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Abstract. We investigate an n-simplex generalization of the classical and quantum
Yang-Baxter equation. For the case of s/(2) we find the most general solution of
the classical n-simplex equation for all n. These classical solutions can be quantized
(in the sense of quantum group theory) for n = 2,3 and we exhibit a quantum
solution to the tetrahedron equations (n = 3). The classical nondegenerate solutions
cannot be quantized for n = 4.

1. Introduction

Conformal field theory has recently emerged as a powerful unifying principle for
seemingly disparate mathematical theories such as representations of loop groups,
the theory of Riemann surfaces and moduli spaces, quantum groups, and three
dimensional topology. This new field is far from completion as a rigorous
mathematical theory but the general structure and the key ideas are rather clear.
From the physical point of view, conformal field theory can be considered as a
simple nontrivial example of a quantum field theory. Although quantum field
theory has been extensively developed by physicists during the past several
decades, the mathematical structure of quantum field theory has been thoroughly
understood only in the cases of free field theories and conformal field theories. The
latter have already yielded surprising and far-reaching results. It may therefore be
expected that other more sophisticated quantum field theories will be related to
correspondingly deeper questions in mathematics. One of the motivations of
the present paper was the search for mathematical structures in other quantum
field theories which have clear analogies to those arising in conformal field
theory.

A simple aid basic ingredient in conformal field theory (following from the
consistency of the operator product expansion) is the triangular, or Yang-Baxter
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equation,

^12^13^23 = ̂ 23^13^125 (l l)

where ΛeEnd (V®V) for some vector space V and R12 denotes R ® /, and similarly
Rί3 and R23 are elements of End(V® V® V). The triangular equation is directly
related to the representations of braid groups and solutions give rise to applications
to knot and link invariants as well as invariants of three-dimensional manifolds.
The general theory of quantum groups provides a universal construction of. a
one-parameter solution of the triangular equation associated to any finite-
dimensional simple Lie algebra together with a representation V. The simplest
example of the Lie algebra s/(2) together with its two-dimensional representation
gives the celebrated solution [1]

q 0
n — n-l Π \

(1.2)

associated with the 6- vertex model of statistical mechanics, the Jones polynomials
and, when q is a root of unity, invariants of three-dimensional manifolds [2, 3].
Moreover, this solution can itself be used as a starting point for defining a quantum
group [4-6].

The general form of R for any simple Lie algebra and any representation V is
much more involved, and, in order to understand better these complicated formulae
it is sometimes useful to take advantage of the existence of the parameter q and
examine instead the first term in an expansion in the variable t = log q. The resulting
expansion,

(1.3)

defines an operator re End (V® V) which satisfies the "classical triangular equation"

[7*12, **23] + [^12^23] + [^13^23] = 0, (1.4)

where r12 corresponds to #12, etc. This "semiclassical expansion" is useful in part
because it is much easier to describe the universal solution of the classical triangular
equation than it is to describe its quantum counterpart. The formula is r12 = n® π(f),
where π is a representation of a Lie algebra g in V and reg®g satisfying the
analogue of (1.4) in g®g®g is given by the "half-Casimir." For example; for
g = sl(2) one has

r = Λ ® f c + 4e®/, (1.5)

where e, /, h are generators of sl(2) satisfying [ft, e] = 2e9 [ft, /] = — 2/, [e, /] = ft.
Clearly, for the two-dimensional representation1

-,)• "(Σ i) /-(? o)
1 We will not distinguish notationally between the Lie algebra generators e,/,/ι and their
two-dimensional representation, since the appropriate meaning is clear from the context. Similarly
we will drop the tilde from r in (1.5), etc
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π®π(r) gives the infinitesimal generator of R in (1.2), since the latter may be
written as

Λ = ί

1/V1/2)*®*(l+(g-ί"1)β®/). (1-7)

Thus we may refer to # as a quantization of the classical r matrix [4-6].
A natural generalization of the triangular equation is the tetrahedral equation,

one version of which was introduced ten years ago by Zamalodchikov while
investigating three-dimensional integrable statistical mechanical systems [7]. We
define the tetrahedral equation to be the equation

