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Abstract. This paper represents part of a program to understand the behavior of
topological entropy for Anosov and geodesic flows. In this paper, we have two
goals. First we obtain some regularity results for C 1 perturbations. Second, and
more importantly, we obtain explicit formulas for the derivative of topological
entropy. These formulas allow us to characterize the critical points of topological
entropy on the space of negatively curved metrics.

I. Formulation of Results

The topological entropy, /ιTOP, measures the exponential growth rate of the number
of orbit segments distinguishable with arbitrarily fine but finite precision. In general,
it behaves irregularly with respect to perturbations. In the discrete time case,
Misiurewicz [Mil] constructed examples showing that hjop'.Diff^iM")^^ is not
continuous for n ^ 4 , as well as examples showing that hΊO? is not upper-
semicontinuous in the Ck topology for k < oo in every dimension n ^ 2 [Mi2].
Here Diff°°(M") denotes the space of C00 diffeomorphisms on a compact n-
dimensional manifold equipped with the C00 topology. Yomdin [Y] and Newhouse
[N] proved that /iTOp:Diff°°(Mn)->IR is upper semicontinuous. For n = 2, Katok
[K3] proved lower semicontinuity. By combining these two results, one sees that
/ιTOp:Diff°°(M2)->IR is continuous. This result also holds for C00 flows on three
dimensional manifolds.

The structural stability of Anosov diffeomorphisms [A] implies that hΊOP is
locally constant. For Anosov flows, the structural stability [A] involves a time
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change and the topological entropy may change. However, the structural stability
implies that hτoP is continuous. Misiurewicz [Mi2] has shown that for general Ck

flows on M", k < oo and n ^ 3, hΊOP need not be continuous.
This paper represents part of a program to understand the behavior of

topological entropy for Anosov and geodesic flows. The principal regularity results
were obtained in [KKPW]. Later, related results were obtained by Contreras [C].
In this paper, we have two goals. First we obtain some regularity results for C 1

perturbations (Theorems 1 and 2). Second and more importantly, we obtain explicit
formulas for the derivative of topological entropy. These formulas allow us to
characterize the critical points of topological entropy on the space of negatively
curved metrics.

Our first result is an almost straightforward consequence of the results by
Manning [M] and Freire and Mane [FM].

Theorem 1. Let (Mn,g) be a compact n-dimensional C2 Riemannian manifold without
conjugate points and let gλi — ε^λ^ε,be a C1 perturbation through metrics without
conjugate points. If φλ is the geodesic flow associated to gλ, then

is a Lipschitz function.

The next two theorems contain the principle results of this paper:

Theorem 2. Let φ* be a C1 Anosov flow on a compact n-dimensional manifold X and
let φ\9 —ε ^λ^εbeaC1 perturbation of φι = φ^. Then hτ(λ) = hTOP(φλ) is a C1

function and the derivative is given by

d
aλ(p)dμ0,

λ = Λo

where μ0 denotes the Margulis measure (the unique measure of maximal entropy for
φ* [ M a 2 ] ) with respect to the unperturbed Anosov flow and the function aλ(p) compares
the infinitesimal generator of φλ to the infinitesimal generator of φ. One can think
of aλ(p) as an infinitesimal time change.

Theorem 3. Let (M,g) be a compact C2 Riemannian manifold of negative sectional
curvature and let gλ, — ε ^ / :g ε, be a C2 perturbation of g = g0. If φλ is the geodesic

flow associated to gλ, then hτ(gλ) = hTOP(φλ) is a C1 function, and the derivative is
given by

hτ(gλ)= — — gλ(v,v)dμgo,

λo 2 SMdλλ = λo

where μgo denotes the Margulis measure of g0.

Remarks.
a) Since the geodesic flow o n a negatively curved manifold is Anosov [ A ] ,
Theorem 2 also applies in this case. The two formulas are different. Furthermore,
the proof of Theorem 3 does not use structural stability.
b) In [KKPW] the authors prove, among other regularity results, that for a C 2
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perturbation of a C 1 Anosov flow, hτop is C1. However, they do not obtain a
formula for the derivative.
c) Theorem 3 can be extended to Rank 1 manifolds of nonpositive curvature
provided one can ensure the existence of a unique measure of maximal entropy.
This was established by Ursula Hamenstadt (unpublished). Once the theorem is
known for Rank 1 manifolds, it follows from the classification of compact manifolds
of nonpositive curvature and the rigidity of higher rank manifolds (see Appendix 1
of [BGS] for a convenient summary) that the theorem is valid for arbitrary
manifolds of nonpositive curvature.

