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Abstract. We prove a local index theorem for families of d-operators on Riemann
surfaces of type (g,n), ic. of genus g with n > 0 punctures. We calculate the
first Chern form of the determinant line bundle on the Teichmiiller space T,,
endowed with Quillen’s metric (where the role of the determinant of the Laplace
operators is played by the values of the Selberg zeta function at integer points).
The result differs from the case of compact Riemann surfaces by an additional
term, which turns out to be the Kéahler form of a new Kihler metric on the
moduli space of punctured Riemann surfaces. As a corollary of this result we
derive, for instance, an analog of Mumford’s isomorphism in the case of the
universal curve.

Introduction

The Atiyah-Singer index theorem for families of elliptic operators, which plays
an important role in modern mathematical physics, is of particular interest for
0-operators on complex manifolds. Consider a holomorphic family p : & — B of
compact complex manifolds over a_compact base B, and a holomorphic vector
bundle & — Z. The family & = {y}pep Of O-operators in the vector bundles
Ey — X, (restrictions of & over the fibers X, = p~!(b), b € B) gives rise (in
the sense of K-theory) to the index bundle indd € K(B) on B with fibers
ker 0, — coker 0, over b € B. The Atiyah-Singer index theorem applied to this
special case states that

ch(ind d) = ps(ch & - td T, %) . (1)

Here ch denotes the Chern character, td T, & is the Todd class of the vertical
tangent (along the fibers of p : & — B) bundle on %, and px : H* (%) —
H*~dimX,(B) is the operation of “integration along the fibers” (see [1]).

In many applications the bundles & and T,% are Hermitian, so that each of
them carries the (canonical) unitary connection compatible with the holomorphic
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structure. Then by the Chern-Weil formulas ch & and td T, can be realized as
closed differential forms on 2. When ind 0 is also a vector bundle, it is quite
natural to ask whether there is a connection in ind d such that (1) holds as an
equality of corresponding differential forms, i.e. locally on B. More generally, the
question is how to express explicitly the Chern character form ch(ind ) on B in
terms of the data p : & — B and & — %. Such a strong form of (1) is often
called a local index theorem, and it makes sense in case of a non-compact base
as well.

The situation becomes much simpler when we consider, instead of the index
bundle ind d, its determinant bundle detind 6 = A™** ker 6 ® (4™ coker d)~! on
B (where A™#* denotes the maximal exterior power of a vector space). As it was
observed by Quillen [2], under rather general assumptions on p : & — B and
& — Z the determinant bundle detind 0 is a holomorphic line bundle on B with
a natural metric (Quillen’s metric) given by

I llg =1 Ill(detd*d) "1/ ©

here || - || is the ordinary L?-norm in detind é induced by the metrics in & and
T,%, 0, 0 is the Laplace operator acting on sections of E, — X3, and det 8, 0 is
its zeta function determinant regarded as a function on B. In [2] Quillen studied
in detail the family of all Cauchy-Riemann operators (i.e. holomorphic structures
in a Hermitian vector bundle E — X on a compact Riemann surface X). In this
case B is an infinite dimensional complex affine space, and the curvature form of
the Hermitian line bundle (detind d; || - |g) on B appears to be equal, up to a
constant multiple, to the natural Kihler form on B.

A similar result was obtained somewhat later by Belavin and Knizhnik [3] (we
follow [4] in exposing of their result). Denote by B = T, the Teichmiiller space
of compact Riemann surfaces of genus g, by & = 7, — T, — the Teichmiiller
universal curve, by T,7, — 7, — the vertical line bundle of the fibration
p:J, — T, and by 0x — the family of d-operators acting on k-differentials on
Riemann surfaces (sections of (T, %7 ¢)b = Xp). Then for the first Chern form
of the determinant line bundle detind 6, endowed with Quillen’s norm (2) the
following formula holds:

ci(detind 8;) = /(ch(Tv_kﬂ'g) td(To T ¢))22 5 3)
fiber

where ( )22 denotes the (2,2)-component of a differential form on J,, and the
integration is taken over the fibers of 7, — T;. As one can easily see, formula
(3) is a specification of (1) on the level of (1, 1)-forms. Moreover, if we consider
a metric in T, , which coincides on each fiber of 7, — T, with the Poincare
metric (i.e. Hermitian metric of constant curvature —1), then by a result of
Wolpert [5] formula (3) can be rewritten as

6k> — 6k + 1
1272
where wwp is the Weil-Petersson Kahler form on T,. Such a form of local index
theorem is analogous to Quillen’s original result. On the other hand, formula (4)
can be derived by the methods of Teichmiiller theory (see [6]) avoiding a difficult
heat kernel technique. The approach of [6] also allows us to prove a local index
theorem for families of d-operators in stable bundles of rank n and degree k on

ci(detind 6;) = owp, )
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a compact Riemann surface [7] (which provides, for instance, an analytic proof
of projectivity of the corresponding moduli spaces for coprime n and k).

Quillen’s local index theorem admits various deep generalizations (see [8—10]
for details), but in all of them the fibers of p :  — B are compact manifolds.
Otherwise considerable difficulties occur because of continuous spectrum of the
corresponding Laplace operators (along with purely technical difficulties there
is a problem how to define properly the determinant of the Laplace operator).
However, the methods of [6] work for families of d-operators on non-compact
Riemann surfaces as well. The first examples of a local index theorem for
families with non-compact fibers were given in our papers [11,12]. Namely, we
have considered the case when B = T, is the Teichmiiller space of Riemann
surfaces of type (g,n), ie. of genus g with n punctures (cusps), & = J,, is the
corresponding universal family (so that the fibers of the fibration p : 7, — T,
are Riemann surfaces of type (g,n)), and & = T, %7 gn is the k™ power of the
vertical line bundle on J,, (the case k = 0,1 was treated in [11], and the case
k > 2 in [12]). In this situation the Laplace operator 4y = 0 0 associated with
the Poincaré metric (i.e. complete Hermitian metric of constant curvature —1) on
a Riemann surface X of type (g,n) has n-fold continuous spectrum. To define a
regularized determinant of Ay consider the Selberg zeta function Z(s) which is
given for Res > 1 by the absolutely convergent product

z) =[] [Ta-ecmy, Q)

{£} m=0

where 7 runs over the set of all simple closed geodesics on X with respect
to the Poincaré metric, and |£] is the length of /. The function Z(s) admits a
meromorphic continuation to the whole complex s-plane with a simple zero at
s = 1. For compact Riemann surfaces it was shown in [13] that the determinant
of 4 defined via its zeta function is equal, up to a constant multiplier depending
only on g and k, to Z'(1) for k = 0,1 and Z (k) for k > 2. Similarly, for Riemann
surfaces of an arbitrary type (g,n) we define

Z'(1), k=01,

Zk), k2. ©)

det 4, = {

Using this definition, we can calculate the first Chern form of the determinant
line bundle A, = detind 0x on T, endowed with Quillen’s metric (2). The result
differs from (4) by an additional term in the right-hand side:

6k* — 6k + 1 1
TC‘)WP — 5 Wcusp » (7)

9
where wwp is the Weil-Petersson Kéhler form on T, and wesp is the symplectic
form of a new Kéhler metric (, )cusp 0N Tygp(n # 0).