^123^124^134^234 = ̂ 234^134^124^123* (1-8)

where .Re End (7® V® V) for some vector space V and β123 denotes R®\, etc.
as in the triangular equation2. One can simplify the notation by introducing
Rl = R234 and so forth. Moreover, introducing

we define the general n-simplex equation by the formula:

RlR2...Rn + ι=RΛ+l...R2Rl9 (1.10)

where K ίGEnd(F®(Π+1)). The corresponding classical simplex equation is therefore

where rteg9(n+l} and the identity (1.11) is understood in %®(M+1), where % is
the universal enveloping algebra of g. The investigation of the solutions of
Eqs. (1.10) and (1.11) for the case g = sl(2) is the subject of the present paper.
Variants of these equations have been previously investigated in [7-11].

One may of course identify many solutions of (1.10) and (1.11) by inspection,
since for example we may choose commutative solutions satisfying [Rh R^ = 0 or
[rf, TV] = 0 for all i, 7* = 1, . . . , n + 1. On the other hand, one should feel that nontrivial
solutions to these equations are unlikely to exist as n increases since for V of
dimension d we have dn(d — 1) more equations than variables.

Contrary to this natural skepticism, our first result, proved in Sect. 2, states
that the classical simplex equation has exactly the same parameter space of solutions
as the initial Yang-Baxter equation. The quantum equation, as usual, presents
many more difficulties. Our second result, proved in Sect. 3, is the construction of
a nontrivial solution of the quantum tetrahedron equation corresponding to the
nondegenerate classical solutions. Finally, our third result, proved in Sect. 4 states
that the nondegenerate classical solutions for n = 4 cannot be quantized: There
exists no R matrix satisfying the rc-simplex equation with a nondegenerate classical
solution as a classical limit, at least for n = 4.

We would like to stress that the methods that we are using are completely
elementary, although they probably indicate the existence of a new nontrivial
algebraic structure. Since the algebraic structure underlying the quantum solution

2 Equation (1.8) differs from Zamolodchikov's in the structure of the operators. The two equations
are compared in Appendix A
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of the triangular equation is known to be a quantum group, the solution of the
quantum tetrahedral equation opens the path beyond quantum groups.

Our results suggest many interesting open problems. Some of these are
mentioned below. Here we would like to point out that there are possible interesting
applications to topology. Just as (1.2) yields invariants of links in three dimensions,
it might be that our solution provides invariants of knotted 2-spheres in four
dimensions. An analog of the Reidemeister moves for this situation is known and
the main nontrivial move (analogous to the Reidemeister move of type III)
corresponds to the tetrahedron equation [12]. It is also natural to expect that our
solution has connections to invariants of 4-manifolds.

The nonexistence of a quantization of the classical r matrix for n = 4 is striking,
and is in accord with the general point of view espoused in [13-15]. It was shown
in [2] that integrable field theories and nontrivial fixed points of the beta function
in two-dimensional quantum field theory are connected to topology and gauge
theory in three dimensions. One may wonder if this kind of connection will work
in higher dimensions. Both quantum field theory and geometry become simpler
in higher dimensions: It is not possible to define nontrivially interacting quantum
field theories in greater than four dimensions, and even in four dimensions one
must introduce nonabelian gauge fields to define a sensible theory. Similarly, the
Poincare conjecture and other aspects of topology and geometry become (relatively)
simpler in higher dimensions and hence the dimensions in which geometry and
quantum field theory are most interesting coincide. It is thus startling that it is
only in the cases relevant to three and four dimensional topology that the purely
algebraic n-simplex equations also admit nontrivial solutions. According to the
above picture, it is natural to expect that the n = 3 solution will have connections
to four-dimensional gauge theory. The nonexistence of a nontrivial n = 4 solution
may be taken as evidence for this general scheme. It thus might be that the purely
algebraic n-simplex equations manage to capture something of the essential nature
of quantum field theory and geometry.

