
commun. Math. Phys. 137,553-566 (1991) Communications in
Mathematical

Physics
© Springer-Verlag 1991

Absence of Bound States
in Extremely Asymmetric Positive Diatomic Molecules

Mary Beth Ruskai*'**

Department of Mathematics, University of Lowell, Lowell, MA 01854, USA

Abstract. It is shown that the Hamiltonian for a diatomic molecule consisting of N
electrons and two dynamic nuclei with charges Zt and Z2 has no bound states if
one of the charges is sufficiently large. The nuclear motion is completely
unrestricted, and the kinetic energy of both nuclei can be included in the
Hamiltonian. One of the nuclear charges can be arbitrarily small, provided that
the other is sufficiently large.

I. Introduction

For atomic systems, it is well-known that all positive ions are so stable that they
have infinitely many bound states [1^4], but that extremely negative ions are
unstable with respect to expulsion of at least one electron [5-8]. (See [9] for a
complete, up-to-date list of references.) However, one expects that molecular
systems will be unstable if the nuclear charges are either very large, or very small,
relative to the number of electrons. Proofs of both of these phenomena were
recently given [9, 10] for diatomic molecules in which the nuclei are completely
dynamic, i.e., the nuclear motion is unrestricted and the kinetic energy of the nuclei
is included in the Hamiltonian. In particular, it was shown in [10] that a positive
diatomic molecule will be unstable with respect to breakup into atomic subsystems
when both nuclear charges are large compared to the number of electrons;
however, this argument was unable to preclude the existence of bound states for
systems in which one of the nuclear charges was less than the total number of
electrons, even if the other charge was absurdly large. In this paper we remedy this
defect, i.e., it is shown that a positive diatomic molecule is unstable if one of the
nuclear charges is sufficiently large.

* Research supported in part by NSF grant DMS-8908125
** e-mail: bruskai@hawk.ulowell.edu ruskai@cfa7.bitnet ruskaim@woods.ulowell.edu



554 M. B. Ruskai

Considerably sharper results can be obtained if approximations which restrict
the nuclear dynamics are used. Solovej [11] studied diatomic molecules in the
Born-Oppenheimer approximation, and proved that they are asymptotically
neutral; this result can be extended [12] to polyatomic systems in which the
number of nuclei and their charge ratios are fixed. Chen and Spruch [13] studied
small molecules in the adiabatic approximation. For one-electron systems, with
nuclear charges Z x ^ l and Z 2 ^ l , they showed absence of bounded states if
Z x + Z 2 ^ 3 ; for homonuclear two-electron systems, they showed absence of
bound states if Zγ = Z 2 ^ 3. However, their techniques do not seem to provide any
information when one of the nuclear charges is smaller than the number of
electrons.

By contrast, the results of this paper hold even if one of the charges is extremely
small. Let Jϊmo1 be the Hamiltonian for a diatomic molecule with JV electrons,
nuclear charges Zγ and Z 2 , and nuclear masses Mx and M 2 satisfying Mk = Zkmk,
where mί and m2 are constants. Our main result can be stated as follows.

Theorem. For every fixed pair of values Z 2 and JV, there exists a constant Zc

ί>0
such that whenever Zί>Z\, then Hmo1 has no discrete spectrum.

The dependence of Z\ on JV, Z 2 , and Mk is discussed in Sect. III. The results are
not only far from optimal, they are, at least for very small Z 2 , dominated by the
need to control the localization error. Thus, the estimates obtained here seem to be
an artifact of the techniques used in the proof and need not have any physical
significance. It should be noted that the nuclear masses do not have to be large, so
that one or both of the positive particles in the "molecule" could be a positron or
meson-like particle; and the assumption Mk = Zkmk can be weakened. The only
essential requirement is that the mass of the larger nucleus grow at least as fast as
its charge Zγ. The existence of Z\ does not require any conditions on M 2 except
that it be non-zero; however, as discussed in Sect. Ill, the estimates on Z\ do
depend on M2. Although the analysis presented here was motivated by the desire
to treat the case Z 2 < JV, it is equally valid for Z 2 > JV. Moreover, the estimates on
Z\ in the latter case are better than those in [10] when the charge ratio ZγIZ2 is
large, i.e., Z1/Z2>O(JV1/3).

