φ in the time-interval δφ>π (with Cauchy data remaining in
C^(k+ x S x R ) x Q ( R + xSxR)) which has these Cauchy data (i.e. φ = φ,
π = φ)at time zero. We call the map from such data at time zero to data at time t the
"local time evolution" &~\oc{t\ where it is understood that (φ,π) will be in the
domain of &]oc(t) only when \t\ < δφ,π. Note that &]oc(t) will then be a "local group"
in the sense that

will hold on the intersection of the domains of the left- and right-hand sides and it
will also preserve the symplectic form (3.7) on its domain at each t,

σ^ocWOPi^); ^oc(0(^2?π2)) = σ((φ1,π1); (φ2,π2)).

We shall define an acceptable global time-evolution to consist of a global
symplectic time-evolution group 3Γ(t) which extends ^ o c (ί). More precisely, it
consists of an extension (D, σ) of the symplectic space

(C^(R+ x S x R j x q?(IR+ xSxR),σ)
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and a symplectic group 9~i$) mapping D to D such that

^( ί ) (φ,π) = ^ o c ( ί ) ( φ , π ) (All)

whenever the right-hand side is defined. Finally, in line with our interest in
translationally invariant boundary conditions, we shall say that such a global
symplectic extension (D, σ, ̂ ~(ή) is translationally invariant (in z) if D also admits an
extension

Z(z'): (φ(ρ, 0, z), π(ρ, θ, z)) h+ (φ(ρ, 0, z + z'), π(ρ, 0, z + z'))

of the group of z-translations on (Q?(R+ x S x R ) x C£(R+ xSxR),σ) whose
elements commute with the ^(ί)'s.

We claim that, for each q, the space (D(q\ σ) with (D(q) as in (3.5) and σ defined by
(3.7)) together with ^q\t) (3.6) constitutes a (translationally-invariant) global
symplectic time evolution in the sense just defined. To check this, it is easy to see
that ^q\t) maps D{q)-+D{q\ preserves the symplectic form σ (and commutes with
z-translations). It thus only remains to show that ̂ q\t) extends &]oc(t) in the sense
of (A2.1). This may be done by showing that, on

Q ( R + x S x R) x Q?(R+ x S x R),

both locally solve the Cauchy problem in an L2-sense, and proving the uniqueness
of such L2-solutions. (We omit the details.)

We remark that, in the construction of Sect. 3, D could have been chosen
slightly differently. For example, we could have chosen the slightly smaller domain

One easily checks that this is equally an invariant domain for ^~(t% and still
contains

C J (R + x S x R ) x C ̂  (R + x S x R ) .

Clearly (D{q\ σ, ̂ q\ή) and (D{q\ σ, ̂ q\ή) (and more generally, any pair of global
symplectic extensions when one is an extension of the other) describe the same
choice of boundary conditions. We shall say they do not differ in essence.

We leave as an open question whether there exist translationally invariant
"exotic" global symplectic extensions of

( C ? ( R + x S x R ) x C ^ ( R + x S x R), σ, #ijt))

which differ in essence from all those constructed in Sect. 3 (i.e. which do not arise
from self-adjoint extensions of A (3.2)). (Note: Throughout the remainder of the
paper, we shall proceed as if there are no such exotic extensions.) As a final remark,
note that, although we have restricted consideration in Sect. 3 and this appendix to
translationally invariant extensions of the dynamics, the approach we have
adopted (and the issues we have raised) are not restricted in principle to these cases
(cf. Note <17». In fact, our approach should also further generalize to a wide class
of problems involving linear stationary hyperbolic systems with boundaries - such
as Eq. (1.2) on a wide class of stationary spacetimes which fail to be globally
hyperbolic.
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Notes

1. Planckian units are used throughout h = c = G = l.

2. In the non-relativistic Schrόdinger equation, we set the mass μ=\.

3. For convenience, we drop a factor of K from the volume element.

4. We shall also set, by convention, q = 0 when R = 0. In Sect. 1 to 4, we shall find it
convenient to use q (related to R by Eq. (1.7) and this convention and also taking its
values in [0, oo)) rather than R as a label for our self-adjoint extensions. (We shall
indicate ^-labels by the use of round brackets. Thus — A(3) denotes the extension
corresponding to q = 3 units of inverse length, while — A3 denotes the extension
corresponding to R = 3 units of length. Note that — zj(θ)= —A0.)

