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Abstract. A Haag-Ruelle Scattering Theory for Euclidean Lattice Field Theories is
developed.

1. Introduction

Euclidean lattice field theories are candidates for approximate models of particle
physics. The particle aspects of these models, however, are usually analysed in a
rather indirect way. One first considers the lattice model as an approximation to a
continuum theory; by the Osterwalder-Schrader Theorem [9,10], the continuum
theory can be analytically extended to a Minkowski space quantum field theory.
Then, provided there are single particle states, one finds by the methods of the
general theory of quantized fields the corresponding incoming and outgoing
multiparticle states (Haag-Ruelle theory [1,2,3]). According to Hepp [4,5], the
scattering amplitudes can be written in terms of the time-ordered functions by the
LSZ reduction formulae [8]. In a last step the time ordered functions are
approximated by lattice quantities.

This indirect description of the particle content of Euclidean lattice field
theories has severe conceptual and practical problems which originate essentially
in the nonuniqueness of the lattice approximation of continuum quantities. This
becomes especially clear in theories with a trivial continuum limit which one
would like to use as effective theories up to some high energy cutoff. The indirect
particle interpretation described above does not lead in a natural way to non-zero
scattering amplitudes.

Fortunately, as is well known, there is a quantum spin system which is
associated directly to the Euclidean lattice model by the transfer matrix method.
Moreover, in many cases these quantum spin systems have particle-like excita-
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tions (see [11,15] and references therein). One may therefore hope that these
models can be interpreted as models of interacting quasiparticles. Actually
Luscher has shown that, provided free outgoing and incoming fields exist
corresponding to these particles, and provided these fields satisfy an LSZ-
asymptotic condition with respect to some interacting field, scattering amplitudes
can be expressed in terms of Euclidean correlation functions [13,14].

In this paper we prove that under very general conditions there are states in the
quantum spin model associated to an Euclidean lattice model which can be
interpreted as incoming, respectively outgoing multiparticle states. An LSZ-type
asymptotic condition could not be found but LSZ reduction formulae were
directly derived in [15].

The main difficulty which has to be overcome is the insufficient control on the
locality properties of the real-time evolution of the quantum spin system.

Typically, the transfer matrix is of the form

T=eΛI2eBeΛ/2, (1)

where A as well as B are sums of local operators. The Hamiltonian

H=-\nT (2)

however, has in addition to the local term A + B contributions of multiple
commutators of arbitrary high degree which are in general localized in large
regions and therefore induce long range interactions. We show that this difficulty is
essentially restricted to the high energy range. The high energy behavior of a lattice
theory does not influence the formation of scattering states; it is not to be
considered to be relevant for an approximated continuum theory.

The paper is organized as follows. In Sect. 2 we formulate our assumptions
(reflection positivity, exponential clustering of Euclidean correlations, existence of
single particle states) on the Euclidean lattice model and define the associated
quantum spin system. In Sect. 3 we relate the real-time correlation functions to the
Euclidean correlation functions. As an intermediate step we introduce a new type
of correlation functions which we call Chebishev transformed correlation
functions. These functions are finite linear combinations of Euclidean correlation
functions and permit a rather direct representation of real-time correlation
functions. In Sect. 4 clustering properties of the quantum spin system are derived
which for observables with finite energy transfer are only slightly weaker than the
corresponding clustering properties in a continuum quantum field theory. These
results are then used to construct the scattering states by the methods of the Haag-
Ruelle theory in Sect. 5. The paper is largely based on one of the author's thesis
[15] where more details may be found, in particular LSZ reduction formulae.

2. Euclidean Lattice Field Theory and the Associated Quantum Spin System

We consider a classical statistical system on the hypercubic lattice Zd+\ d ̂  1. The
variables of the model are attached to finite subsets of Έd+ί (i.e. sites, bonds,
plaquettes, etc.), and the observables are complex valued continuous bounded
functions of finitely many of these variables. ${Λ) for A cZd+1 denotes the set of
observables depending only on variables located in A; it is an abelian normed
*-algebra with respect to pointwise multiplication, complex conjugation and the
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supremum-norm || ||. Lattice translations x shift the variables of the theory and
induce automorphisms yx of $ = $(Έd+1) such that

(3)
and

yxlyX2=yXι+X2- (4)
Lattice reflections with respect to some coordinate hyperplane

for μ = 0, ...,d and ae\TL induce antilinear automorphisms θμ α of S such that
^ Λ = idand

θμ, aJx = 7θM, a(x)θμ, a = JXθμ, a-χ*' (6)

The model is defined by the choice of a state <•> on $, i.e. a normalized, positive
linear functional, typically the Gibbs state with respect to some Hamiltonian. The
state <•> is assumed to have the following three properties: reflection positivity
(A.I), this permits us to define an associated quantum spin system; exponential
clustering (A.2), so the associated quantum system has a mass gap; and existence of
one particle excitations with an upper gap (A.3).