2. Classical //-Simplex Equations

In this section we find the most general solution of Eq. (1.11) for the case that
resl(2)®n. We begin with n = 2. In this case there are two classes of solutions:

Proposition 1. The most general solution of (1.4) for sl(2) is either
a) r = v® v, for some ι;es/(2), or,

b)

r = r(α, b, c, d)

= a(Jί (x) Ji + J2 (g) J2 + J3 (x) J3) + b(Jί®J2 - J2®Jί)

, (2.1)

where Jt are a basis for sl(2) with [Jh J7 ] = εijkJk and

a2 + b2 + c2 + d2 = Q. (2.2)

Proof. Direct calculation.
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Using Proposition 1 we can construct the most general possible ansatz for a
solution to (1.11) for n = 3 as follows. If r satisfies (1.11) for n = 3 then we may
decompose it with respect to the first index, i.e., r = £ Jt (x) Qt. Plugging into (1.11),

decomposing with respect to the first factor, and using the identity [a (x) ft, c ® d~] =
i{β, c} (x) [fo, d~\ + |[α, c] ® {ft, d} we find that a necessary condition for r to solve
(1.11) is that Qt + β/ must be solutions of (1.4) for all pairs of indices i, j. It follows
from Proposition 1 that Qt = r(ah bh ci9 dt) for some 4-vectors satisfying (2.2), and
moreover that the 4- vectors (αf, bt, ci9 dt) must be mutually orthogonal. Furthermore,
one can easily check that solutions to (1.4) of type (a) cannot be added to solutions
of (1.4) of type (b) to produce new solutions.

By the same token we may decompose r with respect to the last index according
to r = £ Vi (x) Jf. Requiring that Vt be of the form Vt = r(α , b'h c , dj) forces:

i

(α2, b2,c2,d2) = (bl9 -al9 -d^cj,

(α3, Z>3, c3, d3) = (cl9dl9 - ΛI, - fci),

so that the orthogonality constraints are automatically satisfied. One may continue
this process to establish

Proposition 2. Any nondegenerate solution to the classical n-sίmplex equation for
sl(2) must be of the form

U], (2.3)

where the sum runs over the imaginary quaternions /E{Ϊ, j9 /c}, Jί = Jf, J2 = JJ9 J^ = Λ>
and A = a + hi + cj + dk with

a2 + b2 + c2 + d2 = Q. (2.4)

Note that we are working with the quaternions "over the complex numbers,"
so for a quaternion B = b0 1 + b^ ί + b2j + b3k with bϊ complex we have Re (B) = b0.
Alternatively, we can represent l,f, j,k by two-by-two matrices and replace Re by
half the trace.

It remains to check that the Sn(A) are in fact solutions of (1.11). This may be
established by an inductive argument which reveals that the Sn(A) satisfy several
interesting identities:

Theorem 1. We have the identities

1)
Σ[S?MλS? M)] = 0, (2.5)

Kl'

2)

Σ
1=1 £ l^Kl'^n

(2.6)

Together with two cyclic permutations on the imaginary quaternions.
3)

[s-μ'X W)] + \ Σ ({sn(A"i SΓ^A')} - {sa(A'\ SΓI(A")}) = o, (2.7)
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where A', A" can be any of A, Ai, Aj, Ak,
4)

1=1
(2.8)

Proof. Let us consider first the inductive step. The equations at step n + 1 may be
reduced to those at step n using the identities

Sl(A)=l®Sn(A)
( ' }

for / > 1, together with the elementary equations

la ® b, c ® ά~\ = \{a, c] ® [&, d] + il>, c] ® {b, d},

{a®b,c®d} = \\a, c] ® [b, d~] + \{a, c} ® {b, d}.

For example, decomposing the classical (n + l)-simplex equation, identity one
above, with respect to the first factor gives the classical n-simplex equation
multiplying terms of the form {J^JJ. Terms of the form { J i 9 J j } with iΦj
multiply

Σ [s?μo, s?(/u)] + [s?(4/), s?,μo]. (2.10)
Kl'

Notice that if A satisfies (2.4) then so does A(i + 7) and hence Sn(Ai) + Sn(Aj) satisfies
the n simplex equation by the inductive hypothesis. From this one may deduce
that the expression in (2.10) vanishes. Terms multiplying Ji9 J2, J3 in the first factor
multiply identities of type 2.

Continuing as above we may decompose identities of type 2 at step n + 1 to
identities at step n. All terms multiplying anticommutators { J, J} in the first factor
vanish by identities of type 2 at level n. Terms multiplying Jl9J2,J3 in the first
factor vanish by the n-simplex equation or by identities of type 3, at level n.