In general, the q label is useful when one is interested in the energy of the bound
state, {—q2\ while the R label is appropriate in the application discussed in Sect. 5
to fitting the dynamics on rounded off cones etc., since - as we explain there - it
corresponds to the scattering length of the true interaction. Note that the
discontinuity at R = 0 in the relation between q and R is physically spurious: One
should really think of the parameter space labelling the different self-adjoint
extensions of — A as topologically a circle with q = 0 and q = oo (equivalently R = 0
and R = oo) identified. In fact (see the last remarks in Sect. A1.3 and [42]) one has
(with a suitable notion of convergence) — Aiq)-+ — A(0) as q-+co (and also — AR

^-J°asjR->oo).

5. Modulo possible fine points which we ignore here (see e.g. the relevant
discussion in Sect. 3 of [22]) for each R, the ground state which we construct here
will be uniquely determined up to the possible addition of a non-vanishing one-
point function. In particular, the two-point function (4.9) will be unique.

6. (See also Note <20» See e.g. [45]. Note that our definition of two-dimensional
scattering length (see [42] for a full discussion) differs from that discussed in [28],
which was introduced in [46,47]. In particular, the two-dimensional scattering
length of [28, 46, 47] is dimensionless, while our notion has the dimensions of
length.

7. Here, one may ignore gravity, and view the components of the electromagnetic
vector potential (say in the Lorentz gauge) simply as four massless scalar waves
with a potential - or "local mass" term inside the string core.

8. Note that it is essential for this result that 0 < K ̂  1. For K > 1, by Theorem X. 10
in [18], there will be further (non-circularly symmetric) self-adjoint extensions of
— A- with — Δm failing to be essentially self-adjoint whenever \m\ < K. Note that,
according to the principles discussed in [42] and Sect. 5 here, these results should
be relevant to a cone which was rounded-off in a non-circularly symmetric way
(especially if the potential term in (1.10) failed to be circularly symmetric) or to a
cosmic string which interacted with the Klein-Gordon field in a non-cylindrically
symmetric way inside the string radius. For K ̂  1 one would expect physical effects
at large length scales to be quite insensitive to such asymmetries. For n < K ̂  n +1
one would instead expect large scale effects (such as the low-energy scattering
amplitudes) to be sensitive to the shape of the interaction through, and in fact to
strongly feel, its Fourier components for m ̂  n.
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9. (See also Note <20>.) The situation here is to be contrasted with the self-adjoint
extensions of minus-the-Laplacian on Euclidean 3-space with a point removed.
Here again the non-uniqueness lies in the spherically symmetric sector where (cf.
[18], Appendix to Sect. X.I, Example 4) the problem is equivalent to the problem
of — d/dx2 on (L2-functions on) the half line. Here, it may easily be seen that there
is a one-parameter family of self-adjoint extensions, "half of which are positive
and "half having bound states.

10. In one important sense, the discussion of possible boundary conditions in the
present paper lacks full generality: For quantum mechanics on the cone (Sect. 2),
the set of self-adjoint extensions of minus-the-Laplacian will not be appropriate for
modelling physical situations in which the wave function "loses amplitude" (i.e.
particles are absorbed) at whatever is being modelled by the conical singularity.
Such situations could be modelled by enlarging our considerations to include
certain non-self adjoint (but say accretive, see e.g. [18]) extensions (cf. the
discussion in [28]) corresponding to certain non-unitary time-evolution groups.
Similarly, by restricting ourselves in Sects. 3 and A 2 to symplectic extensions of the
local time evolution &~ϊoc{t), we are implicitly restricting the physical situation
being modelled to waves which interact elastically with the cosmic string. Our
discussion of the quantum field theoretic problem in Sects. 4 and 5 is similarly
limited to elastic processes.

11. The equation ίdψ/dt = (μ2 — A)ί/2 is the one-particle dynamics for the relativ-
istic quantum field theory of (d2/dt2 — A+ μ2)ψ = 0 on the cone. More insight into
this will be obtained in Sect. 4 where we discuss the quantized Klein-Gordon
equation on the 1 + 3 dimensional spacetime where the space is the product of the
two-dimensional cone with the real line. Note however that (as in flat spacetime)
certain new technicalities will arise for the true two-dimensional cone if the mass is
zero(e.g. Q ( R + xS) will no longer belong to 2{{-Δ{0))' 1/2)cf. Note <19». Also
the case q = μ, where there is a discrete eigenvector with zero energy would require
special treatment.