The proof uses a variant of the localization techniques (discussed under the
sobriquet "geometric methods" in Cycon et al. [8]) which are often useful in bound
state problems. The particular localization used here was introduced earlier [9,10]
for molecular systems. The new ingredient of this paper is not the localization, but
the inclusion of estimates on differences in threshold energies.

Both the notation and localization closely follow that used in [9] and differ
slightly from that in [10]. Let Rx and R2 denote the positions of the two nuclei, ξj
(j = 1... JV) the coordinates of the electrons, m and Mk (k = 1,2) the electron and
nuclear masses, respectively, and Zk (k = 1,2) the nuclear charges. After removal of
the center of mass motion, we choose as coordinates R = R 1 2 = R1—R2 and xt

(ί=l ...JV), where x — ^ —RN is the position of the kth electron relative to the

nuclear center of mass RN = μ ^ i + μ2^i and μk = ——^—-. It will be convenient
Mί+M2

to denote the internuclear distance by R = |R12 |, and the nucleus-electron distances
by ξji = \ξj-RiHXj-μ2Ri2l> and ξJ2 = \ξj-R2| = |xJ + μ1R1 2 |. In this notation,
the Hamiltonian of a diatomic molecule with the center of mass motion removed
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can be written as

H«"»(N M 7\- MiH (N,Mk,Zk)--—
7m & l Lt ri

i=ί

Σ * + g I + Σ . „ w ι + D 9 ( i )

where Ax denotes zlXf, and
N

i=ί

2

is referred to as the Hughes-Eckart term. Recall

that Hmo1 acts on a suitable domain Θ of smooth, square-integrable functions
which are antisymmetric in the electron coordinates, (xi9 s, ), where st denotes spin
(which will be suppressed since it does not play an essential role). In all that follows,
Zγ always denotes the larger charge.

Let α = (α1?α2) be a partition of {1 ... N} into two disjoint sets (one of which
may be empty). The total system can be partitioned into two clusters correspond-
ing to the first nucleus together with those electrons for which i e αx and the second
nucleus together with those electrons for which i e α2. The cluster Hamiltonian Ha

is given by

H α = H™1 -Ia-MaAa = H*(NU ZUM,) + H*(N2, Z2, M2), (2)

where Nk denotes the number of elements in αk, H
at(Nk, Zk, Mk) is the Hamiltonian

of an atom with Nk electrons and a nucleus of charge Zk and mass Mk, MαAα

describes the relative motion of the two atomic clusters, and Iα is the intercluster
potential

Ύ Ύ Ύ Ύ 1

/.= - Σ f - . Σ f + ̂ f+Σ Σ T ^ 0)
In this notation, it follows from the well-known HVZ theorem [3, 4, 8] that

inf Kss(Hmo1)} ΞΞ £ , r o 1 ) ^ £* = min [inf (σ(iία)}]
<x

= min {E0(HJ} = min {EolH*l(Nu Zu M,)] + E0[H*\N2, Z 2 ) M2)]}, (4)
α α

where σ and σess denote the spectrum and essential spectrum of the indicated
Hamiltonians, E0(H) and EJfl) denote their respective infϊmums, and E* is
defined in (4). It is elementary [see (A-l) to (A-4) and (15)] to show that if Z t is
sufficiently large, the minimum above will occur when all electrons are associated
with the larger nucleus, i.e., J/V1 = iV, so that

E -EotfW^ΛfJ]. (5)

In fact, we will show that if Zγ is sufficiently large, then

<Ψ,HmolΨ>^E0[iίat(iV,Z1,M1)] ||<F||2 VΨ in 9{Hmoϊ) (6)

so that equality holds in (4) and

E0(H™1) = E*(H™1) = E* = EOIH«(N, Zl9 MJ\. (7)

This paper has three appendices. A number of elementary, but important,
results about atomic systems are summarized in Appendix A. In order to make this
paper more accessible, if not completely independent of [9,10], the construction
of the localizing functions is sketched in Appendix B. Finally, in Appendix C, the
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proof is described for the special, and somewhat simpler, case of diatomic
molecules with only one electron. Those who wish to grasp the underlying ideas
with a minimum of technical detail may prefer to read this appendix first.