We proceed with exact definitions. Let X be a Riemann surface of type (g,n)
equipped with the Poincaré metric ¢ and let I' be a torsion-free Fuchsian group
uniformizing X, ie. X = I'\H, where H = {z € C | Imz > 0} is the upper half-
plane. Denote by I'y, ..., I', the set of non-conjugate parabolic subgroups in I,
and for every i = 1, ..., n fix an element o; € PSL(2,R) such that ¢; 'I'0; = I,
where the group I'y, is generated by the parabolic transformation z +— z + 1. The

c1(l) =
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Eisenstein-Maass series E;(z,s) corresponding to the i cusp of the group I' is
defined for Res > 1 by the formula

Ez,5) = Y Im(elyz), i=1,...,n.
yel \I'

(Ei(z,s) can be meromorphically continued to the whole complex s-plane; for
Res = % the Eisenstein-Maass series E;(z,s), i =1, ..., n, form a complete set of
eigenfunctions of the continuous spectrum of the Laplace operator 4y.) Recall
also that the tangent space Tx)T,, to the Teichmiiller space Ty, at the point
corresponding to a Riemann surface X can be naturally identified with the space
Q~L1(X) of harmonic L?-tensors on X of type (—1,1) (the Beltrami differentials).
The Weil-Petersson metric on Ty, is defined by the formula

<H,V>WP =/I’l‘vg’
X

where p, v € Q7 1(X) are considered as a tangent vectors. Denote by wwp its
Kihler form;

_ v—1
CUWP(,U, V) = T (,u$ v)WP .
To define the metric (, Jeusp SEt
(,v); = / wEi(,2e, mveQ (X)), i=1,..,n. ®)

X

Each scalar product (,); gives rise to a Kéhler metric on T, (see Sect.2 below).
Their sum

(Veusp = 2> )i ©)
i=1

is Modg ,-invariant Kdhler metric on Ty, (where Mod, , denotes the Teichmiiller
modular group) with Kéhler form wcysp.

For families of d-operators on punctured Riemann surfaces formula (3) is not
valid. We calculate the cuspidal defect

5 = ¢y () — / (T T o) - d(ToT )22, (10)
* fiber

which appears to be equal to —é Weusp-

Formula (7) has also algebraic geometry consequences. In particular, it gives
for the relative dualizing sheaf w on the universal curve €y = M1 = Ty1/ Mod,
the following expression:

4
ci(w) = 3 Weusp » (11)
and provides an analytic proof of the isomorphism

Y - T (12)

b
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where /; is also considered as a sheaf of %,. The last formula is an analog of

Mumford’s isomorphism A, = lf"z_“‘“ on the moduli space .#, = T,/ Mod,
[14].

The content of this paper is the following. In Sect. 1 we recall necessary facts
from the theory of automorphic forms and the spectral theory of the Laplace
operator on punctured Riemann surfaces. In Sect. 2 we present basic facts about
Teichmiiller spaces together with necessary variational formulas, which allow us,
in particular, to prove that the metrics (,); are Kédhlerian. In Sect.3 we obtain
a formula for the first derivatives of the Selberg zeta function with respect to
coordinates on Tg,. In Sect.4 we prove our main result — formula (7). In Sect. 5
we calculate the cuspidal defect (10) in the Atiyah-Singer index theorem and

derive from (7) some algebraic geometry consequences.

1. Laplacians on a Punctured Riemann Surface

Let X be a Riemann surface of type (g,n), i.e. X = X\{x1, ..., X}, where X is a
compact Riemann surface of genus g and xy, ..., x, are pairwise distinct points on
X ; we will assume that 2g+n > 3. Then X can be represented as a quotient I'\H
of the upper half-plane H = {z € € | Imz > 0} by the action of a torsion-free
finitely generated Fuchsian group I'. The group I' < PSL(2,R) is generated by 2g
hyperbolic transformations Ay, By, ..., Ag, Bg and n parabolic transformations
Si, ..., Sy satisfying the single relation A;BiA7'By! ... A;BgA7'B;'S;...8, = 1.
The fixed points of the parabolic elements Si, ..., S, (cusps) will be denoted by
Zy, ..., 2, respectively. The “images” of the cusps zy, ..., z, € RU{co} under the
projection H — I'\H = X are the punctures xi, ..., x, € X. Foreachi=1,...,n
denote by I'; the cyclic subgroup in I' generated by S; and choose an element
o; € PSL(2,R) such that ¢,00 = z; and ;' Sj0; = < (1) ii)

A smooth complex valued function f on H is called an automorphic form of
weight (2¢,2m) with respect to the group I' if foranyz€ Hand y € I,

fG2' @ Y@ =f@), (¢.mel),
(forms of weight (2,2m) correspond to tensors of type (£,m) on the Riemann
surface X = I'\H). Let o(z)|dz|* denote the Poincaré metric y—%(dx? + dy?) on

the upper half-plane H. We denote by s#™ the Hilbert space of automorphic
forms of weight (27, 2m) with the natural scalar product

(1o fa) = / i = / f@R@Y P axdy, (L)
X

T'\H

associated with the Poincaré metric. o ~
For each integer # we consider the Laplace operator 4, = 0,0, = —o’ 1000

in the Hilbert space s#/ = #‘°. Here d; = 0 = i_ _1 2 + \/—1i is
0z 2\ 0x oy

considered as an operator from #7 to #*!, and d; = —¢’~'0¢™" is the adjoint

operator to 9, in the sense of the scalar product (1.1), acting from #%! to #7,
0 1/0 0 . . .

where 0 = — = = | — — +/—1— |. The operator 4, is self-adjoint and non-
0z 2\ 0x dy B

negative in #”. Denote by Q7 the subspace ker 4, = ker d, in 3¢, consisting of
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holomorphic cusp forms of weight 2¢. Recall that a holomorphic automorphic
form f is called regular if at each cusp z; is has the following Fourier expansion:

f(oi2)al(z)! = Z a(l) P L I

If, moreover, ag) ..=a =0, f is called a cusp form.

Holomorphic cusp forms of weight 2¢ correspond to meromorphic (¢,0)-
tensors (/-differentials) on a Riemann surface X (i.e. meromorphic sections of
a line bundle (TX)™* — X) which have poles of order not exceeding £ — 1
at the punctures xi, ..., X, and are holomorphic on X = X’\{xl, .evy Xn}. The

Riemann-Roch theorem gives

0, / < _19
1 =0
d- Q( — bl b
mg g, /= ’

—-1)@Eg—)+¢—n, ¢>2.

