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Abstract. It is shown that the nonlinear Schroedinger equation with a self-
consistent source admits investigation by the inverse scattering method for the
Dirac operator. The conditions are found under which the solutions of the non-
linear Schroedinger equation with a self-consistent source describe the creation
and annihilation of solitons.

1. Introduction

At present, in the investigation of nonlinear evolution equations by the inverse
scattering method there comes into view a new perspective trend: the case in point
is the application of this method to integration of nonlinear evolution equations
with a source. Being different in details, the use of the inverse scattering method
for integrating different nonlinear evolution equations with a source has much in
common both in the scheme of integration and in the dynamics of the obtained
solutions. In this paper, these statements will be exemplified by the nonlinear
Schroedinger equation with a self-consistent source. More precisely, we consider
the integration of the following system of equations:

. OU 2 d2U y-y

dt dx2 " n n

n=\

-^+uψn-iζnφn = - ^ - ΰφn + iζnxpn = 0, n= 1, ..., AT, (2)

-j1 +uqn-iζnpn = ~γ- -ΰpn + ίζnqn = 0, n= 1, ..., AT, (3)

where the bar means complex conjugation. We shall assume that the function
u = u(x, t) at any t > 0 satisfies the requirement

Λ 00

Σ
f dru(x, t) ...

/ —i~T~^ dx<oo. (4)
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Taking this requirement into account the solutions φn = φn(x, ί)> Ψn = ψn(x-> t)
and pn = pn(x, ί), qn = gn(x, t) of Eqs. (2) and (3), respectively, are to be chosen
so that the expression in the right-hand side of (1) for ί > 0 should tend rapidly
enough to zero if x —> +oo. This can be done in two ways.

The first way of choosing solutions of Eqs. (2) and (3) is as follows. Let the
quantities Ci, ••-, CN lie in the upper half-plane of the complex parameter ζ, i.e.
Imζn > 0, n = 1, . . ., N. Let then the solution φn, ψn of Eq. (2) tend to zero as
x —• —oo and the solution pm qn of Eq. (3) tend to zero as x —> oo, i.e. at any
t > 0 the following asymptotics hold:

\φn(x,t)\ + \ψn(x,t)\^>0, if x-»-oo,

\Pn(x,t)\ + \qn(x,t)\^0, if x->oo.

As will be shown below, in this case the right-hand side of Eq. (1) for any t > 0
tends rapidly enough to zero if x —• ±oo and the solution u = u(x, t) satisfies
the condition (4). In this case, the quantities ζn can be arbitrary functions of
time t for any ί > 0 satisfying the condition Im ζn > 0, n = 1, . . ., N. It appears
that in this case the function u = u(x, t) can describe a number of nontrivial
processes, for instance, the decay and fusion of solitons, capture of solitons into
an oscillatory regime of motion, and the formation of a bound state of several
solitons.

The second way of choosing solutions of Eqs. (2) and (3) consists in the
following. Let the quantities £i, . . ., ζu be points of the discrete spectrum of the
operator L of the form

^-9 (6)
dx

where

= diag( l ,-1), U= (7)

and lie as formerly in the upper half-plane Im ζ > 0 of the complex parameter
ζ. In what follows, unless otherwise stated, we assume all points ζ = ζn of the
discrete spectrum of the operator L to be simple, n = 1, . . ., N. Then, let the
solution φn, ψn of Eq. (2) tend to zero as x —• +oo, i.e. it is obtained from the
normalised to unity eigenfunction of the operator L of the form (6), (7), which
satisfies the eigenvalue ζ = ζn, by multiplying by the x independent quantity; the
solution pm qn of Eq. (3), on the contrary, tends to infinity as x —> +oo, i.e. for
any t > 0 the following asymptotics hold:

\<Pn(x,t)\ + \y>n(x,t)\-+09 if x->±co,

\Pn{x,t)\ + \qn(x,t)\-+co9 if x->±oo.

As will be shown below, in this case the right-hand side of Eq. (1) for any t > 0
also tends rapidly enough to zero if x —> +oo, and the solution u = u(x, t) satisfies
the condition (4). The quantities ζn turn out to be functions of time satisfying
the condition

η£=iWn9 π = l , . . . , i V , (9)

where the quantities Wn are determined by the equality

Wn = φn(x, t)qn(x, t) - ψn(x9 t)pn{x9 t), (10)
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and by virtue of (2) and (3) are independent of x. Hence, it follows that the
quantities ζn in the process of evolution can fall on the real axis from the
upper half-plane of the complex parameter ζ, i.e. the imaginary part Imζ n of the
quantity ζn can vanish at some time moment t = tf. This leads to that in the
process of evolution a soliton, corresponding to this eigenvalue, disappears, i.e.
annihilates. Then, if for t > tf the quantity ζn goes away from the real axis, then a
soliton that has disappeared appears again, i.e. is created. Thus, in this situation
the function u = u(x, t) can describe, apart from the afore-mentioned nontrivial
processes, also the creation and annihilation of solitons.

The above-mentioned results are obtained by the inverse scattering method
for the operator L of the form (6), (7). Analogous results can be obtained for
a modified Korteweg-de Vries equation with a self-consistent source, and after
small changes of some details of this paper similar results can be obtained for
the Liouville and sine-Gordon equations with self-consistent sources.