12. To prove that, in the case κ = ί, the extension for q = 0 (i.e. since it is the unique
positive extension, the Friedrichs extension) of

-A on q?(R + xS)cL 2(R+ xS, ρdρdθ)

(equivalently of — A on C^(R2\{0})cL2(R2)) is equal (under the same equiva-
lence) to the unique self-adjoint extension of — A on C^(R2)cL2(IR2)) in L2(R2)
observe that C^OR2) contains the (by the results of Sect. Al) core D_ ι ®DS (finite
sums of products) for — A(0\ where D_x consists of C00 functions (ψ) of ρ which

vanish at sufficiently large ρ and satisfy lim ρdψ/dρ = 0.)

13. It is tempting to expect that, in the case of /c = l, — Aiq\ for g^O, would be
equivalent to the Schrόdinger operator with a "^-function potential" at the origin.
Actually, the notion of a ^-function potential can be given a direct mathematical
meaning, e.g. using the notion of quadratic forms on Hubert spaces, only in one
dimension, see e.g. Example 3 in Sect. X.2 of [18]. (Note that the one-dimensional
case, i.e. -d2/dx2 on CqΐRMO^cL^R) actually has deficiency indices <2,2> so
there are also other kinds of self-adjoint extensions in this case, see [28].)
Nevertheless, in two and three dimensions (which are the only other dimensions
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for which -Δ on C^(Rπ\{0})cL2(]RM) fails to be essentially self-adjoint) one may
think of the different self-adjoint extensions of minus-the-Laplacian on (CQ
functions on) RΛ\{0} as corresponding to the addition to minus-the-usual-
Laplacian of some sort of suitably renormalized (5-function potential. This idea is
extensively discussed in the monograph [28] where the emphasis, however, is more
on the three dimensional case. Here we would remark that, from this point of view,
the two-dimensional case appears (in contrast to the three dimensional case, see
Note <9» rather strange since the existence of a "bound state" for all q > 0 seems to
say that, in two-dimensions, the only non-trivial renormalized <5-function potent-
ials are attractive. Light will be shed on this matter in Sect. 5.2, where we point out
that, in using — Δiq) for some non-zero q to approximate the large-scale behaviour
of a positive potential of small support, the bound state should be considered as
spurious. (See also [42]).

14. There are really two distinct scattering problems one can reasonably pose for
quantum mechanics on the cone according to what one chooses to regard as the
appropriate "comparison free-dynamics." Given the dynamics Qxp(ίA^h) corre-
sponding to the choice of the qth self-adjoint extension of the Laplacian on the cone
of deficit angle δ = 2π(l — κ\ one may compare this either
(i) with the dynamics exp(iΔ(°H) corresponding to the choice of the Friedrichs
extension on the same cone (i.e. with the same K) or
(ii) the free dynamics on flat (two-dimensional) space (i.e. by Note <12> with

In case (ii), it is necessary to geometrically identify the cone with flat space. An
obvious way to do this is to identify points with the same (r, θ) coordinates. Note
that while this is of course not a global isometry, it does preserve (up to an
unimportant numerical factor) the volume element ρdρdθ and thus induces an
isomorphism between the resulting L2-spaces.

The natural mathematical problems to isolate concern the existence and
properties of two different types of wave operators:

Q # > ± = S - lim Qxp(-iΔ^t)Qxp(iΔ^t) (*)
ί~* ±00

and

s _ lim eχp(-i4O )ί)exp(iJίO )ί), (**)
f-> ±oo

where Δψ is the usual Laplacian on flat space and in (**), the identification of the
cone and flat space Hubert spaces as described above is understood. The wave
operators ω<?):t clearly correspond to comparison (i) while the general
comparison (ii) above would have to do with the composition

of these two different types of wave operators.
We note that the "change in the phase shift" considered in this paper refers to

comparison (i) (i.e. the ω's). On the other hand, the phase shift introduced by Deser
and Jackiw [14] would appear to be related to Comparison (ii) in the Friedrichs
extension case, i.e. to the wave operators Ω^}±.

It would be an interesting problem to gain mathematical control over the two
types of wave operators (*) and (**). We remark that, in the case of zero deficit
angle (κ = 1) the scattering theory associated with (*) is discussed in Chap. 1.5 of
[28].
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15. Levinson's theorem (which is usually proved for suitable classes of potentials
for Schrδdinger operators in three dimensions, see e.g. [39,40]) states that if one
normalizes the phase shift to vanish at infinite momentum, then the phase shift at
zero momentum is equal to π times the number of bound states.