The following result contains an interesting application of the formula from
Theorem 3:

Theorem 4. Let M be a compact surface and let 9ϊ(M) denote the submanίfold of
negatively curved C2 metrics on M having area equal to 1. Then hT:$l(M)^»R. has
a critical point at goe9ί(M) if and only ifg0 is a metric of constant negative curvature.

We would like to point out several open questions related to our results.

Conjecture 1. Let 9Ϊ(M) denote the submanifold of negatively curved C 2 metrics
on a compact manifold M having volume equal to 1. Then /zΓ:9ϊ(M)->R has a
critical point at g0 if and only if the Margulis measure and the Liouville measure
of the geodesic flow for g0 coincide.

The next conjecture would follow from Conjecture 1 and a well-known entropy
rigidity conjecture of the first author [K2, BK].

Conjecture 2. Let 9ί(M) denote the submanifold of negatively curved C2 metrics
on a compact manifold M having volume equal to 1. Then /ιr:9ί(M)-»]R has
critical point at g0 if and only if g0 is locally symmetric.

Our last conjecture would imply Conjecture 1 even if it is established only
under the extra assumption that μ is the Margulis measure (cf. proof of Theorem 4
below).

Conjecture 3. Let (M, g) be a compact Riemannian manifold of negative sectional
curvature. Suppose μ is a Borel probability measure on SM which is invariant
under the geodesic flow, and projects to Lebesgue measure on M, i.e., μ and the
Liouville measure coincide on π~1(B(M)):= {π~1{A)\AeB(M)}9 where B(M) is the
σ-algebra of Borel subsets on M. Then μ is the Liouville measure.

II. Topological Entropy for Geodesic Flows
on Manifolds Without Conjugate Points

Let (M,g) be a compact Riemannian manifold and M the universal covering of
M. For every peM, Manning [M] showed that the limit

l i m p , r )

r->oo r

exists and is independent of p. Here Bg(p, r) denotes the geodesic ball of radius
r > 0 in the universal covering M and vol^ is the volume associated to g. Margulis
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[Ma2], for metrics of negative curvature, Manning [M], for metrics with no focal
points, and Freire and Mane [FM], for metrics without conjugate points, showed
that Λg coincides with the topological entropy hτ(g) of the geodesic flow in the
compact quotient.

Lemma 1. Let (M,g) be a compact n-dimensional Riemannίan manifold and let
{gλ}, — 8 < λ < ε be a C1 perturbation of g = g0. Then there are Lipschitz functions
M(λ) and m{λ\ M(0) = m(0) = 1 such that:

a) For all p.qeM, m(λ) g ——-— g M(λ\ where dλ denotes the distance generated

b) For all measurable sets S c M

vol0 (S)

where \o\λ denotes the volume generated by gλ.

Proof. Define

M(λ) = m a x || ϋ || 3, m(λ)= m i n \\v\\λ,
ve(SM)o ve{SM)o

where (SM)0 is the unit tangent bundle of M with respect to g0, and ||ι;| |λ is the
norm of v in the gλ metric. From this definition, the inequality in (a) is evident.

Comparing the eigenvalues of gλ and g0 one obtains:

This immediately implies (b).
To see that M(λ) is Lipschitz we observe that (1) | |ι;| |0 = 1 for all ve(SM)0 and

(2) D = sup sup —\\v\\λ< oo. Since | |ι;| |λ is a C 1 function on (SM)0 x ( —ε,ε), (1)
λ VG(SM)O VA

and (2) imply that \M{λ) — M(0)| ^Dλ. The same argument applies to m(λ).

Remark. The inequalities (a) and (b) remain valid if we replace M by a covering
space equipped with the lifted metric.

Proof of Theorem 1. Let M be the universal cover of M and fix poeM. Then part
(a) of Lemma 1 implies:

Hence,

vo^{B"(Po'W))} = voUB^'r)) z v o l J β"
Therefore,

1



Topological Entropy for Anosov and Geodesic Flows 23

Part (b) of Lemma 1 implies:

logvol9(Λ>o,r) 1;_

III. Topological Entropy for Anosov Flows

Let φ be an Anosov flow on a compact space X. Margulis [Mai] and Bo wen [B]
have shown that the topological entropy hτ is obtained by:

where P(ή denotes the set of periodic orbits of (prime) period ^t. To prove
Theorem 2, it is important to count only those closed orbits which are almost
uniformly distributed with respect to the Margulis measure. Given ε > 0 and a
continuous function /, we say that a closed orbit {φsv}ι

s = 0 of period / is (ε,/)
uniformly distributed with respect to a measure μ if

Proposition 2. Let φ be an Anosov flow, μ be an invariant ergodic measure for φ,
and / a continuous function on X. For every ε > 0 let Pεμf(t) be the set of (ε, /)
uniformly distributed closed orbits of period f^t. Then:

lim inf - ^ hu(φ),
f->oo t

where hμ(φ) is the measure theoretic entropy of φ with respect to μ.