The subspace Q! = kerd; = cokerd; in #*' is the Kodaira-Serre dual of
Q'=? = ker d;_,. We denote by P;; the orthogonal projection of s#%! onto Q%!.
For ¢ < 0 we have the formula

Py =1-0,47'3;, (1.2)

where I is the identity operator in s#%!. Moreover, from the equation
Aologo = 1
0 g Q= 2 ’

which means that the Poincaré metric g|dz|> has a constant negative curvature

—1, it follows that
¢ —1

450 =7} Q(AH n —2—> . (13)

Now denote by Q¥)(z,z') the resolvent kernel of the Laplace operator 4, on

the uplper half-plane H; it means that Q¥)(z,2’) is the kernel of the operator

(de+3(=20)(s— 1))‘1 (we assume that # < 0, Res > 1). The kernel 09(z,2")

is smooth for z # z’ and is holomorphic in s on the whole complex s-plane. It

has an 1mportant property that Q¥ (oz, 0z') = 09(z,7') for any ¢ € PSL(2,R)

and z,z’ € H. For ¢/ = 0 the kernel Q%) is given by the explicit formula (cf. [15])

2
09(z,z2) = nII:(:;s) (1 - ) (1.4)

where F(a, b, c; z) is the hypergeometric function and I’ (s) is the gamma function.
At s =1 one has

z—z

2\ s
) F(S,s,2s;1—
Z

5 _ 4

z—7

z—2z

zZ—2Z

-2\

09(z,2') = —% log

Without writing an explicit expression for Q¥ with £ < —1 we give a simple

formula
© 1 1 z—z 1=
Q (2.2)= - . (1.5)

z—2' \Z—z
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(see, e.g., [6, Formula (1.6)]).

We denote by G¥)(z,z'), ¢/ < 0, Res > 1 the resolvent kernel of the Laplace
operator, i.e. the kernel of the operator (4, + }‘ (s—2¢) (s—1))~! on the Riemann
surface X = I'\H. For Res > 1 and z # yz/, y € I, the kernel GO is given by
the absolutely convergent series

GP(zz2) =) 007, (L.6)

yer

which admits term-by-term differentiation with respect to the variables z and z'.
The kernel GO (z,z') with z # yz/, y € I', admits a meromorphic continuation
in s to the entire complex s-plane and has the following Laurent expansion at
s=1:

1 . 1 (0) ’
- P +Gi'(z,2)+ 0(.;;_}—I 1)
| g+ 3 -1

(see [15, Theorem 2.3]). The kernel G(lo) (z,2’) is called the Green’s function of the
Laplacian 4, on the Riemann surface X = I'\H. One has (see [15, p. 161])

2

GO(z,7) =

G¥(,z) = —nlim GO(z,7') = Q(z,7), (1.7)

s—1 0z 0z’

—T

0z 0z'

where Q(z,z') is the so-called Schiffer kernel. It is defined as a symmetric bidif-
ferential of the second kind on X x X with a double pole of biresidue 1 at the
diagonal z = z’ and the property

v.p. // Q(z,zZ)w(z)dx'dy =0
I\H
for every w € Q'. The Schiffer kernel does not depend on a marking of X (ie.

on a choice of generators of the Fuchsian group I'). Moreover, the following
formula holds [15, p. 160]:

g
Q@,7) = B(z,2) —n Y. (Im 1) wi(z)w; (). (1.8)
ij=1

The kernel B(z,z’) is the uniquely determined symmetric bidifferential of the
second kind on X x X with a double pole of biresidue 1 at the diagonal z = 2’
and zero A-periods with the property that

Bz
/B(z,z’)dz’ =2nv—lwi(z), i=1,...,g;
z
here wy, ..., w, € Q! is the normalized basic of abelian differentials on X, i.e.
Az
/wj(z')dz'=(5ij, Lj=1,...,g,

z
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where §;; is the Kronecker symbol. Denote by t = (1;)),
B,z
Ty = /wj(Z')dZ’, hj=1,...,g,
z

the period matrix of the marked Riemann surface X. It has a symmetric positive
definite imaginary part Imt = (Imt;;) (which enters in (1.8)) with the property

Iml','j=/a)i6)j, Lj=1,...,¢g.
X
The Green’s function of the Laplacian 4, with ¢/ < —1 is defined simply as

. ... 0 . .
Ggf) (z,2'); its derivative — Gf) (z,2') is given by the absolutely convergent series

0z’
ry O 1 1 z—z \7¥
2 Y A0 N — = 1 N1—¢
e =1 Y s (5] e (19
yer
(see, e.g., [6, Formula (1.8)]).
Now for £ < 0 set
0 o y
RO(z,2) = ~ y¥ 5 (69(z,2') — 0¥ (z,2")). (1.10)

The following lemma will be used in Sect.4 in the proof of Theorem 1.

Lemma 1. The restriction R¥)|p(z) = RY(z,z) of the kernel R©) on the diagonal
D ={z =2} in H X H is a smooth automorphic form on H of weight 4 with
respect to the group I' whose constant term of the Fourier expansion at each cusp

. T,
z; is equal to 3 ie.

R9|p(012)0!(2)* = g +o(1).

y—o0

Proof. Due to the Corollary 3.5 in [15]

o
0 0
po)ale) =— ¥ 2 O, ,_
R |D(O-lz)o-l(z) S~ oz y o7 Ql (z,z + k)‘z =z +3£102

Using the formula

0 0 1 1 7 -7\ ¥
“YMEQ(K)(Z,Z/=——‘ — (- ,) )

0z -
which follows from (1.5), we obtain
S 2
T K2V =Ty 4k

k=—00
k+0

+o(l) = g +o(l).

y—>00

Recall that the Eisenstein-Maass series E;(z, s) corresponding to the cusp z; of
the Fuchsian group I is defined for Res > 1 by the absolutely convergent series

Ei(z,s) = z Im(o; yz)°.
yer\I
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It satisfies the differential equation

s(1—ys)
4

AoEi(z,5) = Ei(z,s)

and has the asymptotic expansion

Ei(0j2,5) = 8y° + ¢ij(5)y'~ + 0(e™™)
y—0
near each cuspzj, j = 1,...,n (see [15,16]). For any u, v € Q7! set f,3 =
(4o + )7 (u7) € H#°. The result below will play an important role in the proof
of Theorem 1 of Sect. 4.

Lemma 2. The function f,; has the following asymptotics near the cuspz; of the
group I :
0]
fuw(oiz) = % + exponentially decreasing terms as y — oo,

where

)y 4 _ )
CL%=§/E1~(',2);¢VQ, i=1,...,n.
X

Proof. Since pu, v € Q71 one has u = y?p, v = y*p for some cusp forms ¢,
v € 2, and hence the function uv € #° is exponentially decreasing at the cusps
21, ..., Zp. Let

[o o]
fwloz) =Y, al(y)e™/=Ik
k=—c0
be the Fourier expansion of the function f,; at the cusp z;, i =1, ..., n. Because

(4o + %) fus = p¥, each function
2 .(0) .
—dd;lé‘ + (417:2k2 — %) a,(:)

is exponentially decreasing as y — co. The equation

d%a 2
— + 4n2k2——>a=0
dy? ( y?

