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Integration of the Nonlinear Schroedinger Equation
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V. K. Mel’nikov
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P.O. Box 79, SU-101000 Moscow, USSR

Abstract. It is shown that the nonlinear Schroedinger equation with a self-
consistent source admits investigation by the inverse scattering method for the
Dirac operator. The conditions are found under which the solutions of the non-
linear Schroedinger equation with a self-consistent source describe the creation
and annihilation of solitons.

1. Introduction

At present, in the investigation of nonlinear evolution equations by the inverse
scattering method there comes into view a new perspective trend: the case in point
is the application of this method to integration of nonlinear evolution equations
with a source. Being different in details, the use of the inverse scattering method
for integrating different nonlinear evolution equations with a source has much in
common both in the scheme of integration and in the dynamics of the obtained
solutions. In this paper, these statements will be exemplified by the nonlinear
Schroedinger equation with a self-consistent source. More precisely, we consider
the integration of the following system of equations:
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where the bar means complex conjugation. We shall assume that the function
u = u(x, t) at any t > 0 satisfies the requirement
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Taking this requirement into account the solutions ¢, = @,(x, t), Y, = P(x, t)
and p, = pu(x, t), gn = qu(x, t) of Egs. (2) and (3), respectively, are to be chosen
so that the expression in the right-hand side of (1) for ¢ > 0 should tend rapidly
enough to zero if x — +oo. This can be done in two ways.

The first way of choosing solutions of Egs. (2) and (3) is as follows. Let the
quantities {j, ..., {y lie in the upper half-plane of the complex parameter (, i..
Im{, >0,n=1,..., N. Let then the solution ¢,, v, of Eq.(2) tend to zero as
x — —oo and the solution p,, g, of Eq.(3) tend to zero as x — oo, i.e. at any
t > 0 the following asymptotics hold:

lon(x, O] + lpn(x, )] > 0, if x — —o0,

5
1Pu(, O] + [gn(x, )] = 0, if x — co0. ©)

As will be shown below, in this case the right-hand side of Eq. (1) for any ¢ > 0
tends rapidly enough to zero if x — +oco and the solution u = u(x, t) satisfies
the condition (4). In this case, the quantities {, can be arbitrary functions of
time ¢ for any t > O satisfying the condition Im{,, >0, n =1, ..., N. It appears
that in this case the function u = u(x, t) can describe a number of nontrivial
processes, for instance, the decay and fusion of solitons, capture of solitons into
an oscillatory regime of motion, and the formation of a bound state of several
solitons.

The second way of choosing solutions of Egs.(2) and (3) consists in the
following. Let the quantities {y, ..., {y be points of the discrete spectrum of the
operator L of the form

L=A0+U, 0=— ©6)

where

A =diag(l, —1), U= , , )

i
and lie as formerly in the upper half-plane Im{ > 0 of the complex parameter
{. In what follows, unless otherwise stated, we assume all points { = {, of the
discrete spectrum of the operator L to be simple, n = 1, ..., N. Then, let the
solution ¢y, p, of Eq.(2) tend to zero as x — =+oo, i.e. it is obtained from the
normalised to unity eigenfunction of the operator L of the form (6), (7), which
satisfies the eigenvalue { = {,, by multiplying by the x independent quantity; the
solution p,, g, of Eq.(3), on the contrary, tends to infinity as x — oo, i.e. for
any t > 0 the following asymptotics hold:

l@n(x, O] + lpulx, ] =0, if x— Foo,
IPa(x, )] +1gn(x, t)] = 0, if x— Foo.

®)

As will be shown below, in this case the right-hand side of Eq. (1) for any t > 0
also tends rapidly enough to zero if x — +o0, and the solution u = u(x, t) satisfies
the condition (4). The quantities {, turn out to be functions of time satisfying

the condition it
d—t"=iWn, n=1,...,N, 9)
where the quantities W, are determined by the equality

Wi = @u(X, 0)qn(x, 1) — wulx, Opu(x, 1), (10)
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and by virtue of (2) and (3) are independent of x. Hence, it follows that the
quantities {, in the process of evolution can fall on the real axis from the
upper half-plane of the complex parameter {, i.e. the imaginary part Im{, of the
quantity {, can vanish at some time moment ¢t = ¢'. This leads to that in the
process of evolution a soliton, corresponding to this eigenvalue, disappears, i.e.
annihilates. Then, if for t > ¢’ the quantity {, goes away from the real axis, then a
soliton that has disappeared appears again, i.e. is created. Thus, in this situation
the function u = u(x, t) can describe, apart from the afore-mentioned nontrivial
processes, also the creation and annihilation of solitons.