II. Proof

To prove that Hmoϊ has no discrete spectrum, it suffices to find a partition of unity
{Fα} such that, if Zγ is sufficiently large, then \/Ψe9{Hmoλ)

(Ψ,Hmolψy=Σ<FaΨ,lHmol-LE-}FaΨ}^E*\\Ψ\\2, (8)
α

where the localization error LE is given by the well-known formula

LE = Σ FaH
molFa - Hmo1 =ΣΣcμ\ VμFf, (9)

a μ a

where £ indicates a sum over all gradients for which a corresponding Laplacian
μ

(including the Hughes-Eckart term) appears Hmo{ and cμ denotes its coefficient.
It was shown previously [9,10] that for any choice of ε>0 and ρ>0 one can

find a set of localizing functions {Fa}, indexed by cluster decompositions α, and an
additional function F o , with the following properties:

a) Σfα 2 = l
α = 0

b) Fo is symmetric with respect to interchange of all electrons, and
suppF0^{(x,R): Fo(x,R)*0}c{(x,R): R<(ί+ε)ρ}.

c) Fa is symmetric with respect to interchange of coordinates of electrons within
ocί or α2, and

d)
suppFα = {(x,R):Fα(x,R)*0}

C{(x,R): ξn<(l+ε)ξi2 Viea l9 ί i 2 <(l+e){ i l Vieα2, and

e) The localization error satisfies

= ε2
ε2M2 ρ2 o+ε2ρRάol M2 M1+M2

+ m
B2N

2 B3Ί

M+M+ m] α

where Λθ9 Λ9 and Bk are constants, (10) defines Lα and we have used the fact that (for

sufficiently large Z±) M2^M1 so that — - ^ * 2

MM2 2M1M2

Property d), which is critical to our analysis, says that, roughly speaking,
electrons in the cluster αx are closer to the first nucleus and those in α2 to the
second. It further follows from the triangle inequality that electrons in a cluster are

bounded away from the opposite nucleus by a distance of about —, i.e.,

t.2 Vieα l f and R<(2 + ε)ξn V/Gα2}. (11)
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To return to the proof, it is useful to observe that (8) is equivalent to

(FaΨ,lHmol-La-E*]FaΨ>^0 Vα. (12)

The cases α = 0 and α=|=0 are treated differently.
For the α = 0 case, the united atom bound (A-9) is useful. It then follows from

property b) above and (10) that

03)

where we have used (A-8) and the fact that

M^ M2)]

(1+ελ A
-rp-9 one can find a positive constant d such that the

ε J M2 1

right side of (13) will be positive if - =dN1/3. Thus, if Z x is sufficiently large, (12)
Q c

holds for α = 0. However, this requires Zί > ——— =O(Z2

 2) [with N fixed and
Z2M2

N1/3 absorbed into the constant c] so that if Z 2 is extremely small, Zγ must be
huge.

Verification of (12) for αφO constitutes the heart of the proof. First, observe
that Hmol>Ha + Ia and use (11) to bound the intercluster potential Jα to conclude
that

+ R ε2M2ρ

Previously (in [9,10]), the positive difference in threshold energies EQ(HJ—E* was
discarded; however, in order to treat asymmetric molecules with Z 2 < N <Z1, it is
essential that this quantity be retained. It can be bounded using (A-4) as

EO(HX)-E*

= EoCJWi. ZUMJ]- £0[Hat(iV, Zlt M,)] + E0lH*\N2, Z2, M2)]

(15)

Although this certainly suggests that (14) will be positive if Zγ is sufficiently large, a
complete proof requires a comparison between this expression and the terms

involving — in (14). As Solovej [11] observed, the ground state wave function Ψ
R

satisfies (A-10), i.e.,
<Ψ,^Ψ> SδN1/3\\Ψ\\2.