. . . 1
has a pair of linearly independent solutions " y* when k = 0, and
VIK3pQnlkly) ~ e /Y (2mlk]y) ~ e 2k
y—>0 y—
when k # 0. Since f,; € #7, increasing solutions cannot occur in the Fourier
expansion of f,; and we immediately obtain for f,; the above asymptotics.

To evaluate the coefficients cﬁi let us use the differential equation 4¢E;(z,2) =
—% Ei(z,2). Denote by F a canonical fundamental domain of the group I' in H
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with exactly n cusps at the points zy, ..., z,, and set F¥ = {z € F | Im(s;'2) <
Y,i=1,..., n}. We get from Green’s formula that

dxd
[ Bt ouse= [[ e Dot — aubie D) Z5
X I'\H
o1 Ofw Of
~jim g [ {Bea(Fra-Tra)

JOFY
— fus —a—E( 2)dx — iE(Z 2)d
uv ay i\Z, X ox V% y .

The last integral can be easily evaluated in terms of Fourier coefficients of the
functions f,5 and E;(;, 2):

1 n c(il c("l 3
Bt e == fim 5 (5in2- (— ;;‘3) 28, - %) +ol) =38,
X

; Y —c0 4
j=1

which completes the proof.

2. The Teichmiiller Theory and Variational Formulas

Let T,, be the Teichmiiller space of marked Riemann surfaces of genus g with
n punctures (we identify it with the Teichmiiller space of the marked Fuchsian
group I' uniformizing the Riemann surface X). The Teichmiiller space T,
admits a natural structure of a complex manifold of dimension 3g — 3 + n. For
its description consider in the Hilbert space #~1!(X) the subspace Q7! (X) of
harmonic Beltrami differentials; each element u € Q~1!(X) has a form p = y?@,
¢ € 2*(X), so dimg Q" (X) = 3g — 3 + n. The space Q7 !(X) is naturally
isomorphic to the tangent space Tx)Tg, of the Teichmiiller space T,, at the
point [X] representing the (marked) Riemann surface X. In turn, the cotangent
space T&] T, can be identified with the space Q*(X) of quadratic differentials

on X, which is dual to Q~!(X) with respect to the pairing

(1, @) = /mo, peQtXx), ¢eQ*(X).
X

For every u € Q~1(X) with
lullo = sup |u(z)] <1
z€H

there exists a unique diffeomorphism f* : H — H satisfying the Beltrami equation
ot _ of"
oz Moz

and fixing the points 0, 1, co.

Set I'* = f*T (f*)~! and X* = I'*\H. Choose a basis ui, ..., U3g—3+4n in the
linear space Q5!(X) and let u = ejpuy +...+ €3g—3+nM3g—3+n. Then the correspon-
dence (g1, ..., &3g—34n) > [X*] defines complex coordinates in a neighbourhood
of the point [X] € T, ,. They are called the Bers coordinates. In the overlapping
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neighbourhoods of two points [X] and [X#] the Bers coordinates transform com-
plex analytically. The differential of this coordinate change at the point [X] € T,
is a linear map D* : Q~ b (X) —» Q7 LI(XH),

v Dy =Pf“((1 =l %izf/(%)) °(’m)_l)’

where P*, , is the orthogonal projection of #~1!(X*) onto Q~1!(X*). With the
Bers coordinates (g, ..., €3g—34n) in a neighbourhood of the point [X] € T, , one

. 0 . S
can associate 3g — 3 + n vector fields s At any other point [X¥#] € T,, in this
i

neighbourhood they are represent by the Beltrami differentials D*yu; € Q11 (X#),
i=1,...,3g — 3 + n. Further details can be found in [17, 5).

Due to the isomorphism Tix) Ty, = Q~1!(X), the scalar product (1.1) defines a
Hermitian metric on the Teichmiiller space Ty ,, which is called the Weil-Petersson
metric. This metric is Kédhlerian [17], and its symplectic form will be denoted by

DOwp ;
wwp< 0.2 >=E(H,V)

e, 08 ) 2

at the point [X] € T,,.
In a similar manner the scalar product

(M,V)i = /Ei(" 2)M5Q, i= 1; RPN (3
X

in @71(X) defines a Hermitian metric on the Teichmiiller space Ty,, n > 0. It
turns out that for each i = 1, ..., n this metric is also K&hlerian (see Lemma 3
below).

Now let us recall the necessary variational formulas. Let w® € #%™(X*) be
a smooth family of automorphic forms of weight (2£,2m) (i.e. tensors of type
(¢,m) on the family X® = I'*\H of Riemann surfaces), where u € Q~1(X), and
¢ € € is sufficiently small. We set

eu\? /Afen\ ™M
(fe#)*(we) =t ofg" (%f;) <agzﬂ) c %/,m(X)'

The Lie derivatives of the family w? in holomorphic and anti-holomorphic
tangential directions y and i are defined as follows:

Lo = 2| (%) @) € #7x),
e=0

Lo = j—_ ()" (@°) € #"(X).
€ &=0

For the density g(z) = y~2 of the Poincaré metric, considered as a family of
(1, 1)-tensors, one has
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for any u € Q74 (X) (see [17]). For the second variation of ¢ the following
formula was obtained in [5]:

& *
Lo = e utev
0= Foram, U@

=j0do+ 37w =3¢ fw wveQTHX). 22
The Lie derivatives of the family u® = D®pu € Q~11(X®) representing the vector

field a(? on T, , in a neighbourhood of the point [X], are given by the formulas:
m

Lyu=0,
Lyp=—007'8(do + 1) (u¥) = =807 0f s

(see [5, Theorem 2.9]).
The Lie derivatives of the period matrix are given by Rauch’s formulas [18]:

Lﬂ‘C,‘j = —2V—1 /(l)i(l)j[l,
X

2.3)

Lptj=0, peQt(X), ij=1,...,8.
This immediately yields

g
L,(logdetImt) = tr((Im 1) "' L,(Im 1)) = — / Z(Imr),;‘w,w,-u. (2.4)

y ij=1
In other words, the (1,0)-form
3g—3+n
dlogdetImt = Z Mg?inﬁdsi

i=1

on Ty, corresponds via the isomorphism T[X] Tyn = Q%(X) to the family of cusp
forms

— Z (Im t)alwiwj .
ij=1
Moreover, for the kernel B(z,z’) (see Sect. 1) we have

B, 54 0

LiB(,?) = 2 @) =0

e
for any u € Q71(X), since LB is a regular bidifferential on X x X with zero
periods.