Proof. The proof follows from the methods which the first author developed in
[Kl] and [K2].

Remarks.
a) The proposition remains true for any flow φ if μ is an invariant ergodic measure
with non-zero Lyapunov exponents.
b) If μ is the Margulis measure of φ then:

The next ingredient for the proof of Theorem 2 is a refined version of the
structural stability of Anosov flows.

Proposition 3. (Structural Stability for Anosov Flows) Let Φ be a C 1 vector field
on a compact manifold X which generates an Anosov flow φ\ Define

C%(X) = <u:X-+ X\u homeomorphism such that — u°φι =:Dφu exists >,
(̂  dt t = Q J

and let C°(X,ΊR) be the space of continuous functions on X. Then there exists a C1
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neighborhood U(Φ) of Φ and a C 1 map

S:U(Φ) ^CΦ(X) x C°(X,1R)

Φ ->{u,y)

which solves the structural stability equation

Corollary 4. (Dependence on Parameters) Let Φ be as in Proposition 3 and let Φλ

be a C1 perturbation of Φ = Φo. Then there exists ε > 0 such that:
a) For each fixed poeX,

λ-*uλ{pQ\ λ^>yλ(Po) a r e Cl ^ o r λe( — ε,+ε).

b) For each fixed λoe{ — ε,ε),

and

yλ(p)
λ — Λo

are continuous functions on X.

Proof of Corollary 4. Since S is C1 we obtain: For each fixed p0, λ^S(φλ)(p0) is
dj

a C1 function, and for each fixed λ0 andjejO, \},p- S(φλ)(p) is continuous

We present a sketch of the proof of Proposition 3 in the appendix. Also see the
appendix to [LMM].

The following formulas for the time change in structural stability are obtained
by integrating the infinitesimal time change.

Lemma 5. Let the vector field Ψ be C 1 close to the Anosov vector field Φ and let
(u,y)eCφ(X) x Ca(X,ΊR) denote the solution to the structural stability equation

If φι and φs are the flows generated by Φ and Ψ, then the time change equations

have the solutions

t i

s(t,p) = $ dx,
oy(Φx(p))

Proof Simple calculation.

The following inequality is the key step in the proof of Theorem 2 (cf. the proof
of Theorem 1 in [K4]).
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Proposition 6. Let φbeaC1 Anosov flow and φbea perturbation C1 close to φ. Then

ίydμ*
where μφ and μψ are the Margulis measures with respect to φ and φ, u is a conjugating
homeomorphism, and γ is the corresponding infinitesimal time change.

Proof. Given ε > 0, let P%y~\t) be the set of closed orbits of φ of period ^ ί, which
are (ε,y~1) uniformly distributed with respect to the Margulis measure μφ.

Let p be a periodic point for φ with period lφ(p) whose orbit σ belongs to the
set Pε

φ

γ~ \t). The period of the perturbed orbit φs(u(p)) is given by s{lφ(p\p). Because
σ is {ε,y~ι) uniformly distributed, it follows from Lemma 5 that:

Using Proposition 2, we obtain:

hτ(φ) = lim — g a(ε)- hm — ^— = a(ε)hτ(φ).
t->co t t^co ί α(ε)

Since ε > 0 is arbitrary, we conclude that

hτ(φ)£hτ(ψ)Ί-dμφ.
xy

Similarly, using the second assertion of Lemma 5, we derive:

Proof of Theorem 2. Let φλ be a C 1 perturbation of φ = φ 0 , — ε ^ /L ^ ε.

Proposition 6 implies that:

where yΛ, wΛ are as in Proposition 6 but now depend on the parameter λ, and μλ

is the Margulis measure for φλ. Linearizing in λ at λ = 0 leads to:

ΎλiP) Ss

and

- i d

λ ds s = 0
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Since ^ constant for all peX and —-
ds

obtain:

ys is uniformly continuous, we
s = 0

where ε(Λ)->0 as A—•(). Substituting this in the equation above yields:

\^hτ(φλ)-hτ(φ0)
δ
d~s

.id
\ds

for suitable ^ ( Λ ) and o2{λ).
We remark that this inequality already implies Lipschitz continuity for

λ-*hτ(φλ). The proof of Theorem 2 follows from the next lemma.