The above-mentioned results are obtained by the inverse scattering method
for the operator L of the form (6), (7). Analogous results can be obtained for
a modified Korteweg—de Vries equation with a self-consistent source, and after
small changes of some details of this paper similar results can be obtained for
the Liouville and sine-Gordon equations with self-consistent sources.

2. Determining Relations

The use of the inverse scattering method for integration of the system (1)—(3) is
based on the following. We take the operator L of the form (6), (7). Then, let the
operator 4 have the form [1],

A=—iQA0*+Ud+0d-U + AU?). (11)
One can easily verify the validity of the equality

2
(4, L] = —i (2AU3 +4 Qﬂ)

0x2
1e.
0 4
[A,L]=l2 0’, (12)
where
a2
A=—i (2|u|2u + ﬁ> (13)

Now, let us consider the system of equations
L-i)fo=0, Lrowfy, n=1..2N, (14

with respect to unknown quantities fo, f 1o fan. Here and everywhere below
the tilde “~” means transposition, i.e., in particular, the transition from the
vector-column to the vector-row. We shall assume that fy is the second order
square matrix, ¥y, ..., ¥y are vector-columns with two components each, and
consequently, fi, ..., fon are two-component vector-rows. Using the solution fy,
fts ..., fon of the system (14) we determine the quantities g, g1, ..., gav by the
equalities

=01 ato +Z Buf,

n=q’nAf0_l(C_Cn)fna n=15-~'a2N’

(15)
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where @, ..., 5 are vector-columns with two components each, and conse-
quently, go is the second order square matrix, and gy, ..., gony are two-component
vector-rows. Now, let us find out what requirements are to be imposed on the
matrix U and vectors @1, ..., Doy, P1, ..., Pon so that the quantities determined
above g, g1, .., gon should satisfy the relations

0gn
—i{)go = Z(Pngn, =0, n=1..2N. (16)
After simple calculations one can easily verify that for the validity of these

relations it is necessary and sufficient to fulfill the conditions

%Ly ta L= 14, 0,7,

= 17)
(L—il)®, = (L—i)¥?, =0, n=1,...,2N,
where . .
L=—-40+1U. (18)
Now we take the matrix ¢ of the form
o=19 1l (19)

One can easily verify that by virtue of (7) the equalities 46 = —4, and sUg = U
hold, i.e. taking account of (6) and (18) we get the equality o Lo = L. Hence, it
follows that if the vector-column @ = @, satisfies the equation

(L=i)®=0 (20)
at { = {,, then the vector-column ¥ = g @, satisfies the equation
(L—i)Y =0 (21)

at the same value of the parameter { = (o. Then, let E = A4o. Accordmg to (7) and
(19) the equalities EAE = —4 and EUE = —U = —U are valid, i.e. according
to, (6) and (18) we get that ELE = —L, ELE = —L", where L = 40 + U,
L* = —40 + U. Thus, we get that if the vector-column & = &, satisfies Eq. (20)
at { = (o, then the vector-column ¢ = E®, satisfies the same equation but at
{ = {o. Moreover, if the vector-column ¥ = ¥, satisfies Eq.(21) at { = (o,
then the vector-column ¥ = E ¥, also satisfies Eq. (21) but at { = {y. From the
afore-said we assume thatatn=1, ..., N,

¢ —

P, = n=1,...,N. (22)

1l’n Pn

Finally, we assume that at n = 1, ..., N the condition {y4, = {, is fulfilled, and
according to this condition we assume that

¢ n — _1, s W n = —2 N n—l,...,N. 23
N+ ‘ Pn N+ dn ( )
HCHCC, there follows the equality

> n+n ,)—) O >

n=1
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where

N
Y= z (@nPn — Pndy) - (25)

n=1

Thus, if the vector-columns @, and ¥, of the form (22) satisfy, respectively,
Egs. (20) and (21) at { = {,, then their components ¢,, v, and p,, g, satisfy,
respectively, Egs. (2) and (3), n = 1, ..., N. Then, the vector-columns @y, and
¥ n4n determined by (23) satisfy, according to the afore-said, Egs. (20) and (21),
respectively, at { = {y+n = (s, n = 1, ..., N. Finally, by virtue of (6), (7), (12),
(13), (24) and (25) the first equation of the system (17) is equivalent to (1).
This means that relations (16) under the above choice of the vectors @, and ¥,
n=1,..., 2N, are equivalent to the system of Egs. (1)—(3).

A remarkable property of relations (16) is the fact that they can be used
to derive evolution equations for all scattering data of the operator L of the
form (6), (7) with the potential u = u(x, t) satisfying the system (1)—(3). This
allows one to call relations (16) the determining relations. Note that the method
of determining relations has first been used in [2] to integrate the Korteweg—
de Vries equation with a self-consistent source. Somewhat later [3] it has been
shown that this method can be used to integrate many other nonlinear evolution
equations with a self-consistent source, especially, to integrate the nonlinear
Schroedinger equation with a self-consistent source.