R

However, we were unable to establish that this inequality still holds if Ψ is replaced
by FaΨ. Therefore, we will separately consider two situations.
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First, suppose that the somewhat weaker (for large Z x ) inequality

<FaΨ,^FaΨ} £Z{'3\\FaΨ\\2 (16)

holds. Then, if the small term in (15) involving Z\ is neglected,

1 Γ N Z 5 / 3

where a = dA. Clearly, (17) will be positive if Zγ is sufficiently large. To estimate
how large, rewrite the terms within the square brackets in the form

+z2ιz,~
ε2M2'

The first two sets of terms will be positive if Zί>cN, where the constant c is
independent of Z 2 ; however, control of the localization error requires a much
stronger condition on Z1 as N increases and/or Z 2 decreases.

To complete the proof, one must also consider the possibility that inequality
(16) fails, i.e.,

α 'R α ~~ 1 α

In this case, the argument above fails, but one can use the united atom bound to
conclude, as in (13), that

^ <FΛΨ, (19)

where the second inequality follows from (18). Again, this will be positive if Z1 is
sufficiently large; as before, a linear bound of Zί>δ3N will suffice if the

localization error is ignored. I However, not only must Z 2 be large enough to

control the localization error in the final expression, but one must already have
αiV7/3 \

ZγZ2 2~TΓ~ > 0 to even justify to applying (18) I. Thus, irrespective of whether
ε M2 )

(16) or (18) holds, (12) is true for all α + 0 if Zγ is sufficiently large. This completes
the proof.

III. Discussion

In order to discuss the dependence of Z\ on such parameters as N, Z 2 and the
nuclear masses, it is useful to summarize all of the conditions that Z1 needs to
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satisfy to insure that (8) holds so that Hm o 1 has no discrete spectrum. In all cases, c
(or c) will denote an unspecified positive constant.
a) To insure that (5) holds, i.e., E0[Hat(N, Z l 5 MJ] ^ E0[H^ Vα, it suffices that the
right side of (15) is positive. This will be true if Zγ > cN1/3Z2. [This condition also
suffices to justify neglecting the term involving Z\ in (17).]
b) To insure that it is possible to choose ρ so that (13) is positive, one needs

cNί/3 c'Nί/3

Z x > 7 « ? 7 . However, this is only necessary to control the localization
ε M2Z2 ε Z 2

error arising from the nuclear kinetic energy.
c) To insure that (14) is positive, the estimate (A-4) is critical. As discussed in
Appendix A, this may require Zί>N2.
d) To insure that (17) is positive, one needs only Z1 > cN, independent of Z 2 , if the

cNΊ/3 c'NΊ/3

localization error is ignored. Otherwise, one needs Z x > 2 « 2 2 .
£ W12/J2 6 Z2

e) To insure that (19) is positive, one needs only Z x > δ3N, if the localization error
is ignored. Controlling this requires Z1>O{Z2

2) as in d).
It is worth making a few remarks about the condition Mk — Zkmk. For the

larger nucleus, it can be replaced by Mί^Zίmί. This is essential to the validity of
(A-8), which is critical to the proof. Without it, one could not even guarantee the
positivity of the first two terms in (13) or (19) since — δZ1Z2N

1/3 would be replaced
by — δZ\N113. However, the assumption M2 = Z2m2 was only made for con-
venience and is not necessary to establish the existence of Z\. The validity of

(A-8) also requires either Z1Z2>cM2N or -^<ττ~^ s o that absurd growth
Zx Mγ

of M 2 would alter our estimates. If this is avoided, Zί = O({M2Z2)
 1) suffices

both to control the localization error, and to insure the validity of the arguments
leading to (13) and (19). Thus, if the smaller nucleus has constant mass as Z 210,

one can conclude that Z\ ^ cNZ2

 x when Z 2 < —.