(A.1) Assumption. Reflection positivity [9,10]:

For feδ(ΛμtX Λμfa = {xeZd+ί, x μ ^α},

(7)

Relation (7) endowes δ+: =$(ΛQ^ with a semidefinite scalar product. By
factoring over the space of null vectors one obtains a Hubert space 3tf0 and a
mapping/-•/ from $+ onto a dense subspace of J^o. The translation in 0-direction
induces a positive contraction in J^f0,

(8)

0 atrix. Translations
the directions orthogonal to e0 induce unitary operators
where e0 is the unit vector in 0-direction. Tis the transfer matrix. Translations x in

υ(χ)!=iX (9)
The Hamilton operator can be defined by

H = - l n T (10)

provided T has no zero eigenvalue, a condition which is satisfied in typical cases
[7]. Since it refers to the high energy behavior (absence of states with infinite
energy) which will be eliminated from our considerations, we do not need this
assumption. In the general case we define the subspace of finite energy

(11)

and set
(12)

In order to get a full quantum spin system we want to introduce local
observables. Let Λ{n) = {xeZd+\ x°e[0,n]}. Then each feS{Λ{n)) induces an
operator π(w)(/) on Tn3tf by

/g. (13)
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It satisfies the estimate

(14)

For n>0 the operators π(Π)(/) do not have an invariant domain of definition and
therefore do not generate an algebra.

Better behaved are the operators with finite energy transfer

A=Σ J dth(t, x)eiHtU(x)π{n\f)U( - x)<ΓiHί =f(h) (15)

where the Fourier transform fί of h is smooth with compact support. A maps the
dense subspace

(16)

of J f into itself; moreover, A is closable, and also its adjoint maps D^ into itself.
Let si denote the *-algebra which is generated by operators of the form (15). We

consider si as the algebra of almost local observables of the quantum spin system.
The time evolution acts as an automorphism group on si which is entire analytic,
i.e. t-*oct(A) is entire analytic for each Aesi.

(A.2) Assumption. Exponential clustering of Euclidean correlations: There exists
m>0 such that for all f geS,

^ ' , xeZd+1. (17)

This assumption immediately implies that Ω = ϊ is the (up to a phase) unique
ground state vector of H and that

sp(if)C{0}u[m,oo). (18)

Using reflection positivity in all coordinate directions one obtains the following
clustering properties of correlation functions:

</i •••/•>= Σ Π<{Λ ie/}>Γ, (19)
Pe&{l,...,n}IeP

where SP{\, ...,n} is the set of all partitions of {1,...,«} and where the truncated
functions <•;...; >τ satisfy the bound [15]

K/i . . Λ ) ^ ^ " " " 1 Π liyϊllβ""1^"41 ^") (20)

for f e${A^ i=ί,...,n, with

r(Λ1,...,An)= max \diameter^(Atu...uΛM)- Σ d iameter^μ^ (21)

μ = 0,...,d I i = ί J

with

diameter(^(yl) = s u p { | ^ - / | , x,y,eA}. (22)
In Sect. 4 we will show that assumption (A.2) also implies fast clustering of the

real-time correlation functions of the associated quantum spin system. So the
quantum spin system exhibits a behavior similar to a system with local
interactions in spite of the presence of (at least in the moment) in general
uncontrollable long range interactions induced by the finite lattice spacing in
Euclidean time.
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The third assumption concerns the existence of particle-like excitations. We
restrict ourselves to the case of uncharged particles, i.e. particle states in the Hubert
space Jf (the "vacuum Hubert space"). Charged particles, e.g., the charged
particles in a Z(2) gauge Higgs model as constructed in [11] will be treated in a
forthcoming paper [19].