16. In this note, we wish to draw attention to some interconnections between the
boundary-condition problem for the Laplacian on a cone and the problem of the
classical motion of a non-relativistic particle on a cone or on the space around an
idealized cosmic string. As Linet (in the electrostatic case) [29] and Smith [4] (see
also [25]) have recently pointed out (in the context of motion near a cosmic string)
one might expect such a particle (located say at x with coordinates ρ, θ, z) to feel a
self-force due to the distortion of its own gravitational potential. At points x' other
than x, this potential, which we denote GM(x,x') will satisfy the appropriate
Poisson equation. In the case of motion near an idealized straight cosmic string
(1.1) this will be governed by

- (A + d2/dz2)GM(x, x') = 4πM(5(3)(x, x'), (*)

where M is the mass of the test particle (cf. the operator Λμ of Sect. 3 in case μ = 0).
The self-potential VM for a particle of mass M is then reasonably calculated, say

in a point-splitting renormalization scheme, to be given by

FM(x)= -(M2/2) lim (GM(x,x')-G0(x,x')), (**)

where Go is the solution of Poisson's equation one would obtain if the locally flat
geometry around x were viewed as embedded in a globally flat space instead of the
physical conical space. Similarly, in the case of an electrically charged test particle,
the electrostatic potential Ge will be governed by the same equation (*) with e (the
charge of the test particle) in place of M, while for the electrostatic self-potential Ve,
one must replace —M2/2 in (**) by e2/2. Here, we wish to make two remarks (see
also [25]). Firstly, in calculating the Green's functions GM and Ge, (i.e. the inverse
of the appropriate Laplacian) one must make a choice of boundary condition at
the conical singularity (or string). In doing this, Smith and Linet appear to
implicitly choose the Friedrichs extension of their Laplacian, obtaining the values
(for small string-mass per unit length λ = (l/4)(l — κ)

VM(x) = πλM2/4r, Ve(x) = - πλe2/4r.

However, in principle, one could take for GM (or Ge) the inverse of any of the
(z-translationally invariant) self-adjoint extensions of the differential operator in
(*). In other words, one can solve (*) for any of the inequivalent boundary
conditions (1.8)/(2.3). For each choice, one expects, of course a different result for
VM (or Ve\

Secondly, it is problematic whether any of the resulting self-potential-formulae
will be a good approximation to the true self-potential due to a true string. One, of
course, expects these latter to be governed, in the gravitational case by:

and, in the electrostatic case (say for a superconducting cosmic string, cf. Sect. 5.2)
by

- {Δ~h + F)Gl

e

rue(x, x') = 4πe<5(3)(x, x').
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We remark that, on the basis of the principle result in Sect. 5.1, one might expect
the true gravitational self-force (or the true electrostatic self-force in the case of a
non-superconducting cosmic string) to be well approximated by taking the
Friedrichs extension ("usual" boundary condition) in the corresponding idealized
problem. On the other hand, on the basis of the discussion in Sect. 5.2, one might
expect the true electrostatic self force due to a superconducting string to be best
approximated by taking the boundary condition for the appropriate fitted
K-value. However, it is not immediately clear to what extent either of these
approximations would be "believable" since (like the quantum energy-momentum
tensor, cf. the discussion at the end of Sect. 5.2) the self-force involves both large
and small scales. Concerning believability for the case R = 0, Davis and Perkins
[62,63] have recently computed the corrections to the electrostatic self-force on a
test charge near a cosmic string due to the rounding off of the metric inside the
string (but without considering any possible V term which - as we point out here -
ought to be included in the superconducting case) and find that the value is very
close to that for an idealized string with R = 0 boundary conditions once one is
beyond two to three string radii. Work is in progress [53] on calculating the self-
force for an idealized string with non-zero R values, and on the question of the
believability of this latter quantity in modelling the effect of the local photon mass
term V on the self-potential of a test charge near a superconducting string.

Finally, the question arises whether, and when (depending on the physical
application), it might be appropriate to include the potential VM (or Ve or both) in
the Schrόdinger equation for the quantum motion of a test particle moving on the
idealized-string spacetime. (Also, the obvious analogue question arises for a
2-dimensional cone.) On top of the choice of self-adjoint extension needed to define
VM and Ve as discussed above, one would then presumably have to face a second
self-adjoint extension problem for the resulting Schrόdinger operator (say for the
string problem)

-(A + d2/dz2)+Ve+V
M.