Decomposing identity 3 at level n + 1 gives anticommutator terms multiplying
identities of type 3 at level n, while terms multiplying Jί9 J2>A multiply either
identities of type 2 or expressions like:

+ (Sn(Ai))2 + (Sn(Aj))2 + (Sn(Ak))2)

\ Σ [sm sr 1(̂ )] + \ Σ [sn

From the (2.4) it follows that, for any quaternions α, β,

Re M) Re (βA) + Re (α^i) Re (βAi) + Re (αyl;) Re (j8Λ/) + Re (α^fc) Re (βAk) = 0,

(2.12)

and hence the first line in (2.11) sums to zero. The two remaining sums vanish by
identity 4.

Decomposing identity 4 we find anticommutator terms multiply identity 2 or
identity 4 while terms multiplying J l 5 J2>^3 can be converted to identity 2 using
again the identity (2.12).

Finally, one can check directly that the identities are satisfied for n = 2, thus
completing the proof.
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3. Quantum Tetrahedral Solution

We now turn to n = 3. Choosing A = \+ ^/ — I f e w e seek a quantization of

®f -4e®h®f + 4e®f®h.

Given the central importance of the solution (1.2) for n = 2 it is natural to search
for a solution in the tensor product of spin 1/2 representations. In this case we have

Theorem 2. The 8 x 8 matrix

is a solution of the quantum tetrahedral equation:

RιR
2
R
3
R
4
 = R

4
R
3
R
2
Rι. (3.1)

Proof. The proof proceeds in several steps, reducing the tetrahedral equation to
simpler identities. We begin with some simple reductions. Let X be any operator
in V® V®V®V, where V is the two-dimensional representation of sl(2). It is
convenient to define

°
o

We define two involutions as follows:

Definition 1. X' is the operator obtained from X by the change e<->/ and
perm °X° perm, where perm is the permutation switching the first and third factors.

Note that (XY)'=Y'Xr.

Definition 2. X is the operator obtained from X by the interchange hί*-+h2 and

Note that XY = YX.
One may easily^heck that Rf = R (where the permutation acts on the first and

third factors) and R = R. Now define

A = ̂ 123^124? B — ^134^2345

^ — ^234^1345 ^ = ̂ 124^123- (3-2)

Proposition 3. We have the identities

a) A = D,
b) A = B'9
c).C = D',
d) C = B.

Proof, (a) Decompose K(3) from the left and the right according to

(3.3)

where
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and R(2)~ is R(2) with q replaced by q~l (and coincides with the inverse of R(2}).
We will refer to the first and second decompositions in (3.3) as the right and the
left decompositions respectively. Writing out A = Rί23R124_

 and ^ = ̂ 124^123
with respect to the right decomposition we see that we must establish four
equations like

but these in turn follow from XY = YX and R(2}e = - R(2)e.
(b) The proof is entirely analogous to (a) but we now use (XY)' = Y'X'. Similarly,
one may establish (c), (d).

The tetrahedral equation is the equation AB = CD. To verify it, we first
decompose A, B, C, D on both the left and the right to define:

A = h1®Alί®h1 + h1®A12®h2 + h2®A2ί®hί + h2®A22®h2

+ h1®Alf®f + h2®A2f®f + e® A^®^ +e®Ae2®h2 + e®Aef®f,

and similarly for B, C, D. The tetrahedral equation is now equivalent to three sets
of equations as follows:

type 1 :

^11^11 = ̂ ii^ii? Aί2B12 = C12D12,

^22^22 = C22D22, A21B21 = C21D21. (3.4)

type 2:

Aι2Bif + ̂ 1/^11 = C12Dlf + ClfDίί9

^22^2f + ̂ 2/^21 = ^22^2f + ^2/^21»

A^Bel + AeίB2ί = CnDel + CelZ)21,

^12^2 + ̂ 2^22 = C12De2 + Ce2D22. (3.5)

type 3:

AifBei + ̂ β2^2/ + AefB2l + Ai2Bef = ClfDel + Ce2D2/ + CefD2ί + C12Dβ/.