The analysis presented here was primarily concerned with the case Z2<N;
however, it is also valid when Z 2 ^ N. Moreover, in the latter case, the terms arising
from the localization error become negligible as N, Z2->oo with Mk^Zkmk

(k=l, 2). Therefore, b), d), and e) reduce to Zγ > cN. Now, as discussed after (A-5),
the condition Z1 >N2 in c) is actually necessary only if N2 is small; otherwise it
suffices that Zί>cN. However, one could construct a more refined argument
(similar to that in [10]) to show that the internuclear repulsion is sufficient to
insure that (14) is positive when iV2 is small compared to both N and Z 2 (e.g.,
5N2<LNfίZ2). Thus, c) can be replaced by Zί>cN when Z2^N. Finally,
condition a) requires Zί>cN4/3 when Z2^N. Since the latter condition is the
most restrictive, this yields an asymptotic estimate of Z\^cZ2N

113.
In principle, the results obtained here should be better than those in [10] since

the difference in threshold energies was neglected in [10]. Unfortunately, because
of the crudity of some of the estimates, this need not be true. In order to make a

comparison, it is helpful to rewrite the asymptotic estimate —- « 1 given in
y N Z^ Z 2

[10] as Z\ ^ —— -̂rriV. Evidently, the bound given above is better if Z 2 is close to
N, i.e., for N < Z2 < N + c'N2/3 < 2iV; however, for larger values of Z 2 the results of
[10] are still superior. To summarize, the results obtained here are sharper when
the ratio ZJZ2 is larger; those of [10] are better when Zγ &Z2.
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If the localization error is ignored and Z 2 is very small, the analysis presented
here implies that Z\ ^ cN independent of Z 2 even as Z 2 -•0. At first, this might seem
counter-intuitive. However, when the ratio ZJZ2 is very large, the ground state
electron density is concentrated near the larger nucleus, and to a very good
approximation the smaller nucleus will see an effective charge of Zί — N, which is
repulsive for Z1>N. Moreover, as Z 2 J, 0 the charge ratio increases dramatically
so that polarization effects are minimal and this naive argument eventually
becomes accurate. This suggests that Z\ttN+ί when Z 2 is below some small
critical value. It also suggests that the requirement Zγ ^ O(Z2~2) is an artifact of the

localization error in the proof and of no physical significance. Indeed, the —
M 2

dependence of the localization error leads to estimates on Z\ which are larger for
light nuclei, yet there is no reason to expect a positron to bind if a proton does not.
Unfortunately, the affect of the localization error does not arise solely from the
kinetic energy of the nuclei. Even if the nuclear kinetic energy is omitted, the
localization error from the electron kinetic energy will still give rise to a condition
of the form Z ^ O ^ 1 ) .

Finally, it should be mentioned that the fermionic character of the electrons
was used only in estimates involving atomic ground state energies. Therefore, the
results can be generalized to bosons provided that terms involving N1/3 are
replaced by N. This will only affect the dependence of Z\ on N.

Appendix A: Properties of Atomic Ground State Energies

In this appendix a number of elementary, but useful observations about the
ground state energies of atomic systems are collected. Unless otherwise stated,
proofs can be found in Chap. 4 of Thirring [4].