2. Determining Relations

The use of the inverse scattering method for integration of the system (l)-(3) is
based on the following. We take the operator L of the form (6), (7). Then, let the
operator A have the form [1],

A = -ί(2Λd2 + Ό

One can easily verify the validity of the equality

ΛU2). (11)

i.e.

where

0 A
A 0

, = -,•(2,̂ +0).
Now, let us consider the system of equations

(L-iC)/o = O, ^ = n = l , . . . , 2 J V ,

(12)

(13)

(14)

with respect to unknown quantities /o, /i, ..., fiN- Here and everywhere below
the tilde " ~ " means transposition, i.e., in particular, the transition from the
vector-column to the vector-row. We shall assume that /o is the second order
square matrix, Ψι, . . ., Ψ2N are vector-columns with two components each, and
consequently, /1, ..., /2N are two-component vector-rows. Using the solution /o,
/i> , fiN of the system (14) we determine the quantities go, gi, ..., g2jv by the
equalities

j φ n f n ,

n = l ^ '

= ΨnΛf0-i(ζ-ζn)fn, n = l,...,2JV,
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where Φ\9 . . ., ΦIN are vector-columns with two components each, and conse-
quently, go is the second order square matrix, and gi, . . ., g2M are two-component
vector-rows. Now, let us find out what requirements are to be imposed on the
matrix U and vectors Φ\, . . ., Φ2N, Ψu > *?IN SO that the quantities determined
above go, gi, . . ., giN should satisfy the relations

2N

(L - iζ)g0 = X Φngn, j^ = 0, n = 1, ..., 2ΛΓ. (16)

After simple calculations one can easily verify that for the validity of these
relations it is necessary and sufficient to fulfill the conditions

2JV

(L - iζn)Φn = (L - iζn)Ψn = 0,

where
L = -Λd + U.

Now we take the matrix σ of the form

0 1
σ = 1 0

(17)

(18)

(19)

One can easily verify that by virtue of (7) the equalities σΛσ = —Λ, and σUσ = U
hold, i.e. taking account of (6) and (18) we get the equality σLσ = L. Hence, it
follows that if the vector-column Φ = ΦQ satisfies the equation

(L-ίζ)Φ = 0

at ζ = Co, then the vector-column Ψ = σΦo satisfies the equation

(L-ίζ)Ψ =0

(20)

(21)

at the same value of the parameter ζ = Co- Then, let E = Aσ. According to (7) and
(19) the equalities EAE = —A and EUE = —U = —V are valid, i.e. according
to (6) and (18) we get that ELE = - L , ELE = - L * , where L = Λd + U9

L* = — Λd + U. Thus, we get that if the vector-column Φ = ΦQ satisfies Eq. (20)
at ζ = Co, then the vector-column Φ = EΦQ satisfies the same equation but at
C = Co- Moreover, if the vector-column Ψ = Ψo satisfies Eq. (21) at ζ = Co,
then the vector-column Ψ = EΨ0 also satisfies Eq.(21) but at ζ = Co- From the
afore-said we assume that at n = 1, . . ., JV,

ψn

ψn
Ύ n —

Finally, we assume that at n = 1, ..., N the condition
according to this condition we assume that

Ψn

Hence, there follows the equality

2N

Pn

0 γ
γ 0

(22)

.„ = ζn is fulfilled, and

(23)

(24)

n= 1,..., JV.
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where

y =

Thus, if the vector-columns Φn and Ψn of the form (22) satisfy, respectively,
Eqs. (20) and (21) at ζ = ζm then their components φm ψn and pn, qn satisfy,
respectively, Eqs. (2) and (3), n = 1, ..., N. Then, the vector-columns ΦN+Π and
ΨN+Π determined by (23) satisfy, according to the afore-said, Eqs. (20) and (21),
respectively, at ζ = ζN+n = L n = 1, ..., N. Finally, by virtue of (6), (7), (12),
(13), (24) and (25) the first equation of the system (17) is equivalent to (1).
This means that relations (16) under the above choice of the vectors Φn and Ψm

n = 1, ..., 2iV, are equivalent to the system of Eqs. (l)-(3).
A remarkable property of relations (16) is the fact that they can be used

to derive evolution equations for all scattering data of the operator L of the
form (6), (7) with the potential u = u(x, t) satisfying the system (l)-(3). This
allows one to call relations (16) the determining relations. Note that the method
of determining relations has first been used in [2] to integrate the Korteweg-
deVries equation with a self-consistent source. Somewhat later [3] it has been
shown that this method can be used to integrate many other nonlinear evolution
equations with a self-consistent source, especially, to integrate the nonlinear
Schroedinger equation with a self-consistent source.

3. Auxiliary Statements

This section contains auxiliary statements about the properties of the solutions
of Eq. (20) formulated in a form convenient for using in the present paper.

Thus, let fΰ and /Q" be matrix solutions of the equation

(L-iζ)fo =

at any ζ e (—oo, oo) having the asymptotics

fo~exp(iζΛx), if
exρ(zζΛx), if x -• oo.

(26)

V /

One can easily verify that the matrices f$ and /Q~ at any ζ G (—oo, oo) satisfy the
integral equations

X

fo = exp(iζΛx) - j cxp[iζΛ(x - z)]AU(z)ft(z, ζ)dz,

— 0 0

00

/+ = exp(iUx) + Jexp[iζΛ(x - z)]ΛU{z)f+(z, ζ)dz.

(28)

Assume that

f- _
0 ~ Ψϊ Ψϊ Ψi
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Substituting these expressions into equalities (28) we can easily find that between
φ\ and τ/?f there is a connection of the form

X

φγ = exp(iζx) - / exp[iC(x - z)]u(z)ψγ(z, ζ)dz,

(30)

and an analogous connection between φ^ and ψ^

X

Ψϊ = - / exp[iζ(x-z)]u(z)ψϊ(z, ζ)dz9

(3D

Ψ2 = exp(-iζx) + / exp[-iζ(x - z)]u{z)φj(z, ζ)dz.