(3.6)

Under the ΊL2 x Z2 involutions the two lines in identities of type 1 are interchanged
and all four identities of type 2 are interchanged, so it suffices to verify only one
of these. Verification of the three types of identities proceeds by finding explicit
formulae for All etc. The decomposition of A,B,C,D is most effectively carried
out as follows. Write, for example,

Interestingly, we see that the first two terms are related to the two comultiplications
A, A' [4] of the quantum group associated with (1.2). Exploiting this relation and
computing the third term we obtain

= *ι ®(qh/2®qh/2) + h2®(q-h/2®q-h/2)
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^

-\)h2®h2

(3.7)

From these equations one may find Atj and then by using Proposition 3, Bij9 Q/, Dy.
Finally, one may explicitly verify the relevant identities in (3.4-3.6), thus completing
the proof.

Several important issues are raised by Theorem 2. One may wonder if the
quantum solution is, in some sense, unique. In fact, it is possible to write down a
nontrivial two-parameter solution for which the solution of Theorem 2 is a special
case. Moreover, there is the problem of extending our solution to other representa-
tions, and the related question of the existence of a universal R matrix in the
tetrahedral case. If such a thing exists one could wonder if there is an explicit
formula in terms of generators of the universal enveloping algebra of s/(2) or of
sl(2)q. More generally, our solution of (3.1) should have some important underlying
algebraic meaning - which we believe begins to make its appearance in the proof
of Theorem 2 - but which has yet to be elucidated3.

4. An Obstruction for n — 4

We now consider the quantization of the nondegenerate classical solutions for
n = 4, i.e., we will try to quantize the classical solution

+\6e®f®e®f (4.1)

in the tensor product of 2-dimensional representations of s/(2). The distinction of
n = 4 from the smaller dimensions is reflected in

Theorem 3. The classical r matrix (4.1) in the two-dimensional representation ofsl(2)
cannot be quantized.

Proof. We will show that no quantum R matrix exists by considering its
perturbation expansion:

R = 1 + tr + ίV2) + ίV3) + - - -, (4.2)

where r is given by (4.1) in the two-dimensional representation. The quantum
Yang-Baxter equation is equivalent to an infinite set of equations obtained from
the various powers of ί, in particular we will be interested in the equations at order
ί3 and ί4. At order ί3 we must solve the equation

O. (4.3)

3 One of the more obvious possibilities is to define an algebra with cubic relations via

JR123L12L13L23 = L23L13L12jR123 in a fashion entirely analogous to [6]. One soon finds that
other relations on the L's are necessary
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Using the identity

abc - cba = i( {α, [b, c] } + {&, [α, c] } + {c, [α, ft] } )

and the classical Yang-Baxter equation for r one verifies that r(2) = ̂ r2 is a solution
of (4.3). Thus, to find an obstruction one must consider the order four equation,
and this in turn requires a knowledge of the most general solution of (4.3). Hence
we need to know the space of solutions p of

From the results of Sect. 2 it is clear that there is at least a four-dimensional space
of solutions. Since (4.1) is just S4(A — 1 + «J — Ik) we may always take p = wl + xr +

yS4(ί + Λ/^Tj) + zS*(ί — yf^Λj) for any w,x,y,z. Direct examination of the
equation (which is an upper triangular 32 x 32 matrix of equations) using symbolic
manipulation on a computer reveals that the true solution space is in fact
five-dimensional, the most general homogeneous solution being

p = W l + xr + yS4(ί + J- 1;) + zS4(i - J- Ij) + ue®e®f®f,

so that the most general possibility for r(2) is

r™ = ±r2 + p. (4.5)

We now turn to the order 4 equation:

Σ (l>ι> *f] + I>S3>, rj]) + Σ foW ~ Wfi)
i<j ί<j<k<l

»VM + M V* -

where we must substitute (4.5). This equation may be simplified by several
considerations. First, taking into account the possibility of redefining R(4) by an
overall scale, and of redefining the variable t we see that, without loss of generality,
we may put w = x = 0. Furthermore, from the choice of solution (4.1) we see that
the equations and variables admit a Z2 grading with l,fc considered even and i,
considered odd. In particular, it suffices to prove that there is no solution for the

even part of r(3). Since the variables y, z are odd, and since S4(i ± ^/— Ij) are
solutions of the classical 4-simplex equation we see that these odd terms in (4.5)
only contribute to the last term in (4.6). One may now try to solve the linear
equations (4.6), with the parameters u,yz kept arbitrary, using symbolic mani-
pulation on a computer. One rapidly finds that the equations are inconsistent,
establishing our result.