First, recall that

EolITXN, Z, Λf)] = Z2e \N, M, i j , (A-l)

where e(N, M, γ) is the ground state energy of an atomic Hamiltonian with N
electrons, a nucleus with charge Z = 1 and mass M, but with the electron-electron
interaction multiplied by y. It is well known that e(N, M, y) is monotone increasing
and concave in y, and that one can find positive constants σ and σ such that

- άN113 > e(N, M, y) > e{N, M, 0) > - σΛΓ1/3, (A-2)

Thirring [4] has given a more precise estimate when N is large. To O(N~113)

/3 V / 3 / vN\ /3 V/ 3

~\2N) [ί--y)>e(N>M>y>-[2N) < A - 3 )

Moreover, one can find a positive constant β such that, if Z is sufficiently large,

EolH
Λ\Nl9 Z, Λf)] -E0[H*\N, Z, M)] > βZ2 ^ ^ . (A-4)

To verify this, one could use the fact that e(N, M, 0) satisfies a bound of this form,
and e(N, M, γ)-+e(N9 M, 0) as y-»0. In fact, Thirring [4] estimated the upper bound
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in (A-3) by using the ground state of e(N, M, 0) as a trial function for arbitrary γ to
conclude that, to 0(ΛΓ1/3),

/3 \1/3yiV
' 7 \2 ) 2

so that
1/3

This yields (A-4) if either Z>N2, or NX<2N.
Next, we discuss some important bounds on energy differences which follow

from certain concavity properties of atomic energies. In all cases, δ denotes a
suitable positive constant. It was shown in [10] that the concavity and
monotonicity of e(N9 M, y) in γ imply that

EOIH*\N,Zγ + Z25M)]-EolIPXN,Zl9M)]> -δZ1Z2N
1/3. (A-6)

To take into account the effect of the nuclear masses, one can similarly use the fact

that E0[i/
at(ΛΓ,Z,M)] is concave and monotone increasing in — to show that

M
E0[H at(AΓ, Z l 5 Mx + M2)] - EOIH*\N, Zu

M2 EoίH
Ά\N, Zl9 oo)] -£0[tfat(JV, Zl9

>-δZίZ2N
1/3

if Mk = Zkmk. The right side of this estimate is already comparable to that of (A-6).
However, it can be further improved by using the fact that E0[HΛ\N,Z,M)~] is

actually jointly concave in — and — from which it follows that [4]
m M

EOIH*\N, Z, oo)] - E0[H*\N, Z, M)] > ^E Q [H Λ \N, Z, oo)],

so that if M ^ Z t t t i ! ,

£0[ίίa t(iV,Z1 )M1 + M 2 )]-£ 0 [// a t (N,Z 1 ,M 1 )]> -δM2N*'3. (A-7)

Whenever Z1Z2^M2N, this can be combined with (A-6) to conclude that

£0[/ί!"(iV,Z1 + Z 2 ,M 1 +M 2 )]-£ 0 [ί ί a t (iV,Z 1 ,M 1 )]> -δZ.Z.N1'3. (A-8)

Comparison with a "united atom" described by the Hamiltonian
H U A =H a t (iV,Z 1 +Z 2 ,M 1 + M2) is also useful. It is well-known that

^ ^ VK. (A-9)] +
K

Solovej [11] observed that this can be combined with (A-8) and

to conclude that the ground state wave-function for Hmo1 satisfies

<Ψ9~ψy^
K
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Appendix B: Construction of the Localizing Functions

In this appendix, the construction of the partition of unity {Fa} used in the proof is
sketched. One begins with a smooth, monotone function g: R+->[0,1] satisfying

g2(ί) + g2( - 1 = 1 and suppgC , oo for some ε>0. (To verify that such
\tj L i + ε V

l / l \ Ί 1 / 2

functions exist, note that if / : R + ->[0, 1], then g(t) = -= Γ/2(ί) +1 -f2 -
l/2 W J

\ 1 v

satisfies the first condition. I Since g{t) = O if t< , it follows that
/ 1 +ε

(B-l)

ε)ξi2 and |x, |<(l +ε)ξi2, (B-2)

where (B-2) follows from (B-l) and the triangle inequality. Similarly,

(B-3)

=> R < (2 + ε)ξn and |x;| < (1 + ε)ξn . (B-4)

Now define a partition of unity by letting

F o=S(!) and F«=g(-) Π g(¥) Π gfl̂ -J («*0). (B-5)