— 0 0

Moreover, between φ\ and ψf a relation is fulfilled of the form

00

<pΊ = exp(ίζx) + / expK(* - z)]u(z)ψ^{z, ζ)dz9

(32)

WΪ = ~ exp[-iζ(x - z)]ΰ(z)φj(z, ζ)dz,

X

and an analogous relation between φ\ and φ j

00

Ψi = J exp[if(x - z)]u(z)ψ+(z, ζ)dz,

(33)

φ+ = exp(-ΐζx) - / exp[-iC(x - z)]U(z)φ^(z9 ζ)dz.

X

For any ζ e (—oo, oo) for solving Eqs. (3O)-(33) we apply the method of succes-
sive approximations. The solutions of Eq. (26) thus obtained have a number of
remarkable properties. To describe these properties we assume that

φγ(x9 ζ) = φ7(x, C)exp(iζx),

V?f(x, ί) = ψT(x> 0 exp(iζx),

φ+(x,C) = φ+(x,OexpHC*), ( }

V?2~(x, C) = ψt(x, ζ) exp(-iCx).
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Substituting these expressions into equalities (30) and (33) we derive the following
integral equations:

X

φi(x,ζ) = l- Ju(z)φγ(z,ζ)dz,
— 0 0

X

ψT(x, ζ) = J exp[-2iζ(x - z)Mz)φγ(z, ζ)dz,

— 0 0

00

φ+(x, 0 = Jexp[2iζ(x-z)]u(z)ψ+(z, ζ)dz,

Z (35)

X
00

Ψi

It follows from these equations that the functions φ{, ψx and φj, φ j admit an
analytic continuation in ζ into the lower half-plane Im ζ < 0. Moreover, in the
closed half-plane Im£ < 0 the following asymptotics are valid:

φ1 (x, ζ)->l, ψι (x, C ) - ^ 0 , if x -> -oo,

Φ2"(x, C)->0, φ^"(x, £ ) - » ! , if x - > o o .

By virtue of (34) this means that in the closed half-plane Im ζ < 0 the following
equalities hold:

lim [φ{ (x, ζ)exp(-iζx)] = Km [ψ+(x, C)exp(iCx)] = 1,
x—>—oo x—•oo

* + <
x—•—oo x-^oo

lim [ψ7(x, 0 exp(—iζx)] = lim [φt(x, ζ)Gxp(ίζx)] = 0.
x^>—oo x—> oo

Thus, at any ζ belonging to the lower half-plane I m ζ < 0 the solution φl9

ψ~[ exponentially decreases as x —• —oo and the solution φ\, \p\ exponentially
decreases as x —> oo. Then, we assume that

φ2 (x, ζ) = φ2 (x, 0 exp(-/Cx),

V?J(x, ζ) = ψϊ(x, ζ) exp(-iζx),

φ\{x9 ζ) = φj"(x, ί)exp(iζx)

φί"(x, ζ) = Φί"(x,
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Upon substituting these expressions into equalities (31) and (32) we get the
following integral equations:

— 0 0

X

(x - z)]u(z)xpϊ(z, ζ)dz,

= l + Jΰ(z)φϊ(z,ζ)dz,

1
φ+(x,ζ) = l+Ju(z)ψt(z,ζ)dz,

X

00

ψ+(x, ζ) = -Jcxp[-2iζ(x-z)]ΰ(z)φ+(z, ζ)dz.
X

It follows from these equations that the functions φ̂ ~, φ̂ ~ and φ\, ψf admit an
analytic continuation in ζ into the upper half-plane Im ζ > 0. Moreover, in the
closed half-plane Im ζ > 0 there hold the asymptotics

Φi (*> 0 -> 0, ψϊ(x,ζ)^>l, if x -> -oo,

φ + ( x , 0 - > l , Φ + ( x , 0 - ^ 0 , if x ^ o o . ( ]

With allowance made for (38) this means that in the closed half-plane Im£ > 0
the following equalities are valid:

lim [q>2(x, ζ)exp(ίζx)] = lim [ψt(x9 C)exp(—ίζx)] = 0,
x->-oo x->co ^

lim [ψϊ(x, ζ)Qxp(iζx)] = lim [φ+(x, C)exp(-iζx)] = 1.
X ^ — 0 0 X—>00

Thus, at any ζ in the upper half-plane Im ζ > 0 the solution φ^, φ "̂ exponentially
decreases as x —• —oo and the solution φ\,\p^ exponentially decreases as x —• oo.

For any ζ G (—oo, oo) there holds the equality

where the elements Saβ(ζ) of the matrix S(ζ) are independent of x, α, β = 1, 2.
Using (27), (29), and (42) we easily find that for any ζ e (-oo, oo) there hold the
equalities

t Ϊ
Sn(ζ) = φt(x, ζ)ψϊ(x> 0 " V>t(x> Oψϊi^ 0 ,

S2i(0 = -φΐ(χ, ζ)ψT(χ> Q + ΨΪ(χ> Qφ\(χ> 0 ,

S22(O = -Φ2

+(χ, ζ)ψT(χ, ζ) + ΨΪ(χ, ζ)q>T(χ, 0.