Formulas (2.1) and (2.2) play an important role in the calculation of the cur-
vature form @ of the line bundle T, ,, — 7 ,,. Recall that [5] the Teichmiiller
curve J g, is the natural fiber space with the projection p : I, — Ty ,; the fibers
are Riemann surfaces of type (g, n). Formally, the bundle T,7 ,, — 7, is defined
as kerdp « T 4, (the vertical tangent bundle of the fibration p : T4, — T,,).
Its restriction to a fiber of the projection p is isomorphic to the tangent bundle
of a fiber. Therefore the Poincaré metric on the fibers defines a metric in the
line bundle T,J ;5 — J 4. There exists a canonical lifting TT,, — TS ¢, [5].
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. L 0
Denoting the corresponding image of . by 7, and the tangent vector field
n
along the fibers by — we have the following expression for the curvature form

@ (see [5, Formula (5.3)]):

0 0 1
o (5 7)== 3
0 2.5
@ (T#, b—z—) =O’ ( )
C) (Tu, T,) =— % (do + %)-I(IN) = —%f;w .

Finally, the Lie derivatives for a family 4% : #9™(X®) — #*™ (X®*) of linear
operators are defined by the formulas

L= (™ £G™.
Lid=g| G 4G

and are linear operators from #%"(X) to #"™(X). For the families of the
operators d; and J; one has

L, = udy 10, Lpds =0,

- - ~ (2.6)
L,d; =0, L0; = ibs_10”"
(see, e.g., [6], formulas (2.8)). From this it follows that
Lydr = 5; N5;+IQ’ 27

LyA; = ids—107"0;. _
These formulas will be used in the next section. Here we prove the following
Lemma 3. The metrics (,)i, i=1,..., n, on T,, are Kiihlerian.

Proof. We must show that
0 0

E (v,A)i = 76, (1, A)i (2.8)

for any y, v, 4 € Q7(X) at any point [X] € T,,. We have
G 0= Slot® = [ LG DI+ [ E6 2 TAe, @9
b X
where we used (2.1) and (2.3). Using the differential equation
(4o + HEi(z,2) =0
and formula (2.7) with £ = 0, we get
(4o + 3)LLEi(, 2) + 0~ O(WIE(, 2)) = 0,
which leads to the formula
LLE(, 2) = —(do + 3) "' (¢ ' 0(HIE(, 2))) .
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By means of this formula and formula (2.3) we obtain from (2.9) integrating by
parts

0

o (i = - / (do+ 1)~ @™ 0(OEI(, ) - vie
X

- / Ei(, 2va(@™"0(do + 1) (ud))e
X

- / GOE(, D) - fy — / O0IE(,2) £
X X

since d(gv) = 0 for any v € Q~“(X) and since Beltrami differentials x and v
are rapidly decreasing at the cusps. The obtained formula is obviously symmetric
with respect to p and v, which proves (2.8) and the lemma.

Set for pu, v € Q74 (X),

n

</‘a v)cusp = Z(#, V),' .

i=1

The metric (,)cusp On Ty, is also Kéhlerian; we denote by weusp its symplectic

form, where
Jd 0 V=1
wwsp(E, E) = N (w, V>cusp-

The metric (,)cusp is Obviously invariant under the action of the Teichmiiller
modular group Mod, .

Finally, let us observe that the scalar products (u,v) and (u,v);, i=1,...,n,
for u, v € Q74(X) can be expressed in terms of the values of the Rankin L-series
[19] associated with the cusp forms ¢ = y=2f, v = y~29 € Q*(X). Indeed, let
(e, (b2, i=1, ..., n, be the Fourier coefficients of the cusp forms ¢ and
p of weight 4 at the cusps zy, ..., z, (see Sect. 1). Then for Res > 1 (see [19]),

[Etowe=[[ ¥ mirtaruene 5
X

M\H Yer\r

dxdy
32

= 2 Im(o; ' y0;2) u(oi2)v(0:2)
Gl'll"o'i\H yer\r

o 1
=//ys_2#(0'iz)v(0'i2) dxdy
00

oo 1
- / / Yol w(o)el)] dxdy
00

T (s+3)

= G LOu,v;s+3), (2.10)
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where _
o (i) ()

a;’ by

ks
k=1

LO(v; 5) =

is the Rankin L-series for the cusp forms ¢ and y at the cusp z;,, i=1,..., n. It
is absolutely convergent for Res > 4 and has a simple pole at s = 4. Therefore,
from (2.10) it follows that

(u,v)i = LO,v;5; i=1,...,n. (2.11)

4!
(4n)3
Moreover, since
1

Res |s=1Ei(Z’ s) = m ?

we obtain from (2.10) that

3! n .
(w,v) = @y (8 -1+ 5) Res [~ LO (1, v; 5)

for any i =1, ..., n (here Res denotes the residue).

3. First Variation of the Selberg Zeta Function

Recall that the Selberg zeta function Z(s) of a Riemann surface X is defined for
Res > 1 by the absolutely convergent product

26) =] [Tt - e e,

{£} m=0

where £ runs over the set of all simple closed geodesics on X (with respect to the
Poincaré metric), and |£| is the length of #. The function Z (s) has a meromorphic
continuation to the whole s-plane with a simple zero at s = 1. For the logarithmic
derivative of Z(s) one has

573 loez0 =5 /[ PIRER 9= 6

I'\H

y hyperbohc

where the sum is taken over all hyperbolic elements of the Fuchsian group I’
uniformizing X; Res > 1. This formula can be derived from the definition of
Z (s) by means of the Selberg transform; see [16] for details.

As it follows from the Teichmiiller theory (see Sect. 2), the value of the Selberg
zeta function Z(s) at a fixed point s with Res > 1 is a smooth function on Ty .
The next lemma gives an expression for the first derivatives of Z(s) with respect
to coordinates on T, .

Lemma 3. For any u € Q7% (X) and Res > 1 the following formula holds

9 logz(s) = — / 4o (GO — 0O, (32)

Ogy
b



414 L. A. Takhtajan and P. G. Zograf

where

00/(G = 0O)Ib(2) = = )= 0O, )l
(here and in what follows a dash on an operator means that it acts on the vari-
able z').