3. Auxiliary Statements

This section contains auxiliary statements about the properties of the solutions
of Eq. (20) formulated in a form convenient for using in the present paper.
Thus, let f5 and fi be matrix solutions of the equation

(L—il)fo=0 (26)
at any { € (—oo, o0) having the asymptotics

fo ~exp(i{4x), if x— —oo,

+ . . 27
fo ~exp(if{ax), if x— 0.

One can easily verify that the matrices f5 and fg at any { € (—oo, 00) satisfy the

integral equations

X

fo = exp(i{ Ax) — /exp[iCA(x —2)]4U@)fq (z, {)dz,
T (28)

[e]

7§ = exp(La) + [ explitAlx — AVES e Oz,

X

Assume that
o1 @y

L 29
Yy ¥ (29)

fo = . fo=
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Sybstituting these expressions into equalities (28) we can easily find that between
7 and y; there is a connection of the form

o7 = exp(iLx) — / explil (x — D u()vi (2 iz,
o (30)
Vi = / expl—il (x — 2)i(:)p7 (z, )dz

—00
and an analogous connection between ¢; and yp;

X

o7 =— / explil (x — D) (2 Odz,
- 31)

X

P = exp(—ilx) + / expl—il (x — 2203 2, )dz

—0
Moreover, between ¢ and y; a relation is fulfilled of the form

oF = exp(itx) + / explil (x — u()wi (2 iz,
LT (32)
v =— / expl—il(x — 2)]a(@) o} (2 Odz,

X

and an analogous relation between ¢F and y;

0

o} = / explil (x — Du(2)w] (2, Dz,
¥ 33)

0

F = exp(—ilx) — / exp[—il (x — 2)]a(2) o3 (2, )dz.

X

For any { € (—oo, o0) for solving Egs. (30)—(33) we apply the method of succes-
sive approximations. The solutions of Eq.(26) thus obtained have a number of
remarkable properties. To describe these properties we assume that

@1 (x, {) = o1 (x, {) exp(ilx),
p1 (x, 0) = Pr(x O exp(ilx),
@3 (%, 0) = &5 (x, {) exp(—i{x),
v (x, §) = {F (x, {) exp(—ilx).

(34)
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Substituting these expressions into equalities (30) and (33) we derive the following
integral equations:

X

o) =1 / u(@)Pi (@ Oz,

Prs 0) = / exp[—2it (x — 2)]a(2)pt (2, {)dz,
- (35)

o]

o7 0) = / exp[2L (x — 2)]u@)d3 @ )dz,

X
e o]

Pre O =1-— / @)} (2, )dz.

X

It follows from these equations that the functions &7, $7 and ¢35, ¢ admit an
analytic continuation in { into the lower half-plane Im{ < 0. Moreover, in the
closed half-plane Im { < 0 the following asymptotics are valid:

o -1, O7(x, -0, if x— —oo,

36
T 0 =0, PrxO—1, if x— 0. (36)

By virtue of (34) this means that in the closed half-plane Im { < 0 the following
equalities hold:

Jim [o7(x, {) exp(—ilx)] = lim [i3 (x, {) exp(ilx)] =1, -
tim [w7 (x, {) exp(—i{x)] = lim [p3 (x, {) exp(ilx)] = 0. 7

Thus, at any { belonging to the lower half-plane Im{ < 0 the solution @7,
yi exponentially decreases as x — —oo and the solution ¢, yJ exponentially
decreases as x — oo. Then, we assume that

@7 (%, {) = &3 (x, {) exp(—i{x),
vy (x, §) = P3 (x, {) exp(—ilx),
o1 (x, {) = 7 (x, ) exp(ilx),
wi (%, {) = df (x, {) exp(ilx).

(38
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Upon substituting these expressions into equalities (31) and (32) we get the
following integral equations:

X

o706 ) = — / exp[2i (x — 2)]u(@)dy (2 Ddz,

—00
X

Pro =1+ / 47 (2 O)dz,
T (39)

(o]

ore ) =1+ / u@bi (2, )z,

X
[¢2)

PO = — / exp[—2i{ (x — D]a@)p} (2, dz.

X

It follows from these equations that the functions ¢35, {5 and ¢f, ®f admit an
analytic continuation in { into the upper half-plane Im{ > 0. Moreover, in the
closed half-plane Im { > 0 there hold the asymptotics

(,PZ—(X> C) - 0: ﬁ);(xa C) d 19 lf X —> —0, (40)
o0 —=1, §f( -0, if x—oo.