From the afore-said these equalities result in that the function Su(ζ) admits an
analytic continuation in ζ into the upper half-plane Imζ > 0 and the function
$22(0 admits an analytic continuation in ζ into the lower half-plane Imζ < 0.
To zeros ζ = ζn of the function Sn(0 in the upper half-plane Im£ > 0 there
correspond points of the discrete spectrum of the operator L as, according to
(43), at ζ = ζn the equalities

ΨΪ(X, in) = Bnψ2(x, ζn) , ΨΪ(X, in) = Bnψ2"(x, ζn) (44)
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are valid where the quantities Bn are independent of x. Analogously, to zeros
ζ = ζn of the function £22 (0 in the lower half-plane Im£ < 0 there also
correspond points of the discrete spectrum of the operator L since on the basis
of (43) at ζ = In there hold the equalities

φ%(x, In) = BnφT(x, In), ψt(x> In) = Bnψγ(x, ζn), (45)

where the quantities Bn are also independent of x.
By virtue of (26), (27), and (29) at any real ζ there hold the equalities

φj(x, ζ) = -φf(x, ζ), ψϊ(x, ζ) = φϊ(x, ζ),

φ+(x, C) = ~ΨΪ(x, 0 , V>ί (*, 0 = Φί(x, 0

With allowance for (43) it follows that at any real ζ the equalities

Sn(ζ) = q>t(x, ζ)ΦT(x, 0+ΨΪ(x, ζ)ΨΪ(x, 0 ,

S12K) = ^ ί f e ζ)v>T(χ> Q-ΨΪ(χ, QΦΪix, 0 ,

s 2 i (0 = -<PΪ(χ, ζ)v>ϊ(χ, ζ) + ΨΪ(χ, ζ)<Pϊ(χ, 0 ,

S22(O = φf fe Q<PΪ(χ, 0 + v ί f e C)tpf(χ, 0

are valid, i.e. at any real ζ the following relations hold:

S22(O = Sn(C), S2i(C) = -Si2(C). (46)

Thus, according to (27) and (42) at any real ζ there holds the equality

Then, at any ζ in the upper half-plane Im ζ > 0 by virtue of (26), (27), and (29)
the equalities

φ^"(x, 0 = - y f ( x , C), ΦΓ(x, C) = <P7(X, 0 , M .

φ2

+(x,C) = -φ+(x,C), Vί(*. 0 = φί(x, C)

are valid. Based on these equalities and taking account of (43) we get that

Sn(ζ) = ΦΓ(^ f)vί(^ 0 - ΨT(x, CM(X, 0
Comparing this equality with the one resulting from (43)

Sail) = <P7(x, ζ)ψ2 (x> 0 - tpΓ(*> Q<Pt(x> 0

we verify that at any £ in the upper half-plane Im ζ > 0 the following relation
holds:

Sn(O = S22(O, I m C > 0 . (48)

Hence, it follows that to each zero ζ = ζn of the function Sn(ζ) in the upper

half-plane Imζ > 0 there corresponds the zero ζ = ζn of the function $22(0 in

the lower half-plane Im£ < 0 such that ζn = ζn. Then, according to equalities

(44), (45), and (47) we find that between the quantities Bn and Bn there is a

relation B = —Bn.
Using the integral equations (35) we easily verify that at any ζ in the lower

half-plane Im ζ < 0 there are asymptotics

φf(x, C)->0, if x->oo,

$2~(x, £ ) — > 0 , if * —• — 00.
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By virtue of (34), (36), and (43) it follows that at any ζ in the lower half-plane
Im ζ < 0 the asymptotics

ΦΓ(*> C) -• <S22(O, if x
i f *

oo,

are valid. Thus, based on (34) we get that at any ζ in the lower half-plane
Im ζ < 0 the following equalities hold:

lim [φi(x, C)exp(-iζx)] = lim [ψ^(x9 Qexp(i£x)] = S22(ζ),
—oo ^ x—oo

hm [ψx (x, ζ)exp(-iζx)] = hm [φj(x9 C)exρ(ίζx)] = 0.
X-+OO X—*—CO

( 4 9 )

Analogously, using the integral equations (39) we find that at any ζ in the upper
half-plane Im ζ > 0 there hold asymptotics

ΦίfoO-O, if x->-αo.
With (38), (40), and (43) taken into account it follows that at any ζ in the upper
half-plane Imζ > 0 the following asymptotics hold:

<j>;{x,ζ)->Sn(ζ)9 if x-+oo,
Φΐ(x,ζ)-+Sn(ζ)9 if x-^-co.

Thus, according to (38) we find that at any ζ in the upper half-plane Imζ > 0
the equalities

lim [φj(x, ζ)exp(iζx)] = lim [xpf(x, Oexp(-iζx)] = 0,

lim [ψ2 (x,
X—K30

are fulfilled.

= lim [<jo+(χ, C)exp(-ιζx)] = Sn(0
(50)

4. Evolution Equation for the 5-Matrix in the Case
of a Source Satisfying the Conditions (5)

Now we proceed to deriving evolution equations for the scattering data of the
operator L of the form (6), (7) with the potential u = w(x, t) satisfying the system
(l)-(3). However, to avoid cumbersome formulae, we shall derive these equations
first for the case of a source satisfying the conditions (5) and then for the case of
a source satisfying the conditions (8).

Now, we take arbitrarily JV points ζ = ζn9 n = 1, ..., AT, in the upper half-plane
Im ζ > 0, and accordig to equalities (22) assume at n = 1, ..., N that

(51)

(52)

Ψn(x)

q-(x)

Pή(x)

Ψt(x)
ΨΪ(x)

Pi(χ)

_

-Pn

+

= βϊ

φt
Ψl

ΨΪ
φ2

φ2

ψ2

Ψ{
Ψl

(x,
(x,

(x,
(x,

(x,
(x,

(x,
(x,

ζn)
ζn)

ζn)
ζn)

ζn)
ζn)

ζn)

ζn)
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where the quantities α~, βn and a+, β+ are independent of x. Then, taking
account of (23) and (47) we assume at n = 1, ..., N that

Wn(x)

= βn

Pl"(x, ζn)
ΦΪ(X, ζn)

Ϊ>2(X, ζn)

•Ψϊ(x> Cn)

Wlix, In)

ΨΪ(X, Cn)
(53)

+ _

Cn)

Cn)
Cn)

_+

— an
Ψl

w\

(x,
(x,

(x,

Cn)
Cn)

Cn)

Cn)

(54)