Proof. First of all, 00'(G® — Q©)|p is a smooth automorphic form of weight
4 for the Fuchsian group I', and the integral in the right-hand side of (3.2) is
convergent because u decreases rapidly near the cusps zi, ..., z, of the group I'.
Further differentiating both sides of (3.1) and taking (2.1) into account we obtain
that for Res > 1,

d
2s—1_1 (d log Z(s))

=5 [

dxd
o) xdy

[ y hyperbollc

\H
-1 / / LG9 7) — (LQ0E ) — Y L00y7) dxdy -3
2 w0572, ws” (2, us” (2, 2
A [ yerEaIt;;)lic ] s=z
where
LOPED) = 5| 00,14
and
LGP = 5| IO

(G¥ stands for the resolvent of the Laplace operator 49 on the Riemann surface
X = %\ H). Denote by G;(z,z’) the resolvent kernel of the Laplace operator
on the Riemann surface I'\H; for Res > 1,

Gsi(z,2') = Z 09(z,9z"), i=1,...,n.
yerl;
From the definition of the resolvent and formula (2.7) for L, 4, it follows that

/" 14
(0)(2 z') = —vp. // Q(O)(z,z”) (LﬂAO)//Q(O)( " 2 dxy ‘iy

// 'u( //) PR Q(O) ) a . (0)(Z// z)dx” dy”, z ?é Z’,

LyGisi(z, Z') = —v.p. // Gs,i(z,2") (Ly40)"Gg(2", ",2) dxy ‘iy

I'\H

0 0
= // u(z" e Gsilz,2") 5 Gsi(2",2"ydx" dy", z+#yZ,yelr;,

T\H
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and
dx" dv"
L,GO@,z) = —vp. / / GO(z,2") (L, 40)"GO (2", 7') =52
I'\H
” 0 0) " 0 ©) 1 1 /"og !
= IU(Z)@GS (Zaz)ﬁGs (z,z)dx dy9 Z#VZ,VGF,

r\H

where (L,40)” means that the differential operator L, 4o acts in the variable z”.
Using now the above expressions for L,Q9, L,G;;, L,G? and a simple formula

Z QEO)(Z, 'YZ/) = i z (Gs,i(o'z3 ozl) - Q.(c())(z’zl)) ’

yer, i=1 gel\l
y parabolic

we derive from (3.3) the following formula:

1 d
————2s 1 (d logZ(s)>
" oan
//u(z)dx ya = {//G(O)(Z Z//)G(O)( " /) dx dy

z'=z
dx// dy”

I'\H
- / 0000 (") g
H

_i Z [// Gsi(0z,062")Gsy(02", 02')

i=1 gel'\I' TA\H

- [ e¥e00 ) di‘jL] }
y//
H

___1_// (z)dxd 8_2
1—2 JJ# Y ozo7

I'\H

x % [G§0)(Z,Z/) —09(z,2) - Zn: Z (Gsi(oz,02') — QU¢(z, z’))]

i=1 gel\l'
1—25 ds // 0z 0z’

d " dyll

z'=z

I\H
X [G§0>(z,z/) 09(z,z2') — Z 09(,7) ] u(2)dxdy
b4 parabohc 2=z
© /
T 1 —23 ds // Z 626 5 Q5 (z,72) z,=zu(z) dxdy
vhyperbohc

(in this calculation we reversed the order of integration and applied the Hilbert
identity to the resolvent kernels). Now let us integrate the last formula over the
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interval [s, o0). Since L, log Z (s) > 0 and

©QV(zyz)| -0
y; aza / yy 50
y hyperbolic

uniformly in z € H, we get

— logZ (s) = / / ZF (Q(O) (z,72")

I'\H

u(iz)dxdy.

z'=z

y hyperbohc

Since

e =Y 2 00
s ’ - s ) >
0z 0z’ e 0z 0z’

it remains to show that for any p € Q1! (X)

I Z &

I'\H

uz)dxdy =0,

z'=z

Y parabohc

where the sum is taken over all parabolic elements of the group I'. We have

2

yer,
y parabolic

—Z > Z = a,(Q(‘))(z,a'le‘GZ’))

i=1 g€l \I' k——oo

= Z Z Z 525 7 (Q(O)(Gi-laz,o'i_lgz’+k))

i=1 oeI' \I' k——oo

© 5200 _ ~
Z Z z 6ZQ0SZ’ (6;'0z,07 0z + k) (67 0) (2)?
=1 oel'\I' k——

= Z 09(z),
i=1

z'=z

z'=z

z'=z

where

09(z) = Z vs(o;l0z) (67 0) (2)?,
el \I'
®©
ys(z) = z ZQ (z,z+ k).

k=—00
k#0

From formula (1.4) for the kernel Q©(z,7’) it is not difficult to deduce that y,(z)
is a bounded function on H, depending only on y = Imz. On the other hand,
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any u € Q7b(X) is equal to y2(p, where ¢ € Q*(X) is a cusp form of weight 4
for the group I'. Since incomplete theta series (including the automorphic forms
09, i=1,..., n) are orthogonal to cusp forms with respect to the scalar product

(1.1) (see, e.g., [16]), we have
/99# =0
X

for any p € Q7 (X) and i = 1, ..., n, which completes the proof.
Taking into account that

0 , .
E logZ'(1) = %1_13 L,logZ(s),

we get from (3.2) at the limit s — 1,

s losZ/() = [ Rl (34
X
where )
RO () = = 5= (6P 2,2) = 0 (2,2l
(see Sect.1). The first derivatives of Z(s) on Ty, for integer s = 2, 3,... can

be expressed in a similar way in terms of the corresponding Green’s functions.
Namely, we have

Lemma 4. For any integer k > 1 and p € Q7 (X)

9 logz(k+1) = / RO)ou,
Oty
X

where
ROy = — 20" (G — @)ln.
Proof. First we will prove that for / = —k < —1,Res> 1,
/ ude™'d (G — Q)b = / [ (G v PR )
X X

We observe that 0'GY) (respectively 9'QY)) is the kernel of the operator
(4¢ + (s —2¢) (s — 1))7'3; on the Riemann surface X (respectively on the
upper half-plane H). Further, it follows from (1.3) that

s—2/—1)s\ = - s—20)(s—1)\ !
(A/+1 + ‘(—‘Z——)) a;=+1Q = 3;+1Q(At’ + (—l(s—)) ,

in other words, it means that

£+1 1 —
VGL" — 0" =~/ doe™ (60 - 0.
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We have

/ 1008 (G — 00 — 0g~4~10'(GLE) — QLEI)),
X

- / 100~ 3 (G — 09 + 0g7'¢ 09~ (G — QDY)

X

- / u(@? + 9o~ 0g7 (G — Q)
X

- / 1d(e~10g~ (G — 0)|p) =0,
X

because for any u € Q7(X) one has d(ug) = 0; this proves (3.5). Now starting
from Lemma 3 with s = k + 1 and applying formula (3.5) k times we arrive at
the assertion of the lemma.

4. Quillen’s Local Index Theorem

Recall that the determinant line bundle of the family of operators d, by definition
is
ly = detind 8, = A™* ker d; ® (A™** coker d;) ",

where £ € Z and A™* denotes the maximal exteriour power of a vector space.
There is a canonical metric | - || (L2-metric) in the holomorphic line bundle 1,
on T,, associated with the scalar product (1.1). In the next lemma we calculate
the curvature form @ of the canonical (unitary) connection in the Hermitian
holomorphic line bundle (4, || - ||). (Because of canonical isomorphism between
s and A, it is sufficient to consider £ = k > 0).