Lemma 7. (Weak Continuity of the Margulis Measure) Let φn be a sequence of
c1

Λnosov flows, φn >φ and μn,μ be the associated Margulis measures. Then μn

converges to μ in the weak topology.

Proof. Let μ* be any weak limit of μn. We show that μ* = μ. Since φ is expansive,
μ^>hμ(φ) is upper semicontinuous [W]. This, along with the variational principle,
implies that:

hτ(φ) ^ hμ*(φ) ̂  lim suph (φnk).

The structural stability of Anosov flows immediately implies that topological
entropy is continuous. Hence,

lim sup hμnk(φnn) = lim sup hτ(φnk) = hτ{φ).

This implies that hτ(φ) — hμ*(φ), and since the measure of maximal entropy is
unique, μ* = μ.

IV. Topological Entropy for Geodesic Flows on Manifolds
of Negative Curvature

The following inequality is a counterpart of the one in Proposition 6. Its proof is
even closer to the proof of Theorem 1 in [K4].

Proposition 8. Let (M9g0) be a compact manifold of negative curvature and g be
another metric of negative curvature on M. Then:

odμg,Λ ί f | | L ύhτ(g)Zhτ(goy J \\v\\go

M)

where μgo and μg are the Margulis measures associated to g0 and g.

Proof. Again we use the fact that the topological entropy is given by the exponential
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growth rate of the number of closed geodesies, i.e.

where Pg(t) denotes the set of closed geodesies of (prime) period ^ t in the metric
g. Let Π(M) be the set of free homotopy classes of closed curves in M. Given a
metric g of negative curvature on M, we associate to each aeΠ(M) the uniquely
determined closed geodesic cageot. If Lg:Π(M)^>lR. is the length function with
respect to the metric g, then cag is characterized by

L9(cα,9) = inf Lβ(c).

Choose ε > 0 arbitrary. As before let PJ " "«>(() be the set of all closed geodesies in the
metric g of period S t which are (ε, || \\go) uniformly distributed with respect to the
Margulis measure μg. If c ^ e P J 11 π»o(ί) is parametrized by arclength, we obtain the
following for the period of the corresponding closed geodesies cα go,

0

f J \\v\\godμg)=:Lg(caJ'a(s).
(SM)g J

Applying Proposition 2 yields:

hτ(g) = lim

Since ε > 0 was arbitrary, it follows that:

hτ{g)^hτ{g0) J \\v\\godμg.
(SM)g

Replacing g by g0 we obtain:

hτ(g0)^hτ(g)- J \\v\\gdμgo.

Proof of Theorem 3. Let gλ be a C 1 perturbation of g = g0. Then Proposition 8
yields:

hτ(Φo)\

(SM)9o

 9λ

K)( f Ik li

Linearizing || v \\gλ in λ at λ = 0, we have:

s = 0
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Substituting this in the above inequality we obtain for suitable ox(λ\ o2(λ):

X OS(SM)9

ML^μo- ^ hτ(gλ) - hτ{g0)

~λ ί - \v\\gsdl^gλ-

The weak continuity of the Margulis measure implies that:

d
λ)= -hτ(g0) j ^T

\sLdλ
gλ(v,v)dμgo.

Proof of Theorem 4. Let (M,g) be a compact C2 Riemannian manifold of negative
curvature of arbitrary dimension and let lgo denote the Liouville measure with
respect to g0. A straightforward calculation [Be] shows:

(SM) dλ
(v, v)dlgo =

ω(w - 1)
voL (M),

where ω(« — 1) denotes the volume of the Euclidean (n— 1) sphere. The formula
for the derivative of the entropy immediately shows that g0 is a critical point in
9t(M) if the Margulis measure and the Liouville measure of g0 coincide. Now
assume that g0 is a critical point for ΛΓ:9ί(M)->R. Let ξ be a symmetric (0,2)
tensor on M such that gλ = g0 + λξ is a perturbation of g0 and gfAe9i(M). Then:

vol, ;(M)= J
' (SM)

ω ( n - l ) δ

π δ/l

The formula for the derivative of entropy implies that:

j ξ(υ,υ)dμgo = 0,

where μgo is the Margulis measure of g0. Define the functional

Lιjf)= ί fdlβ0 and LμJf)= j fdμβ0,J
(SM)g

where / is a smooth function. Let Ω02 be the space of symmetric (0,2) tensors on
M. If ξeΩOi2, then ξ(v,v) is a smooth function on SMgo. The discussion above
shows that if g0 is a critical point for hτ, then KerLZ g o |β o 2 ̂  KerLμ g o |β o 2.