According to (25) and (51)—(54) the quantities

Σ (ψ*Pn ~ Ψnϊn) > 7+ = Σ (<PnPn ~ Ψn^t)
n = l n = l

can be represented as

n = l

iV

{x> ζn) + C~ψ\{x, Cπ)φJ(x, ζn)] ,

(x, Cn) + C+φΓ(*> f»)φί(X, Cn)] ,
n=l

where c" = cςβ~ and c+ = α+/?+ , n = 1, . . ., JV. By virtue of (37), (41), (49), and
(50) it follows that \y~(x)\ + \y+(x)\ -»• 0 as x -• ±oo. Moreover, if c~ = c+ = cn

at n = 1, . . ., JV, then we have identically y~(x) Ξ 7 + (X). This means that two
possibilities we have for deriving determining relations for the system (l)-(3)
finally lead to the same result if we will not violate the condition c~ = c+ = cn9

n = 1, . . ., N. With this remark in mind we assume at n = 1,..., 2N that

ί
X

n = J f
00

n=-J (55)

It follows f rom these equalit ies t h a t /„ a n d / + at n = 1, ..., 2iV are vector-

rows, respectively, wi th two c o m p o n e n t s /~ 1 ? f~2 a n d f*l9 / + 2 each. Obviously,

by virtue of (37) and (41) the components f~γ and / ^ 2 admits an analytic

continuation in ζ into the lower half-plane Imζ < 0 and the components f~2

and /^j admit an analytic continuation in ζ into the upper half-plane Im ζ > 0,

Finally, according to equalities (15) we assume that

Λ/ - 2N

n=l
(56)

n = 1, . . ., 2JV,
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g+ = <F+Λ/0

+ - i(f - CO/ί, n = 1, .. ., 2N.

Of course, we assume that an n = 1, ..., N the relation £#+« = Cn is fulfilled.
Based on (37), (41), and (55) one can easily verify that the first column of the
matrix g5~ and the last column of the matrix g j admit an analytic continuation
in ζ into the lower half-plane Im ζ < 0, and the last column of the matrix g$
and the first column of the matrix g j admit an analytic continuation in ζ into
the upper half-plane Imζ > 0. Moreover, one can easily see that g~ and g+ at
n = 1, ..., IN are vector-rows, respectively, with two components g~1? g~2 and

8ni> 8n2 e a c h According to (37), (41), and (55) the components g~x and g+2

admit an analytic continuation in ζ into the lower half-plane Im ζ < 0 and the
components g~2 and g+{ admit an analytic continuation in ζ into the upper half-
plane ImC > 0, n = 1, .'.., IN. From equalities (41) and (51)-(54) n = 1, ..., IN
there follow asymptotics

| |¥7(*)ll-*(>, if χ - - o o ,

| | ^ + ( x ) | | - ^ 0 , if x ^ o o .

Hence, by virtue of (55)—(57) it follows that at any ζ e (—oo, oo) and n = 1, .. ., 2JV
the asymptotics

Il/Π^ Oil+ ||gΠ^ 011-^0, if x ^ - o ) ,

ll/n+(*> Oil + llgn+fe Oil ->0, if x ^ o o ,

are valid. Thus, taking account of identities -r-^ = -r-5- = 0, n = 1, ..., 2AT, we

get that at x, ζ e (—oo, oo) the following identities hold:

g"(x, C) = gϊ(*> 0 = 0 , n = 1, ..., 2ΛΓ. (58)

This means that in accordance with relations (16) the matrices g$ and g j at any
real ζ satisfy the equations

(L-ίζ)gό = (L-iζ)g+=O. (59)

According to (4), (11), and (51)—(57) there follow the equalities

go~(*> 0 = fϊ(x> 0 i^2Λ + Co"),

g+(x, 0 = /o+(*, O (2if2^ + C+),

where

N
w)

Now consider the matrix Go of the form

(62)
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Based on (42) and (60) we find that

Go = fo(x9 0 {~2ίζ2[Λ, S(ζ)] - CoS(ζ) + S(ζ)C+}. (63)

On the other hand, by virtue of (42), (56), and (57) the equality

go

+(*» 0 = go"(χ, ζ)S(ζ) + fo(χ, 0 d-ψ-

IN

n(^)fn(x, 0 ~ *Ϊ(X)K(X, ζ)S(ζ)] (64)

holds. Using equalities (37), (41), (42), (50), (51), (53), and (55) we can verify
that at any ζ e (—oo, oo), n = l , . . . , JV and x —> oo the following asymptotics are
valid:

φ-(x)f-(x, 05(0 ~ iPc- ψ^- exp(iCx),

x, ζ)S(ζ) ~ iQc- ψψ exp(-ίCx),

where P = diag(—1, 0) and Q = diag(0, 1). Then, taking account of equalities
(37), (41), (42), (50), (52), (54), and (55) we are convinced that at any ζ e (-oo, oo),
n = 1, ..., N and x —> oo there hold the asymptotics

/«+(*> 0 ψ^

According to (59), (61), and (64) there follows the equality

2N

«+W/«+(*> 0 - *nWfn(x, 05(0]

= /o+(^ 0 (Co+ - Q-) = fo(x, ζ)S(ζ) (Co+ - Q-).

Based on this equality relation (64) becomes

go

+(*, 0 = gά(*> 05(0 + /0-(χ, 0 [ ^ p + s(ζ) (c0

+ - c 0-)].

It follows that the quantity Go determined by (62) admits the representation

Go = fό(x9 0 [ ^ P + S(ζ) (Co

+ - C0-)l .