The above result, and its proof, raises three rather evident questions. First,
there is the (ugly) logical possibility that there are other representations besides
spin 1/2 which can be quantized. We believe this is impossible but have not ruled
it our. Second, our method of proof used a computer and was decidedly
heavy-handed. A better understanding of the reason for the obstruction is certainly
called for. Third, for reasons discussed at length in the introduction, it is natural
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to conjecture that the classical solutions cannot be quantized in any representation
for n > 4 as well as for n = 4.

5. Further Questions

We believe that the present paper is only a very first insight into a new kind of
mathematical structure. Our results raise many new questions. In addition to those
discussed above we would like to mention the following:

1. Do the degenerate solutions of the classical triangular equation (e.g. taking
a = 0 in (2.1)) admit interesting quantizations?
2. What are the solutions to the classical triangular equation for other Lie algebras?
3. Is there a quantization for classical solutions for other Lie algebras?
4. Is the solution of Theorem 2 a special case of a more general solution of the
tetrahedral equations involving a spectral parameter? If so, what integrable
3-dimensional statistical mechanical model is it associated with?
5. Is the solution of Theorem 2 related to the elliptic solutions of the Yang-Baxter
equation?
6. Is the solution of Theorem 2 related to gauge theories in four dimensions?

Appendix A. Relation to Zamolodchikov's Equation

The equation studied in this paper is similar to, but not equivalent to Zamolodchikov's
equation for the "scattering of straight strings" [7]. In this appendix we explain
the difference.

In the scattering of straight strings the basic scattering amplitude is the
5-matrix for a three-string collision which may be interpreted as an operator
ReEnd(Vl®V2® F3) where Vt are the state spaces of strings 1,2,3. The inter-
sections of straight strings divide each string into a number of segments, and
Zamolodchikov assigns a string state by "coloring" each segment, where the colors
may be taken as basis vectors in some vector space W. In contrast to the case of
particles in 1 + 1 dimensions, the state space V available to any given string depends
on the number of other strings in its universe so that, e.g., in the presence of n
strings each string has a state space V = W®n. Thus, the basic 3 string scattering
amplitude is an element

RεEnd((W®3)®(W®3)®(W®*)). (A.I)

(Moreover, Zamolodchikov assumes that R is diagonal on the first and third factor
of each space W®3.) Then, to describe 3-string scattering in a universe containing
4 strings we must choose an embedding.

)) (A.2)

to define a 3-string scattering operator
4) ® (W®4)).

The choice of embedding is restricted by the requirement that the scattering be
local. We choose the embedding which is the identity on the first copy of W in
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each of the spaces W®4. The tetrahedron equation may now be formulated in
terms of the consistency condition for four string scattering as a sequence of
consecutive 3-string scatterings. Since the different 3-string scattering processes in
the equation require different embeddings

)) (A.3)

we must also introduce the permutation operator PeEnd(W®4) defined by

P: W i (x) w2 (x) w3 (x) w4 -> w4 (x) wx (x) w2 ® w3

where w^eW. We can now finally write the tetrahedron equations as:

(P^P^^Ps'1^1)^^
= ^123(P1P2JR124PΓ1P21)(P3^4^134^1^1)^234, (A.4)

where P 1 =P®l(χ)l(8) l etc. In addition, the consistency of the scattering of
straight strings requires further equations like #234^135 = ̂ 135^234 in the case
of five-string scattering. This is satisfied by Zamolodchikov's three-string amplitude
essentially because R is local and is diagonal on certain factor spaces, as indicated
above. Unfortunately the solution of Theorem 2 does not satisfy this locality
requirement. Hence, to apply our results to statistical mechanics and geometry
will require some further ideas. Nevertheless, the basic strategy of this paper can
be used to investigate Zamolodchikov's equations. The reason is that, if we consider
the classical limit of (A.4) for tensor powers of any representation, the extra
permutations in (A.4) are irrelevant. Thus our results on the classical equations
carry over unchanged.
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