Lemma 5. For any u,v € Q75(X) we have
Jd 0 0?
) _ =
(2] (68,[ 5§v) 35, 5%, logdetIm, 4.1

where 7 is the period matrix of a marked Riemann surface X. For k > 2,

J0 0
W = =
© (08”, 6§v>
= — Tr (1 + (1 = &) (Ls@)e ™I + (Lud1) ATk - (Lsd7_))Piir) »

where Py_y; : #17R1(X) — Q17k1(X) is the orthogonal projection, I is the identity
operator in #'~%1(X), and Tr denotes the trace of an operator.

Proof. A normalized basis of abelian differentials wy, ..., w, determines g global
holomorphic sections of the bundle ker d; over T,,. Therefore, the L?-norm of

the canonical section w; A -+ A @, of the line bundle 4; is equal to (det Imt)!/?
which leads to formula (4.1). The proof of (4.2) consists of simple linear algebraic
calculations and can be found in [6, Lemma 1].
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Recall that Quillen’s metric | - || in the determinant line bundle Ay is defined

as follows
(@@ k=2,

lo = { @' W) 2], k=1.

In the next theorem we compute the first Chern form c; (4, |- |g) of the Hermitian
holomorphic line bundle (4, | - lg) on Ty p.

Theorem 1. For k > 1,

6k? — 6k + 1 1
T‘ Owp — § Weusp » 4.3)

where wwp is the Weil-Petersson Kdahler form and wcusp is the Kdhler form of the
metric {,)cusp-

Proof. Since

(i 1~ llg) =

—V; OW® —3ddlogZ(k)), k=2,

——”2;1 ©M —3alogZ' (1)), k=1,

et I+ o) =

(where 0 and 0 denote the components of the exterior derivative operator
d = 0+ 0 on T,,) it is sufficient to prove that for every integer m > 0 and

wy € 27 (X),

0? J0 0
- N=—@m)| — ~
36, 05, EZm+ 1) =—6 (aa,,’ az:v)
6m? + 6m + 1 7T
T (ﬂ, V) - § (:u7 v)cusp > 4.4

where for m =0 Z (m + 1) should be replaced by Z’(1). In the main, the proof of
this formula follows the proofs of Theorem 2 in [6] and Theorem 2 in [11]. By
Lemma 4,

2 logZ(m+1) = / R pu,
Ep
X

where s s
R 2) = =5y 55 G e:) = 07" 2:2)

and D denotes the diagonal z/ = z in X x X. Therefore
62
0Oty 08,

0
log Z(m+1) = - / (R |
=0

Xe&

- / (LsRE™o)+ R (o Log). 45)
X

Because the kernel R is regular on the diagonal D in H x H, we have
L;(R™|p) = (LyR™)|p. Let us calculate the contribution to (4.5) of the
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variations of the kernels dg™0’ Q(l—'") and 69’"6’6&‘"” separately. From (1.5) we
derive that for z' # z

0 om0 s 1 1 7 —7\"
2y L) =2 (5=5) - e

0z T (z—2z)\z—-2

As it is shown in [6, Sect. 4.4],

i L (9 —m O pem, ) ML oo
zlf’inzL”<azy a4 @) )=y e,
therefore 3m+1
_ m
[ uts@ena0™lo = T ). @n

X

Because the variation of the kernel 9¢”d'Q{™ contributes a finite amount

to (4.5) the same is true for the kernel ag'”a’Gﬁ_'"), which allows us to vary it

outside the diagonal D, and then we can pass to the limit as z’ — z. The kernel
dgmd'GS™ for m > 0 is the kernel of the operator —g™d;_, A=%3*, from ™!

to ™. As it is shown in [6, Sect.4.5],
/ Ly (0™ G{™)pp = — Tr((—uvI + (Lyd-m)A=5(Ls8%,))  Pomy) . (48)

X

For m = 0 we have 1
00'GY = — -9,

where Q is the Schiffer kernel (see (1.7)). Therefore using (1.8) we obtain

/ Ly(09'GY)lpu
X
1 8 .
! - /
= -/ (Lv (; B(z,z') — Z (Im1);; wi(z)w;(z ))) wz)dxdy
X b=l z'=z
0? g »
- 08” 0%, IOg detImz — Z (Im T)ij (Di(leLg,u R

y =1
where we have also used (2.4) and the fact that L; B = 0 (see Sect. 2). By formula
(2.3) the last integral vanishes identically and we obtain that
1 ~(0) s
/Lv(éa Gy)lpp = — 50,0 logdetIm~. 4.9)
b
Now we turn to the term RC™|pLyu in the integrand of (4.5). Let F be a

canonical fundamental domain of the group I' in H such that its cusps are
exactly zy, ..., z, € RU {o0}. We set

F'={zeF|Imo'z<Y, i=1,...,n}

and
Cf=Fn{zeH|Imo;'z=Y}, i=1,..,n.
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With the help of (2.3) we obtain that

/ REM|p Loy = — / / RE™ (530 3(do + 1) (u9) dxdy
X

5f
(—m) y2 e 5
myhfzo//’* o557 gf e

}llm //R“’”>| 2 afﬂv dz
—00

oFY

0 Of
2 (RCm) 2774
+// %3 (R™Ip)y 55 dxdy
F

=L +1,

where fu5 = (do + %)‘l(ufi) (see Lemma 1). For the integral I; we have, due to
I -invariance of the integrand, that

_ af
REm, 2 Y
y“l’%oz/ Iy 57 4

\/_

L =

lim Z / (RE™|p 0 0y) (z) (Im 02)? f”" (0:2)0}(z) dx

Y -0

- v 2 / (R1o) (612)e](2) 5= Grooi)) d
=0

z=x++v—-1Y.

Using Lemma 1 and 2 we obtain that

V-1 . e v-1 1\ o 1
=== jmY i=1§ T(‘W)W"(W)

Y —o0

Z e =—75 (Vs (4.10)

Let us now proceed with the integral I,. First of all, for m = 0 we have I, =0
since R®|}, is holomorphic. In this case combining formulas (4.5), (4.7), (4.9), and
(4.10), we obtain that

P 10gz'(1) = =% 1ogdetIm ) = )
de, 08, 22T 5,58, OB T o WV T g Wb Vicusp

which proves (4.4) for m = 0. For m > 1 we observe first that

0 o 9 m 5 d  m o
9 REMp) = (—_+——) (yl) 9 yom O (gm _glemy

0z 0z 07 0z 0z

m —om 0 m _
Sl A (< I ) I[P
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(see [6], Sect.4.6). It follows from this that
__m om0 em) oemy, Ofw
h=-3 //y 2 G — 0™l 2 dxay

_m.vl lim /y—zm 0 G — Q™) p fu dz

E 2 Yoo oz’
aFY
e 9 —2m 0 (=m) (-m)
+ 2 // 0z (y 0z (Gy Q1 b )fw dxdy
F
=I3+14.
The boundary integral I; can be calculated in the same way as I;. We have
e —2m (=m) (—m)
Is= 2 }ll-rgoz/ 0z /(G =01 lp fwdz
i=1 Cy
m ——_1 i n —2m At ¢ (= —m
-T2 2 Jim ; /(Ima,-z) MY (G — Q7™ p(012) fus(012)0i(2) dx,
=10
z=x+v-1Y.