Comparing this equality with (63) we immediately find that the evolution equation
for the S-matrix has the form

dt
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dSJO dS22(ζ) _

Si2(C)=0, ( 6 5 )

It is easily seen that by virtue of these equations the diagonal elements of the
S -matrix are independent of time t. This implies that in the case of a source
satisfying the conditions (5) the points of the discrete spectrum of the operator
L of the form (6), (7) are also independent of time if the potential u = u(x, t)
satisfies the system (l)-(3). Then, with (48) taken into account we get that
relations (46) will be fulfilled at any ζ e (—oo, oo) and t > 0, if they are valid at
any ζ e (—oo, oo) and t = 0. Finally, if the points ζ = ζn are the points of the
discrete spectrum of the operator L, i.e. Su(ζn) = S2i{ζn) = 0, n = 1, ..., ΛΓ, then
equations for the elements Sn(ζ) and S21 (C) become

^ P +4iί2Sn(ζ) = ̂  -4iζ2S21(O = 0,

i.e., in this case the evolution equations for the elements of the 5-matrix coincide
with those that are valid for the nonlinear Schroedinger equation without a
source [1].

5. Evolution Equations for the Normalisation Constants
in the Case of a Source Satisfying the Conditions (5)

Let σ~ and σ+ be vector-columns formed, respectively, by the elements of the
r t h column of the matrice f$ and /Q~ of the form (29), r = 1, 2. Then, let τ~ and
τ+ be vector-columns formed, respectively, by the elements of the r t h column of
the matrices g$ and g j of the form (56) and (57), r = 1, 2. Finally, let ζ = ζ'm
be zeros of the function S\\(ζ) in the upper half-plane Imζ > 0, m = 1, ..., mo.
According to equalities (44) and (45) we assume that at m = 1, ..., mo

Gm = τ+{x,O-Bmτ2{x,ζ'J, .,,.
A A (OO)

Gm = τ+(x,C;)-β m τΓ(x,D
According to equalities (60) and (61) we have

\
+(x r'\- I 2ira - i V c+ 2 2 l u ; I n+(x V )
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From equalities (44) and (45) it follows that the quantities Gm and Gm determined
by (66) can be written in the following form:

' "^ mSn(ζί)\* - (6?)

cn ψΓ-ηr Bmσ{ (x, Q ,
n=l

where cn = c~ = c+, n = 1, ..., N.
On the other hand, by virtue of (44) and (45) the equalities

— i — — — + ~Γσ(xu
d i ~ m δi

δ ϊ = B m F t + ^ Γ σ i ( x ' ζ J

hold. Using these equalities, from (44), (45), and (55)-(57) we find that

2N Γ *

»=1 L -oo

* 2» r « (68)

τf (x, O = ^

n = l L

+ Φt{x) I Ψ+(z)σϊ(z9 ζ'Jdz \ B m + ̂  σ Γ (x, Ci)

According to (51)—(54) at m = 1, . . ., mo and n — 1, . . ., 2ΛΓ the equalities

j
— 0 0

00

C - ζn) J yn

+(z)a2-(z, Qdz = - P+(xMσ2-(x, ζ'J,
X

X

i(ζ'm-ζn) J ψ-(z)σϊ(z, ζ'Jdz = ψ-(x)Λσϊ(x, ζ'J,
— 0 0

00

i(ζ'm-ζn) J Ψΐ(z)σϊ(z, IJdz = -Ψ+(x)Λσγ(x, ζ'J
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hold. Of course, we assume that £#+« = In, n = 1, . . ., N. Then, in accordance
with (43) and (51)-(54) at n = 1, . . ., JV there hold the equalities

Φ~(x)ψ-(x) - Φt{x)Φϊ(x) = cnSn(ζn)Λ9

With these equalities taken into account relations (68) become

τ+(x, ζ'J = Bmτ2(x, ζ'J + ^ σ2(x, ζ'J

τ2

+(x, ζ'J = Bmxj{x, Ό + ^f σT(x, ζ'J

N Γ e ί r \ c ί? \ 1ί Σ [ c "Γ=^~' π F^έ]^ σ Γ ( x ' °
Hence, it follows that the quantities Gm and Gw determined by (66) admit the
representation

jdBm

Comparing these equalities with (67) we immediately get that the evolution
equations for the normalisation constants Bm and Bm have the form

(69)

Comparing these equations with (65) for the elements of the 5-matrix, one
can easily verify that the evolution equation for the quantity Bm results from the
equation for S21 (C) if one assumes in it ζ = ζ'm9 and the evolution equation for
the quantity Bm follows from the equation for Si2(O if one assumes in it ζ = ζf

m,
m = 1, . . ., mo. Then, it follows from eqs. (69) that if the quantities Bm and Bm

at ί = 0 satisfy the relation Bm = — Bm, this relation will be fulfilled at all t > 0.
Finally, at mo = N in Eqs. (69) one can assume that ζn = ζ'n + δn, n = 1, . . ., N,
and pass to the limit at δn -> 0. As a result we derive the equations

dt
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The system of Eqs. (65) and (69) describes the evolution in time of all scattering
data necessary for solving the inverse scattering problem for the operator L of
the form (6), (7). Thus, in the case of a source satisfying the conditions (5) solving
of the Cauchy problem for the system (l)-(3) is reduced to finding a solution of
the direct and inverse scattering problem for the operator L of the form (6), (7).

6. Evolution Equation for the 5-Matrίx in the Case
of a Source Satisfying the Conditions (8)

Now, we consider another way of choosing solutions of the linear system (2),
(3), forming a source in the right-hand side of Eq. (1). Let ζ = ζn be zeros of
the function Su(ζ) in the upper half-plane Im ζ > 0, n = 1, ..., N. In accordance
with equalities (22) and (23) we assume that at n = 1, ..., N9

Ψn(x)

ψn(x)

, Ψn = pl(χ)

= (

= c

-iw
φj(x

5

J

(70)

where the quantities cn are independent of x, and the solution φw(x), ψn(x) of
Eq. (2) satisfies the condition

φn(χ)ψt(χ> ζn) - ψn(χ)φt(χ> Cπ) = l > n = l , . . . , N. (71)

From (41) and (44) it follows that the solution φn(x), ψn{x) of Eq. (2) has
asymptotics

Bnφn(x) exp(-iζnx) -• 1,

ψn(x) Qxp(-iζnx) -• 0, if x -• -oo,

φn{x) exp(iζnx) - > 0 ,

ψn(x) txp(ίζnx) -> - 1 , if x -• oo.