(A.3) Assumption. Existence of one particle excitations.
There is an feS, /=t=0, such that for all geS the Fourier transform of the

truncated 2-point function

<g,7*(/)>r (23)

can be analytically extended for each pe( — π, π\d to a meromorphic function of p0 in
the region lmpo<ώ(p) with an isolated simple pole at p o

 = zω(p) ω(p) (the energy-
momentum relation of the particle) is assumed to be smooth and ώ(p) is supposed to
be continuous, ώ(p)>ω(p)^m. ω and ώ are independent of g. The velocity v(p)
= gradω(p) is nowhere constant.

Assumption (A.3) implies that there is a closed subspace Jf(1) of Jf7 (the single
particle subspace) on which the relation

(e~H-e-ω(P))\^l) = 0 (24)

holds. Here P is the momentum operator, i.e. the infinitesimal generator of spatial
translations,

sp(P)C(-π,π] d (25)

and J^(1) is the closure of the linear space

(26)

3. From Lattice Schwinger Functions to Wightman Functions;
the Chebishev Transform

The Wightman functions, i.e. the real-time correlation functions of the quantum
spin system constructed in the preceding section, can in principle be determined
from the knowledge of the correlation functions of the Euclidean lattice field
theory. It is the aim of this section to find an efficient formula for this connection.

The basic idea is to use the fact that continuous functions of the Hamilton
operator H with compact support can be uniformly approximated by polynomials
in e~H=T whose matrix elements are given in terms of Euclidean correlation
functions. Chebishev polynomials turn out to be especially convenient for this
purpose. On the interval [ — 1,1] they are defined by

Tn(x)=cos (n arccos x) (27)

and provide an orthogonal basis on L2([ —1,1], (1 — x2)~1/2dx), (see for instance
ll2

p g ([ , ] , ( ) ) , (
[17]). After using the relation Tn{2y-ί) = T2n(yll2\ O ^ y ^ l , which follows from
the identities Tm(Tn(x))=Tmn(x) and T2(x) = 2x2-\, one gets

f(H)= Σ K{f)T2n{e-HI2) (28)
0
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with the expansion coefficient

&„(/) = - ( 2 - ^ 0 ) π f dα/(-21ncosα)cos(2nα). (29)

π o
For smooth functions / with compact support bn(f) is strongly decreasing in n.

Since |7^(x)|^l for xe[-1,1] this implies norm convergence of (28).
Now let fteS(Λ{ni)\ i = l, ...,n. The "Wightman function," formally given by

Wflmm.fn(tl9 ...,g = (ί2,π^^(/ iy
( ί 2 ' ί l ) H ... e^-'-^π^XfJΩ) (30)

is a distribution on test functions h[tl9 ...,tn) with Ke ̂ (Rn), such that for Kt e

^...duW^Atto.^WάJ (31)

with

UK) = J dtWtYmτfr*(fύe -iHt. (32)

We use the fact that n(nί\βe~nίH is a bounded operator, and expand

= g bk(t-in)T2k(e-HI2). (33)
fc = 0

The expansion coefficients bk(ί — in) are distributions in t on

bk(t-in)= - ( 2 - A o)l rfα(cosα)"2ne-2ίίlncosαcos(2fcα) (34)
π ' o

and the series converges in the sense of distributions. Inserting these expansions
into the Wightman function yields terms which are finite linear combinations of
Euclidean correlation functions

wfι.m.fn(tl9...9tj= Σ M ^ - ί i - ^ . An-Λ-^-i-^-i)
kι,...,kn-i

xC / l (... ) / n(fc l v.4 f l-i) (35)

where the "Chebishev transformed functions" Cfu Jn are defined by

(36)

with the dj denoting the coefficients of the polynomials

τ2k(χιl2)= Σ «^' (3 7)

The convergence of the expansion (35) may be seen as follows: since

||T2k{e-H'2)\\ ί 1 and W'U)e-niH\\ ύ \\M ,

the Chebishev functions are uniformly bounded in klt ...,fcn_1;

\Cfl /n(fe1,...,fcΠ_1)|^||/1 | |...||/n | |. (38)
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Now let / I G # ( R " ) . Then after smearing each term on the right-hand side of (35)
with h we get coefficients

x fdαi ...docn-iϊί\ 21ncosα1? 21n( - I , . . .

/cosαΠ_i\ _
...,21n — , -21ncosan_!