It is easy to verify that {Fa} satisfies properties a)-c) of Sect. II; property d) follows
directly from (B-l) and (B-3), and (11) follows from (B-2) and (B-4).

t Ix
To verify the bounds on the localization error, first recall that ~- = -1

Mk . 'X f

where μk= — — so that μγ +μ2 = l It is elementary to verify that
M1+M2

I y i (B-6)

for either y=x or y=R. Now, g(t)=l if ί>(l +e), so that sup\g'(t)\ = O(ε~1), and

suppg'(ί)C^,(l+ε)J. Thus, rrg(^J=O if either ξn^(i+ε)ξi2 or

ξi2 < (14- ε)ξn so that both (B-2) and (B-4) hold whenever this gradient is non-zero.
It then follows from (B-6) that

2 ^ c 2

where b and Cε are constants with Cε = O(e x) and, as above, this holds for both
y = x and y = R. It is now straightforward to apply the product rule to Fa to
establish (10). The only possible sublety arises from counting the number of

identical terms, and using the identity g21 - ^ I + g2 ( τ^~) = 1 to rewrite the result

in the form £L α F 2 . For further discussion of these details see [10].
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Appendix C: One-Electron Molecules

The author has frequently been urged to provide a "simple" proof that a one-
electron diatomic molecule cannot be too positive. Although it may not be
immediately apparent, the argument presented here actually becomes reasonably
simple when specialized to the one-electron case. In fact, when JV = 1 and Zγ=Z2

an argument similar to that in [10] was already given by Cycon et al. [8] (see
Sect. 3.6, "Applications to Atomic Physics: A Warm-Up"); one need only reverse
the roles of the nuclei and electrons. In view of this, a separate treatment of the
one-electron case in [10] was not warranted. However, the argument in [8] is not
amenable to extremely asymmetric nuclei. Moreover, the crucial estimates on
differences in threshold energies become exact for one-electron systems. Therefore,
it seems worth including a separate discussion of the one-electron case.

The localization error is discussed for completeness; however, the reader
seeking insight into the underlying ideas may easily ignore this aspect. The
essential point of the localization is that configuration space can be decomposed
into three nearly disjoint regions which can be described as follows: a region on
which the internuclear distance is small, one on which the electron is closer to the
larger nucleus, and a third for which the electron is closer to the smaller nucleus.
These conditions then imply simple bounds on the expectations of certain
potentials. Although the cluster notation introduced previously is not really
needed here, we do refer to it after (C-l 1) so that the ideas presented here give more
insight into the general iV-electron case. Unless otherwise stated, the notation of
the introduction is used.

Let h(M,Z)=——r^-^x~j—[ denote the Hamiltonian (with center of mass

motion removed) of an electron with mass m in the field of a nucleus with charge Z

and mass M. Recall that E0[h(M, Z)] = - _ . m

 1 #. Z 2 « - ^ Z2, when M is large.

2(m + M) 2
Since \E0[liM1 + M29Z1)]-E0[h(MuZ1)]\<( — ) M2 will be negligible com-

\mi/

pared to ZίZ2, we will henceforth suppress the dependence on nuclear masses and
write h(Z) and E0[/z(Z)]= — vZ2 so that the masses are subsumed into the
"constant" v. Now, when N = ί9 the molecular Hamiltonian becomes

(C-l)

(C-2)

To construct a partition of unity which localizes to the desired regions, let x
denote the position of the electron and define

, Mt+M2
( ' * κ) 2 M ! M 2 '

Ix-R.l

and it is easy to see that, whenever Z^.

intlσess(# )i=tJH )

A 1J « 21

z2
|x-R

= £0[/

1 iU 1

2 I '

1

z^z2
R '

]=-vZf.
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with g is as in Appendix B and ε = 1. It is easy to check that FQ + F\ + F\ = 1, and
that [compare (B-l) to (B-4)], since g(t) = O if t<\9

supp(F0)C{(x,R):2ί<2ρ}, (C-4)

s u p p ί F J e ^ R ) : | x - R 1 | < 2 | x - R 2 | and ρ<2R} (C-5)