Proof. Choose reΩ02 and assume Lt (r) = a. Define qeΩ02 as q = a-g0. This
implies: Llgo(r — q) = Lt (r) — a = 0. By hypothesis we obtain:

0 = Lμ g o(r - 4) = Lμ g o(r) - LμJq) = LμJr) - a.

Hence, LμJr) = Llgo(r).
This lemma shows that Lt (f) = Lμ (f) for all functions /:SMgo->IR which

arise from symmetric (0,2) tensors on M. Let π:(SM)go^M denote the canonical
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projection. If we associate to each smooth function /:M->1R the symmetric (0,2)
tensor f-g0, then Lemma 8 implies that Llgo(f°π) = Lμgo(f°π) for all smooth
functions /:M-»IR.

The measures lgo and μgo are invariant under the geodesic flow φ* and coincide
on π~1(B(M)):= {π~ί(A)\AeB(M)}9 where B{M) is the σ-algebra of Borel subsets
on M. We would like to say this implies that the measures coincide on the σ-algebra
of Borel subsets of SM, and that g0 is locally symmetric (cf. Conjectures 2 and 3
above). Unfortunately we can only prove this for surfaces.

Lemma 9. Let (M,g0) be a compact negatively curved surface and suppose that lgo

and μgo coincide on π~1(B(M)). Then g0 is a metric of constant negative curvature.

Proof The function H + (v\ which assigns to each veSMgo the normal curvature
of the unstable horocycle orthogonal to v, satisfies the Riccati differential equation
ύ + u2 + K(π°γv(t)) — 0, where yv is the geodesic with initial velocity v and K is the
Gaussian curvature. If we integrate the Riccati equation with respect to μgo, we
obtain:

J (H + )2dμgo= J -K(πov)dμgo.
M) (SM)gQ

Since all of our metrics are normalized to have area 1, our hypothesis and the
Gauss-Bonnet Formula imply:

j -K(πoV)dμgo= J -K(πoV)dlgo=-2πE,
(SM)gQ (SM)

where E is the Euler characteristic of M. The Ruelle entropy estimate [R] and
Jensen's inequality imply:

hlM J H + dμΛ2* J (H + )2dμgo.
\(SM)go ] (SM)gQ

Putting everything together we obtain hfop ̂  — 2πE. In Theorem 3.1 of [K2], the
first author proves that hfop ̂  — 2π£, and the inequality is strict unless g0 is a
metric of constant negative curvature. We conclude that g0 is a metric of constant
negative curvature.

V. Appendix. Proof of Proposition 3

Proof Let Ψ be C1 close to Φ. The idea is to use the Implicit Function Theorem
to solve:

Ψ°u = yDφu for ueC% and

Define:

G\V\X) x C°Φ(X) x C°(X,ΈL)-+

where V^X) denotes the space of C 1 vector fields on X and C°(X, Y) the space
of C° functions from X to Y. The spaces introduced above are Banach manifolds
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and one can easily prove that G is a C 1 map. It is clear that

G(Φ, id, l) = 0.

Let D2 3 G be the derivative with respect to the second and third variables. Then

D2t3G(Φ,id, 1): V°Φ(X) x C°(X,R)-> K°(X)

is given by:

D2t3G(Φ9 id, 1)0, y) = DΦ(v) - Dυ(Φ) -γ Φ

= — Dφ tv°φt-y Φ,
at t = 0

where V°Φ(X) denotes the subspace of the space of continuous vector fields V°(X)
such that the directional derivative with respect to Φ exists. (TidC°φ= V°Φ(X)).
Because the kernel of the Lie derivative

d

It ί = 0

contains the infinitesimal generator Φ, it follows that D2^G is not invertible.
To overcome this problem choose a section transverse to Φ. For instance
define ΦL = Γ(ES)@Γ(EU) and VΦ1(X)= Vo

φnΦλ. Then it is easy to show that
Lλ

φ:V
o

φJX)^V°φJX) has an inverse given by:

(L±

ΦΓ1(υu)= -] Dφ-Sυuφ
sds, vueΓ(E?)9

o

(LA

ΦΓHvs)=J Dφxvsφ-χdx, vseΓ(Es).
0

This proves that (i;,y)->Lφ(ι;) — y Φ = D2t3G(Φ,id, l)(υ,y) is invertible. Now apply
the Implicit Function Theorem to the equation G = 0 with C°φ replaced by
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