(72)

According to (70) the quantiy y determined by (25) admits the representation

N

^(x, ζn)] .
n=l

By virtue of (41), (44), and (72) it follows that y(x) -> 0 at x -+ ±oo.
Now, we assume that at n = 1, ..., 2ΛΓ,

z, ζ)dz , (73)
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Then, we assume

~ , _ IN

ζn)f;, n l,...,2N,
2N

g+ = ΨnΛf+ -i(ζ - £ , ) / + , n = 1, ..., 2AΓ,

where £#+« = ζn, n = 1, ..., N. One can easily see that the quantities, determined
by equalities (73) and (74), have the properties similar to those that have been
detected earlier for the quantities determined by (55)—(57). Indeed, taking account
of (44) and (70) we find that at n = 1, ..., 2N the asymptotics are valid

| | !Pπ(x) | |->0, if X - + 0 0 .

Hence, it follows that the quantities determined by (74) satisfy equalities (58)
and (59). Then, by virtue of (4), (11), (59), (70), and (72)-(74) we find that the
equalities

gϊ(x, 0 = fό(x9 0 (2ίζ2Λ + C-), go

+(x, 0 = /0

+(x, 0 (2ίζ2Λ + C+) (75)

are valid where

C+ = diag i Σ
V π=l

Consider now the matrix Go of the form

Go = g+(x,ζ)-go(x,ζ)S(C). (77)

Taking account of (42) and (75) we find that

Go = /0-(x, ζ) {-2iζ2[Λ, S(ζ)] - CS(ζ) + S(ζ)C+}. (78)

On the other hand, according to (42) and (74) the following equality holds:

go

+(*. 0 = gϊ(χ, ζ)S(ζ)+fo(χ, 0 β

2N

φ» W ^ + ( x ' 0 - /»"(*> OS(ζ)] (79)

Using equalities (42) and (73) one can easily verify that at any ζ e (—oo, oo) and
n = 1, ..., IN the equality

00

/+(*, ζ)-f-(x, ζ)S(ζ) = -J Ψn(z)f+(z, ζ)dz
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is fulfilled. By virtue of (70) the right-hand side of this equality equals zero at
any ζ e (—00, 00) and n = 1, ..., 2N. With this fact in mind equality (79) takes
the form

go

+(*> 0 = gO"(*> ζ)S(ζ)+fo(x, ζ) ~ .

Hence, it follows that the quantity Go determined by (77) admits the representa-
tion

n dS(ζ)

Comparing this expression with (78) we immediately get the evolution equation
for the S -matrix

β 2iζ2[Λ, S(ζ)] + CS(ζ) - S(ζ)C+ = 0,

i.e., according to (76) we have at ζ e (—00, 00),

^ > - 4iζ2S2l (0 = 0, (80)

dS22(ζ)

Hence, it follows that the functions Su(ζ) and <S22(0 admit the representation

Su(C) = Si(C) Π ^ T 1 ' 2̂2(0 = S2(ζ) f [ 7 ^ ,
π=l ^ ~ ζ w n=l ς U

where the quantities S\(ζ) and iSΊCC) are independent of time, and the points
ζ = ζn of the discret spectrum satisfy the condtion

^ L + i C n = 0, n = l , . . . , N . (81)

By virtue of (8), (10), (70), and (71), Eqs. (9) and (81) are equivalent to each other.

7. Evolution Equations for the Normalisation Constants
in the Case of a Source Satisfying the Conditions (8)

Let σ~ and σ+ be vector-columns formed, respectively, by the elements of the r t h

column of the matrices f$ and f£ of the form (29), r = 1, 2. Then, let τ~ and
τ+ be vector-columns formed, respectively, by the elements of the r t h column of
the matrices g$ and ĝ " of the form (74), r = 1, 2. Finally, let £ = £m be zeros of
the function Su(ζ) in the upper half-plane Imζ > 0, m = 1, . . ., N. According to
equalities (44) and (45) we assume that at m = 1, ..., N9

Gm = τj"(x, ζm) - Bmτϊ(x, ζm), Gm = τ2

+(x, ζm) - 5mτΓ(x, L) (82)
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According to equalities (75) and (76) we have

( N ' \
2iζ2

m + i )

( N \

n=l * w W
( N \

With equalities (44) and (45) taken into account it follows that the quantities Gm

and Gm determined by (82) can be written as follows:

Gm = 4iζlBmσϊ(x, ζm), Gm = -4iζlBmσϊ(x, ~ζm). (83)

On the other hand, by virtue of (44), (45), and (81) the equalities

, Cm) dBm

Cm) g g w ,
Γ

hold where

TF bί"(x, 0 - Bmσϊ(x9 ζ)]\ζ=ζm ,

a (84)

^ [σ?(x, C) - Bmσϊ(x, ζ)]\ζ=L.

Using these equalities, from (44), (45), (73), and (74) we find that there hold
relations

dBm

τ{(x, ζm) = Bmτ2 (x, ζm) + — σ2 (x, ζm) + ίcmχm(x)

2N

,ζm)dz9

7B
 (85)

«, Cm) = Bmτγ(x, lm) + - ^ σf (x, Cm) - ic w χ m (x)

2N °̂

-βmYΦπ(x) / n(z)σΓ(z,L)^
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According to (70) at m = 1,..., JV the following equalities are fulfilled:

Φn(z)σϊ(z,ζm)dz = 09 if nφm,

— 0 0

00

Ψn(z)σZ(z,ζm)dz=O, if n = N + m.