C{(x,R): R<3\x-R2\}, (C-6

supp(F2)c{(x,R): | x - R 2 | < 2 | x - R 1 | and ρ<2R} (C-7)

C{(x,R):,R<3|x-R1 |}. (C-8)

The essence of these relations is that Fo is non-zero only if the internuclear
distance R is small, while Fί (F2) is non-zero only if the electron is closer to the
larger (smaller) nucleus. [With ε = l the overlap of the regions is actually
substantial and "closer" means |x —Rx| <2|x —R2|.] In both cases, the electron is

bounded away from the "farther" nucleus by a distance of —. It follows

immediately from (B-7), (9), and (C-l) that the localization error satisfies

Mί+M2 b (Mx+M2 1 1 \b 2(R

~ MίM2 ρ2 \ MίM2 m M1-\-M2JR2 \ρ

^ — 7 r JΓ r\ ι" 1-* i ι" •* 2.) ^— •*-*()•"• 0 •" \ 1 *" 2, 2, 5 V.^^"^/

~" M2 ρ M2 ρR

where this defines Lk, the property g2(t) + g21-1=1 was exploited to rewrite the

inequality in terms of F2, Λo and A are constants, and it was assumed that

ί 2

As a final remark before the proof, note that

Hm o 1 > h(Z2) - - \ - + *£* =H2 + I2, (C-l 1)
|x —Kil K

where (for k = 1,2) Hk = h(Zk) and the intercluster potentials Ik correspond to last
two terms. [Compare with (2), (3) and the remark preceding (14).]

As usual, to show that Hmo1 has no discrete spectrum, it suffices to prove

Σ <FkΨ,lHLElFkΨ>
k=o (C-l 2)

Hmo1) || Ψ | |2 = - vZf || Ψ | | 2, V Ψ e @(Hmoί),

or equivalent^, that V Ψ ε @{Hmol\
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The analysis for Fo and F t is straightforward. First, the united atom bound implies
that

If ZγZ2 is sufficiently large, one can find a constant d so that the last expression will

be positive if - = dNί/3. Next, consider the region on which the electron is localized
Q

near the larger nucleus. Since £0CFi) = — vZί, it follows from (C-10) and (C-6) that

<ίΊ Ψ, [Hmo1 - Lx + vZf]Fi Ψ)

'•>-M7e\
F'Ψ ( C" 1 5 )

which can obviously be made positive if Zγ is sufficiently large. (Zί>3 will suffice if
the last term is ignored.)

The analysis for the region on which the electron is localized near the smaller
nucleus is more subtle, and contains the essential new idea in the proof. Proceeding
as above, one now finds

z;zi> ψ + ψ j
Because of the quadratic term, one would expect this to be positive if Zx is
sufficiently large. In order to prove this, first suppose that

Then

(F2Ψ, [Hmol-L2 2Ψ}

(C-17)

:-18)

which will obviously be positive if Z t is sufficiently large. However, we know of no
reason to expect (C-17) to be true. Suppose that, instead,

(C-19)

Then the argument above will not be valid. However, one can use the united atom
bound as in (C-14) to conclude that

<JF2 Ψ, [Hmo1 -L±+ vZf]F2 Ψ)

^ <F2Ψ,

-3vZ1Z2

riZ2 A 1 Ί
R M2 QRJ

M2Q
(C-20)
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Again, this will be positive if Z x is sufficiently large. This completes the proof. If the
localization error is ignored, both (C-18) and (C-20) will be positive if Z x > 9

independent of Z 2 . One might try to improve this to Z x > 4 by noting that 3 could
ί Z \

be replaced by (2 + ε) in (C-18) and by 2 + —M in (C-20). However, this is even less

is O(ε~ 2).justifiable as the localization error is O(ε~ 2). In fact, a careful analysis shows that
c

control of the localization error requires Z x >
Z2M2
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