VcosaII_2;

x(cosa1)~2ni...(cosaM_1)"2n"-1cos(2fe1a1)...cos(2fc/l_1an_1). (39)

Due to the support and smoothness properties of K they decrease faster than
any polynomial in fcl5 ...,&„_l5 i.e. for each JVeN there is some c>0 such that

\bku...fkn_ί(h;n1,...,nn.ίUc(ί+Σkir
N. (40)

This yields the convergence of the right-hand side of (35).

4. Clustering of Wightman Functions

In view of the apparent nonlocality of the real time evolution it is not obvious
whether the Wightman functions introduced in the last section exhibit any kind of
clustering. Clustering is crucial for the construction of scattering states by the
methods of Haag and Ruelle [1-5]. In this section we show that the existence of a
mass gap (assumption (A.2)) implies a weak form of clustering of Wightman
functions of fields with bounded energy transfer, which turns out to be sufficient for
the purposes of the scattering theory.

Let /fe<?([0,nJ xAt% A{ finite subset of Έd, n^O and let ftf6^(R), 1 ^i^n.
Consider the truncated Wightman function

^h,f(XlJi; -;XnJn)τ'=(ΩJUsSKt^'''Jn,JhnJ,Ω)τ, (41)

where hUt.(t)=hi {t — Q and fitXi = yXi(β, ί^i^n. Our main result concerns the
decay properties of these truncated functions.

Theorem 1. Let ifκ f(xί,t1;...;xn, tn)τ be defined as above. There is for each qe¥ί a
positive constant Cφ depending on h and /, so that

IΨifa, t, ... xn, tn)τ\ ί Cq^YJjjlf-t,, (42)

where | | ί | | : = max | ί i + 1 — tt\ and \\x\\: =r(Λi+xu ...,Λn + xn) is defined in (21).

Proof The first step of the proof consists in expressing the truncated Wightman
functions (41) in terms of truncated Euclidean functions. We use the fact that by
Cartier's formula [16]) truncated functions can be written as expectations in a
tensored theory, a fact which is familiar for the two point function. Hence the
arguments leading to relations (35) and (36) between Wightman functions and
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Euclidean functions hold equally well for the truncated functions,

fcez_i)/c), (43)

where

ht{tf

u...,t'n) = h1{t\-tί)...hn(t'n-tn)9 μ = (nί,...,nn-ί),

and
Jx \./l,£i> ">Jn,x) '

Cτ denotes the Chebishev transform (36) applied to the truncated Euclidean
/ π - l N

function. We find the following estimates: I \k\= Σ k{ i

M

^ 0 (44)

x(k)\^ const, (45)
n | l* l !, 4(m) = 2Arsinh(ίΓm / 2). (46)

Inequality (44) follows directly from the definition of bk in (39), and (45) follows as
in (3.8). For the derivation of inequality (46) we use the exponential decay of the
truncated Euclidean functions (20). Inserting inequality (20) into (36) we get

\c}jk)\£ Σ K ί l .- |α£: ; |e- m ( | ; | + l l * l l ) (47)

with \\x\\=r(Λί+x1,...,Λn + xn) and l/ |=Λ+ •••+•/»-I U s i n £ t h e alternating
nature of the coefficients of the polynomials T2k(x112) we find

Σ Ifljl ( - e m ) j = ( - l)kT2k(ie~m/2) = cosh(kA(m))^ekΛ{m) (48)

with yl(m) = 2argsinh(e~m/2), thus establishing (46).
We now split the sum in Eq. (43) into two terms, one corresponding to \k\<N

and the other to \k\ ̂  JV for some N e N . For the first term we use inequality (44)
with M = 0 and inequality (46), for the second term we choose M = q(n — 1) in (44),
where q is the natural number appearing in the formulation of the theorem and
apply the uniform bound (45). We obtain for the first term

const Σ e^Λim)'mM ^const ( J V + n ~ 1 ) W

 eMm)N-m\\x\\
ke%Ί-i,\k\<N (ft—1)

and for the second term

i±iίίiV ( π"1 )

const _ Σ . (^^) ^constl,^!^) . (50)

Finally we choose JV = ε||x|| with

ε<m/A(m) for

For 1 + ||ί|| ^(1 + INI) 1 " 1 7 * the bound in the theorem follows from the uniform
boundedness of the truncated Wightman functions. •

Remark. Theorem 1 admits the following generalization to expectation values of
arbitrary elements of the algebra si (Sect. 2):
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Theorem 2. Let Al9...9Anes/9n^29 and define the space-time translated operators
A^t^Uix^e^Aie-^Ui-Xi). Then for the Wightman functions

^ ( % i , ίi x» O: = (O, A±{xl9 tx)... An(xn, tn)Ω) (51)

the following clustering property holds: for each e, 0 < ε < 1 and for each qe¥ί, there
is a positive constant Cg>ε, depending on the Afs, so that

7> (52)

- {ii-\\x\\r '

where

llφ^mjttjt̂ -tj (53)
and

| | x | | := ί β max J f t-x j l . (54)

^ n ) are ί/ίe truncated Wightman functions.