Moreover, in accordance with (43) and (70) at m = 1, . . ., TV the equalities

00

ί Φm(z)σ;(z, ζm)dz = icmS'n(ζm),

-oo

ΨN+m(z)σϊ(z, ξm)dz = -icmS'22{ζm)

— 0 0

00

are valid. By taking account of these equalities relation (85) becomes

T^(x, Cm) = BmT2(x, ζm) + -~Γ σϊ(x> Cm)

+ ίCm \Xm(x) ~ BmS'n(ζm)Φm(x)] ,
A

τt(x> £«) = Bmτγ(x, ζm) + —^ σf (x, ζm)

- ίCm \5ίm{x) ~ BmSf

22{ζm)ΦN+m{x)} .

The quantities χm(x) and χm(x) determined by (84) by virtue of (47), (70), and
(71) admit the representation

Xm(x) = amΦm{x) + bmaf (x, ζm), χm(x) = άmΦN+m(x) + SmσJ(x, ζm),

where the quantities am, bm, and αm, bm are independent of x. With the help of
(47), (49), (50), (72), and (84) we easily find that

#m = BmSn(ζm) , άm = BmS22(ζm) 9
Λ. A —

and bm and bm are arbitrary quantities satisfying the condition bm = bm, m =
1, . . ., N. Hence, it follows that the quantities Gm and Gm determined by (82) can
be represented in the form

Gm= ( -^ + ίbmcmBm ) σ2(x, ζm), Gm= ( —^- - ίbmcmBm ) σf (x, ζm).

Comparing these equalities with (83) we get that the evolution equations for the
normalisation constants Bm and Bm have the form

- bmcm)Bm = 0, ^ + ί(4ζ2

m - bmcm)Bm = 0. (86)

On the basis of the equality bm = bm the system of equations (86) has an invariant
manifold Bm = —Bm.
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Thus, for a source satisfying the conditions (8) the system of equations (80)
and (86) describes the evolution in time of all scattering data for the operator L
of the form (6), (7) with the potential u = u(x, t) satisfying the system (l)-(3).
This means that for solving the Cauchy problem for the system (l)-(3) we can
also use the inverse scattering method for the operator L of the form (6), (7).

8. Conclusion

In conclusion, we should like to note that for a source satisfying the conditions
(5) the system (l)-(3) has a one-soliton solution of the form

u = a exp[2ifo(x-/)]

l+exp[4/ ι (x-/) ] '

ί R expH(C w -2Co)(x-/)]

2aPn l+exp[4/φc-/)]

+ otn exp[4μ(x - /)]
e X P H U *

an + exp[4μ(x -

i , β exp[i(ζn-2ζ0) (%-/)]

«" = - 2 f l / U l l+exp[4μ(x-/)] ' « = 1 ' - ' ^ '

where cn and £n are arbitrary complex-valued functions of time satisfying the
only condition lmζn > 0, n = 1, ..., N9 the quantity Co is independent of time
and has the form Co = Ψ + v, μ > 0, v G (—oo, oo), and the quantities ocn and βn

are determined by the equalities

ζn — ζθ in — ζθ

In this case, the quantities a and / are time functions satisfying the equations

l- ^ +4(μ 2 + v2) = F + ^ G, 2μ ^ - 4 v ) + G = 0, (88)

where F and G equal, respectively, the real and imaginary parts of the quantity
H of the form

N

Moreover, the quantity a satisfies the condition \a\ = 4μ that, obviously, does
not contradict Eqs. (88). One can easily see that choosing properly the quantities
cn and ζn9 n — 1, ..., JV, we can make soliton (87) to have an a priori given
motion. However, an absolute value of the amplitude a will be conserved in
time. A detailed analysis shows that in this case a multi-soliton solution of the
system (l)-(3), describing the interaction of several solitons of the form (87), may
have a nontrivial dynamics. In particular, it can describe the decay and fusion
of solitons, the capture of solitons into the oscillatory regime of motion, and the
formation of a bound state of several solitons.
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Then, for a source satisfying the conditions (8), a one-soliton solution of the
system (l)-(3) has the form

u = a exp[2iζ(x-/)]

l+exp[4μ(x-/)] '

where VF is an arbitrary complex-valued function of time, the quantity ζ has the
form ζ = ίμ + v, μ > 0, v G (—oo, oo), and the quantity c is determined from the
relation ίac = Sμ2W. In this case, the quantities ζ9 f and a satisfy the equations

«=iW d-t=4v

i r* f 1 <*»
Λ= Ui{μ2 + v2) + γ(W + W)\a.

Moreover, the quantity a satisfies the condition \a\ = 4μ that, as one can easily
verify, does not contradict equations (90). Due to the equality v = Reζ, under a
proper choice of the function W we can make soliton (89) to have an a priori
given motion. However, if at the time moment t = tr the point ζ reaches the
real axis, i.e., the quantity μ vanishes, the quantity a also vanishes. Thus, we find
that u(x, t') = 0, i.e., at the time moment t = t1 the obtained soliton disappears.
When at t > t' the quantity ζ leaves the real axis, the soliton considered appears
again. The multi-soliton solution of the system (l)-(3), obtained by the inverse
scattering method, describes in this case the interaction of several solitons of
the form (89). It has a rich enough dynamics. To investigate the interaction of
solitons of the form (87) and (89) with each other, we should take in Eq. (1)
a source formed by solutions of the system (2), (3) some of which satisfy the
conditions (5) and the others satisfy the conditions (8). One should remember
that an additive nature of a source composition corresponds to a multiplicative
nature of composition of scattering data.
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