In the case where one takes the Friedrichs extension in the first self-adjoint-
extension problem (i.e. with the "usual" formula for the self-force), and a particular
choice of self-adjoint extension (corresponding to finiteness of the wave function at
the origin) in the second problem, the scattering theory of the above Schrόdinger
operator has recently been treated by Gibbons et al. [41].

17. Rigorously, let D 1 C^f 1 =L 2 (R + x S, ρdρdθ) be any core for -
= L2(R, dz) any core for - d2/dz2 (e.g. D2 = C^(R)). Then, by Theorem VIII.33 in
[17],

is essentially self adjoint on the domain Dt®D2 consisting of finite sums of
products of elements ofDt and D2 in J f ^ ® ^ . A suitable way to define Aiq) is to
take it to be the closure of this operator. We remark that Aμ on Q?(R+ x S x R )
CL2(R+ x S x R , ρdρdθdz) ( = ̂ ( 8 ) ^ ) will have deficiency indices <oo,oo>.
However, it is easy to convince oneself that amongst all the resulting self-adjoint
extensions, only the one-parameter family {Af]: q e [0, oo)} will be translationally
invariant in z (i.e. commute with z-translations).

18. A full argument for boundedness of the values of the Klein-Gordon field could
presumably be made by combining (3.7) with suitable Sobolev estimates (cf.
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[20,21]). Note that for the "borderline" cases μ = 0, q = 0, and μ = q (2.7) the
situation becomes delicate and would require a special discussion.

19. That C£(R+ xSxR)C®(l4 0 ) Γ 1 / 2 ) (4.10) may be established by combining
the following three results. Note, in the rest of this note, we change notation so that
Λκ denotes ^4(

0

0) on the cone with deficit angle 2π(l — K). We shall also take for
granted, in the case of κ = 1, the obvious identification of the cone with flat two-
dimensional space with a point removed, and thus e.g. identify CJ(R+ xS) in
L2(R+ xS,ρdρdθ) with C^(R2\{0}) in L2(R2) etc., switching between polar and
Cartesian coordinates without comment.
(i) Ax may be identified with minus the ordinary three-dimensional Laplacian λu

i.e. the closure of minus the (essentially self-adjoint) Laplacian on C^(R3) in
L2(R3). (This was proven in Note <12>.)
(ϋ)

This may be proven by standard Fourier transform methods,
(iii) A^112 is densely defined and ®μr 1 / 2)C®(4Γ 1 / 2), κ £ l .

It remains only to prove (iii). We do this by geometrically identifying the cones
with different K values as in Note <14> and observing from (1.6) that for K^ 1, we
then have the inequality

for all ψ in the common core (see Sect. Al .3) D _ x ® D s. From this, we may conclude
that

whereupon A\I2A~1/2 is bounded, and hence by taking adjoints A~ ίl2A{12 is also
bounded. This implies \\A;1/2ψ\\S\\A^1/2ψ\\, Vψe@(Aϊί/2) which implies (iii).
(Cf. Lemma A4.9 in [34]).

20. (See also Notes <6> and <9>.) We briefly sketch here the relevant three-
dimensional notions - assuming for simplicity a flat three dimensional space -
attempting to bring out the analogy with the treatment of the two-dimensional
case given in the text. In this (flat) three dimensional case, the analogue of our self-
adjoint extension problem concerns the self-adjoint extensions of — A on
C£(R3\{O})CL2(R3). These may be labelled by a parameter LeR, with -AL

corresponding to the boundary condition (replacing (2.3)) [_(rψ)/(d(rψ)/dr)~] l=0 = L
{rthe radial coordinate). The value of L for which — ΔL well-approximates — A + V
(V compactly supported, and, sa^ spherically symmetric) is then the three
dimensional scattering length L of V. This is defined in the standard way (see e.g.
[45]) b^ matching the unique smooth, spherically symmetric solution ψtίϊe0 of
(-Δ + ίOVtίue0 = 0 outside the support of V with the solution - replacing (5.7) - rψL

= const(l + r/L)). L is thus easily seen to be given by the three-dimensional "fitting
formula" (replacing (5.9))

21. A suitable precise statement would be e.g. to fit R to the quantity

l-'lik-1 exp([π/(2 tan(y(fc)))]),
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where y(p) is the change in the (m = 0) phase shift (cf. (2.14) and Note <14». (See
[42] for further discussion and we recall that R = 0 should be identified with
£=00.)