Note that y=2"¢’ (Gg_'") — Qg—m) )Ip is a smooth automorphic form of weight 2 with
respect to the group I'. According to [15, Corollary 3.5], we have

(Im;2) 2" 3 (GT™ — Q7™ b (0i2) 0} (2)
= 3 L 0 e, + Rlams + 0l

y—=®©

_ls I 2vly N _
! Zwk(w__ly_k) +o(1) = 0(1),

y—o0 y—0

where we used (1.5), the formula

1T 1

Z (z+k)k ;TR + 2

and the Stirling formula. Taking now Lemma 2 into account we conclude that
I;=0.
In order to calculate the integral I, we observe that

O ( o @ m e 0N om @
2 (@ =0 ) = (55 + 55 )y 2" G = 0o

0z
O i D w em
=3 2 Q(Gﬁ " — 0.

0 ) - -
The kernel 3507 Gg ™ is the kernel of the operator 6_mA:,1,,6fm =1—P_,; (see
formula (1.2)) in the space # ™!, where I is the identity operator, and P_,,; is
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the orthogonal projection of #~™!(X) onto Q7™!(X). Moreover, from (1.5) it
follows that for z’ 7& z,

_ 2m+1 1 z—z\™"
1—2m (=m)

y (?zﬁz 02 = n (z-2) (z'—z’) '
Therefore

12=14=§//< VP2 z)+2m’yLl)(A + 71 () dx dy
F

m ) 2m+ 1)m 1, ,dxdy
=5 Tr(y*fus P-m1) + T8n (4o + 3)™" (u7) 7

F
(2m+ 1)m
47

where we used formula (2.2) and the formula

//(Ao-i-z) (u)d”’y—sz L 2 ww),

which follows from the equality 4o(do + 3)~! = I — } (40 + 3)~!. Combining the
results of computations (formulas (4.7), (4.8), (4.10), (4.11)) we obtain that

= _mTr((LMVQ)Q_IP—m,I) + (/.l,V), (411)

0% = _ = _
P 05, log Z(m+ 1) = Tr((—uvI + (Lﬂa—m)A—rln(Lf’ajm) —mg 1(LWQ))P—m,l)
u U6y
6m? + 6m + 1 i
+ 127'C <”9 V) - § <I'l’ V)cusp .

Finally setting m = k — 1 and taking Lemma 5 into account we arrive at the
assertion of the theorem, i.e. formula (4.3).

5. Concluding Remarks
Here we will calculate the cuspidal defect
5 =1l 1| llg) — / (T, T o) - td(ToT g2z € QY (Tgw), k21,

fiber

where integration is taken over the fibers of 7, — Ty ,.

Theorem 2. We have

0 = — L weysp - (5.1)
Moreover,
a0 1 no
5‘”( ) =——— > LOv;5 5.2
5 e ; (Bv; 5) (5.2)

for any p, v € QY (X), where LY is the Rankin L-series for the cusp z; (see
Sect. 2).
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Proof. By definition,
ch(T;*T 4 n) - td(ToT g)
= . 1 e(1- e"g@)_1

—
V=1 2 _ V=1 \?2

=1+(—k 1@+6k Sk + 1 Lo +...,
2 12 2n

where O is the curvature form of the Poincaré metric in the line bundle T,.7 ,, —
T on (see Sect.2). Using (2.5) we have

2
/(ﬁ@) (6 6 ) -5 340+ 3) 7 (e
fiber

2% E’ 08, ) 2m?
X
v—1 _ v—1
= 5 /#VQ——z—nT /Ao(fuv)Q
X X
V=1
= ~_2T7;2_ (:usv> » (53)

where we also used Lemma 2 and Green’s formula to make sure that the last
integral in (5.3) vanishes identically. Rewriting (5.3) in the form

V=1 _\* 1
2n@ = 2 O

fiber

(cf. Corollary 5.11 in [5]) and taking (4.3) into account we obtain (5.1). Formula
(5.2) follows now from (5.1) and (2.11).
Note that the cuspidal defect

6 = dimind 3, — / (T, * T gn) - td(ToT g )11
fiber

in the Atiyah-Singer index theorem is equal to —g. Indeed,

0 =@k -n@-n+k-vn-(3-k)- L o
X

2n

=Qk—1)(g—1)+ (k—n—(2k—1) (g-!-g—l) =—g.

Finally we present some algebraic geometry consequences of Theorem 1. First
of all, because all bundles and metrics on Ty, considered here are invariant under
the action of the Teichmiiller modular group Mod, ,, formula (4.3) holds also on
the moduli space #,, = Tg,/Mod,, (in the sense of orbifolds). Consider the
universal curve 4, = .#,; and denote by w the relative dualizing sheaf on %,,
i.e. the line bundle dual to the vertical tangent bundle (along fibers of projection
p: %, — M,) on %,. Further, let us denote by [wwp], [weusp] € H?(%, R) = R?
the cohomology classes of the closed (1, 1)-forms wwp and wcysp on %,. Theorem



Local Index Theorem for Punctured Riemann Surfaces 425
1 means that for the first Chern class c((4x) of the line bundle A; on %, the
following formula holds:

6k* — 6k + 1 1
T [cowp] — § [wcusp] . (5.3

From the exact sequence of sheafs
0— p"(Q'(My) — Q%) > 0 -0,

c1() =

(where Q! denotes the sheaf of holomorphic 1-forms and p*(Q!(4,)) is the
inverse image of the sheaf Q!(.#,)) it follows that

h=ph)eo

on %, (here 1, denotes the determinant line bundle detindd, on M ). This
formula together with Mumford’s isomorphism 4, = 1! on .#, [14] and with
the fact that 4; = p*(1,) yields the isomorphism

hei’eow. (5.4)
Combining (5.3) for k = 1,2 and (5.4) we get

% [owp] = 12¢1(41) + ¢c1(w),

g [wcusp] = (60) s

(5.5)

ie. —15 [owp], ﬂ [wcusp] € H %(%,, Z) are integral cohomology classes. In particular,

it follows from (5.5) that for any compact Riemann surface X of genus g > 2,
imbedded into %, as a fiber a projection p : €; — .#,, we have

4 1
§/wcusp=p/wWP=2g_2'
X X

Substituting (5.5) into (5.3), we obtain the formula
k(k—1)

c1(Ax) = (6k* — 6k + 1)cy(4y) + 5

C1 (CO) s

which leads to the isomorphism
T & 186k @ g 5 (5.6)

on %,, because according to Harer’s result for g > 3 the Picard group Pic(%;) =
H?(%,, Z) is isomorphic to Z & Z [20]. The isomorphism (5.6) is analogous to

Mumford’s isomorphism 4; = /1‘15"2"6"“ on ./, (see [14]).
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