The proof of this theorem follows the same ideas of that of Theorem 1 and we
omit the details here (see [15]).

5. Existence of Scattering States

One of the most remarkable properties of quantum field theory is the fact that,
once single particle states are present, automatically also the corresponding
incoming and outgoing multiparticle scattering states exist. The crucial ingredient
for the proof of this fact are cluster properties of vacuum expectation values [1,2]
which, due to Ruelle can be derived from spectrum condition and locality [3]. In
the case of Euclidean lattice field theory we derived a somewhat weaker cluster
property in the preceding section. In the present section we will show that the result
still suffices for the construction of scattering states. Since the argument is almost
identical to that of the continuum we will be rather brief (see [16,18] for modern
treatments in a form which is applicable in our case).

According to Assumption (A.3) there is a closed subspace #?(1) C 2tf on which a
single particle dispersion relation holds, and a dense subspace ^ ( 1 ) of jf(1) which is
created from the vacuum by almost local operators A e si. Actually it suffices to
take operators of the form

A=f(h), feβ+9 Λe$([m-β,oo)),ε>0, (55)

as defined in (15). In particular we may require 4̂*£2 = 0.
Let φe3t{1) and A e si such that AΩ = φ and A*Ω = 0. Consider the solution of

the wave equation corresponding to the dispersion relation ω in (A. 3),

f(t,x) = (2π)~d J d^z-^hip) (56)

with h{p) = 1 for p e spvφ (the momentum spectrum of φ) and h e C°°([ — π, π)). We
set

A(t)=Σf(t,x)a(t,x)(A). (57)
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Then A(t)Ω^AΩ — φ. The localization properties of Λ(t) follow from those of/

Notation ί. Let A be a closed set in [ — π, π)d. Then the velocity content V{Δ) of the
set of momenta A is

) = {gmdω(p)\peA}. (58)

The behavior of the solutions of the wave equation (56) may be summarized as
follows:

Proposition 1 (See [16]).

(i) ΣI/(^)l^(l+IΦd/2> (59)

(ϋ) \f(t,x)\ύcN(ί+dist(x,tV(Δ)))~N, N e N , (60)

where Δ is a neighborhood of supp/i (h as in (56),).

Now let φu...,φne@{1) such that V{spvφ^r\V(spvφj)-^ for iΦj. Choose
AiGjtf with AiΩ = φi, A?Ω = 0, and /ί ieC 0 0((-π,π] d) with F(supp/Zf)
nF(suppJιJ ) = 0 for iΦj, /ι (p) = l for pespuφi. Let f be the solution of the wave
equation (56) with h replaced by ht and At(t) be defined as in Eq. (57). The Haag-
Ruelle approximant on the scattering state of particles with single particle states
φί9...,φn is now defined by

φ(ή = Aι(ή...An(t)Ω. (61)

Theorem 3. (i) The Haag-Ruelle-Approximants φ(t) in (61) converge for £-• ± oo.
The limits (φt x ... x φn)out iΆ depend only on the single particle states φxeS(1), and
forallNeΉ,

\\φ{t)-{Φι x - x Φ«)out,inllί*-0, t^ ± oo . (62)

(ii) Let ψ1,...,ψke@(1) with V{spu\pi)r\V{spu\p^ = ̂  i=¥j. Then

((Ψι X ... Xtpk)ouUn, (0 ! X ... X Φn)out,in) = δn,kΣΠ(ψi>Φσ{i))> (63)

where the sum is over elements σ of the permutation group of {1, ...,n}.