22. We caution against a number of incorrect "derivations" of this result. (The
"derivations" of R=0 which are criticized below would apply equally well in the
case of a purely rounded-off cone or in the case of a rounded-off cone with a strong
non-negative potential Ϋ. As we discuss in Sect. 5.2, in the latter case the correct
K-value often differs importantly from zero, and hence these "derivations" must be
incorrect - and the fact that they yield the correct answer in the case of a purely
rounded-off cone must be regarded as fortuitous!)

Pitfall 1. One might be tempted to argue that, since in the "true" problem, the
wave-function is "regular" everywhere, it must not diverge at ρ=0 in the
corresponding idealized problem and hence that the appropriate β-value is zero.
However, this must be an incorrect argument since one could similarly argue that
for any smooth potential the correct jR-value is zero. Yet, for any given fixed
support, one can easily find potentials with any given scattering length R, and
hence any given fitted R value.

Pitfall 2. One can show (cf. [42] and [43]) that for all sequences of rounded-off
cones with roundedness support which tends to zero, and for many sequences of
potentials (and, indeed, for all sequences of non-negative potentials) V with support
which decreases to zero, the dynamics of Eq. (5.4) will tend, in a suitable sense, to
the R = 0 dynamics on an idealized cone. It is, however, incorrect to conclude from
this that, for a "true" cone of "small" roundedness support α, and, say, a non-
positive potential with the same small support, the # = 0 idealized dynamics
should well-approximate the true dynamics at scales much larger than a. The
reason is that, as explained in Sect. 5.2, in two dimensions, a potential of small
support can still have a reasonably large effect at "medium scales" because of the
logarithmic fall-off of "effect" with scale in two dimensions mentioned in the text
(see also [42]). As far as effects at such scales are concerned, one must regard such a
sequence as still far from convergence until the radius of the support is
exponentially smaller than α.

Pitfall 3. One might argue that, since (for any metric ίί and any non-positive
potential V) the spectrum of minus the true Laplacian is positive (and, in
particular, has no bound states) then, it must be approximated by the R = 0
extension of minus the idealized Laplacian, since all the other extensions have a
"bound state" (as we saw in Sect. 1). Such an argument must be incorrect because
one could similarly argue for R = 0 in the case of a strong positive potential of small
support in flat spacetime, whereas a better approximation would be obtained at
large scales by the exact solution to the fitting formula (5.9). The point is that, as
explained in Sect. 5.2 (see also [42]), the bound state in the resulting idealized
dynamics has to do with small length scales where one does not expect the
approximation to be believable.

23. In Eq. (43) of [52], the local mass term V is replaced by some multiple of a
2-dimensional delta function potential, q2δ2(x)/π. We wish to emphasize that the
latter is not a mathematically well-defined notion, and, as a result, it makes no
physical sense to assign any particular finite value to the quantity q2/π. In fact, as
emerges in [52], it must be subject to an infinite renormalization (cf. the discussion
in [28].) Comparison of the present discussion with the discussion around Eq. (43)
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in [52] makes clear: (1) Heuristically, the non-trivial self-adjoint extension — ΔR is
the same thing as — Δ plus a (renormalized) delta function potential. (2) Working
from the outset in terms of — ΔR has the advantage that it bypasses any need for
infinite renormalizations. Ultimately, this point of view is both mathematically
better defined and simpler. It is also more "physical" since the parameter R (in
contrast to q2/π) is a well-defined physically meaningful quantity - the scattering
length as jve define it here - which is calculable in terms of the true local mass
function V by the fitting formula (5.9). In relating the present discussion with the
discussion around Eq. (43) in [52], one should (as we explain in the text) identify
the scattering length R with 2e~cΛ~ί, where A is the "cut-off that depends on the
structure of the string" of [52] (see after Eq. (47) there).

We remark that the assumption of a strong local mass term is justified, e.g. in the
case of a bosonic superconductor - by the argument in [52] that (in the notation of
[52]) Ke2/π>i. Our fitting formula and the above relation between R and A then
justifies the remark in [52] that "an extreme upper bound on A might be
A = 1019 GeV (if the string thickness is the Planck length)." Note however, that, e.g.
by Eq. (5.10), a weak local mass term could easily lead to values for A exponentially
larger than the Planck energy.
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