Proof, (i) As usual, (i) is derived from the fast decrease of the derivative — φ(t). We
have dt

d
It

where

(64)
k,l=ί

Ak(t) = j t Ak(t) = Σ | ( ^ tit, *)α(ί, x)(Ak) +/k(ί, x) liH, α(ί, ,{Aj]β. (65)

We represent the right-hand side of (64) as a sum of products of truncated
functions. As Ak(t)Ω = 0 and AfΩ-0 terms with only 2- and 1-point functions
vanish. For a truncated fc-point function with k>2 we now use Theorem 2
together with Proposition 1. The expression to be estimated is of the form

Σ gi(*i,*i) gk(h,xjw?\x» t ... χk, t), (66)
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where W^k) is the truncated vacuum expectation value for operators

(67)

and g1? ...,gfc are solutions of the wave equations from the set

{/i, .,Λ,Λ. .X5,Λ,...,δ,Λ}. (68)
We split the sum in (66) in two pieces. In the first one we sum over all xte tV(At),
i = l,...,k, where Δt is a closed neighborhood of the set of velocities contained in gb

i = 1,..., k such that either A{ = Aj (if gf and gj are obtained from the same solution ft

by complex conjugation and/or time derivative) or A{c\A3 = 0 for i +j. For k ̂  3 at
least two different sets At occur. Hence Theorem 2 yields a strong decrease of W±k)

in t which is uniform in xt e t V(A f), i = 1,..., n; as the sum over |gf | is only polynomially
increasing according to (59), we find that the first contribution is strongly
decreasing in t. For the second contribution we use the strong decrease of the wave
functions gf outside of the kinematically allowed range (60) together with the
uniform boundedness of the truncated Wightman functions. We conclude that the
expression (66) is strongly decreasing in t. As all other factors increase at most

polynomially we conclude that — φ(t) in (64) is fast decreasing, thus proving (i).
at

(ii) The proof of (ii) is similar. Let

ψ(t) = Bί(t)...Bk(t)Ω (69)

denote the Haag-Ruelle-approximant for (ψ1 x ... x ψk)ouUin. Then

\ Φ(t)) = (Q, Bk(t)* ... B^tTA^t)... AH(t)Ω) (70)
may again be expanded into a sum of products of truncated functions. Terms with
truncated /-point functions vanish for /^3 in the limits ί-»±oo by analogous
arguments as above, and 1-point functions vanish identically. Hence the only
contributions to the limit come from 2-point functions

This implies (63). •

Note that relation (63) characterizes the statistics of particles as being bosonic,
i.e. the vector states (φ t x ... x φn)ouUin are symmetric under permutations of the
single particle state vectors. The translations act on the scattering state as expected

C/ίxyWi x - x ^ U i n = (( ί/(xy H ^ 1 )x ... x(l/(xyH'</>n))0U.,in (72)

The full scattering spaces (including products of particle states with overlap-
ping velocities) are obtained as closures of the linear span @OλlUin of the scattering
state vectors with non-overlapping velocities. Let J ^ f ( 1 ) ) denote the bosonic
Fock space over Jf(1), and let J^o denote the linear subspace of #"(Jf ( 1 )) spanned
by tensor products of single particle vectors from ^ ( 1 ) with non-overlapping
velocities. Let

Uouum' Po-** (73)

be linear operators defined by

Uout, iviΦ 1 ® ® Φn) = (Φ1 X X Ψ Jout, in (74)
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Because of (63) the operators UouUin are isometries and extend therefore to the
closure of #"0. Provided the group velocity gradω(p) is nowhere constant as a
function of p (which we assume in (A.3)) the subspace #p is dense in the full Fock
space, and we obtain two isometric images J^ouU i n = @ouU i n of the Fock space in the
physical Hubert space $f.

The physical interpretation of ^ o u U n as spaces of scattering states can be tested
by looking at expectation values of operators representing counters in the sense of
Haag and Araki [6]. By methods similar to those in the proof of Theorem 3 one
obtains the expected results [15]. Whether the same results can be derived for
^ut,in> a s w a s done by Buchholz [12] for relativistic theories by using locality is
unknown up to now. A solution of this problem may provide a step towards a
proof of asymptotic completeness in lattice field theory.

Finally one may discuss whether the scattering amplitudes can be expressed in
terms of time ordered correlation functions by LSZ relations. Formulae of this
type have actually been found in [15]. It is an interesting problem whether these
formulae can be used for perturbation theoretical and numerical calculations of
scattering amplitudes. We hope to discuss this problem elsewhere.

Acknowledgements. We are indebted to Detlev Buchholz, Martin Lύscher, and Mihail Marcu for
valuable discussions.
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