With allowance made for (38) this means that in the closed half-plane Im{ > 0
the following equalities are valid:

Jim_ o7 (%, 0 exp(itx)] = lim [} (x, ) exp(—iL)] =0,
41
lim [y (e Dexplo)] = im [} (e Dexp(—it] =1.

Thus, at any { in the upper half-plane Im { > 0 the solution ¢3, p; exponentially
decreases as x — —oo and the solution ¢, p] exponentially decreases as x — co.
For any { € (—oo, o0) there holds the equality

fo e O =15 (x 0SQ), (42)

where the elements S,({) of the matrix S({) are independent of x, a, f = 1, 2.
Using (27), (29), and (42) we easily find that for any { € (—oo, c0) there hold the

equalities
51(0) = of (x, Oy (x, O) — v (x, Doz (x, £),
512(0) = 03 (x, w3 (x, O) — w3 (%, Doz (x, ),
521(0) = =7 (x, Dwi (x, O) + 97 (x, Doy (x, ),
$2(0) = =3 (x, Owi (%, ) + w3 (x, Do (x, ).

From the afore-said these equalities result in that the function Si;({) admits an
analytic continuation in { into the upper half-plane Im{ > 0 and the function
$2,(¢) admits an analytic continuation in { into the lower half-plane Im{ < 0.
To zeros { = {, of the function S;{({) in the upper half-plane Im{ > 0 there
correspond points of the discrete spectrum of the operator L as, according to
(43), at { = {, the equalities

@10 6n) = Baga (%, £n), 91 (x, Ln) = Bywy (x, {) (44)

43)



Integration of the Nonlinear Schroedinger Equation 367

are valid where the quantities B, are independent of x. Analogously, to zeros

{ = f,, of the function Sx»({) in the lower half-plane Im{ < O there also
correspond points of the discrete spectrum of the operator L since on the basis

of (43) at { = ¢, there hold the equalities
() (x Cn) = n(/)l (x, Cn) (xa Cn) = nlpl (>, Cn) 45

where the quantities B, are also independent of x.
By virtue of (26), (27), and (29) at any real { there hold the equalities

P () ==pr(x0), &)= <7)1_(x 0,
(p;_(x, C) —1P1 (xa C) (X, () (xa )
With allowance for (43) it follows that at any real { the equalities
SII(C) = (P-IF(X’ C)(pl—(xa C) + WFL(X, C)lpl_(x’ C):
S12(0) = 1 (x, OPr (x, O) — % (x, D1 (%, 0),
$1(8) = 4 T 0w (e O + i (x, Dot (x, 0),
$2(0) = @f (x, Oo1 (x, ) + B (x, Oy (x, §)
are valid, i.e. at any real { the following relations hold:
Sn@) =8u@), Su@) =-81©). (46)
Thus, according to (27) and (42) at any real { there holds the equality
det S = 1Su @ + 52O = 1.
Then, at any { in the upper half-plane Im { > 0 by virtue of (26), (27), and (29)
the equalities
@;(X, C) = —WT(X, Z) 5 l712_(-)(:a C) = (Pl_(x’ Z) 5
P36 0 == 0, vix0=0f(x70)
are valid. Based on these equalities and taking account of (43) we get that
S11(0) = 901 (%, DwF (x, ) — w1 (%, D3 (x, 0).
Comparing this equality with the one resulting from (43)
S20) = @1 (x, Ow3 (x, ) — v (x, De3 (x, {)

we verify that at any ( in the upper half-plane Im{ > 0 the following relation
holds:

(47)

8511(0) =$»(0), Im{>0. (48)

Hence, it follows that to each zero { = {, of the function S;;({) in the upper
half-plane Im { > O there corresponds the zero { = 13,, of the function S»,({) in
the lower half-plane Im{ < 0 such that fn = {,. Then, accordmg to equalities
(44), (45) and (47) we find that between the quantities B, and B, there is a

relation B = —B,.
Using the integral equations (35) we easily verify that at any { in the lower
half-plane Im { < 0 there are asymptotics

Pr(x, ) =0, if x— o0,
@;(X9C)_)Oa if x— —o0.
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By virtue of (34), (36), and (43) it follows that at any { in the lower half-plane
Im{ < O the asymptotics

@T(x, C) g SZZ(C) s if X — 00,

ﬁ);‘(xs () - SZZ(C) > if x— —0,

are valid. Thus, based on (34) we get that at any { in the lower half-plane
Im{ < 0 the following equalities hold:

lim [o7 (x, {) exp(—ilx)] = lim_[3 (x, {) exp(ilx)] = $2(0),

o . . . (49)
lim [y (x, O exp(=ilx)] = lim [¢;(x, {) exp(ix)] = 0.

Analogously, using the integral equations (39) we find that at any { in the upper
half-plane Im { > O there hold asymptotics

P3(x, ) >0, if x—> 0.
P (x, ) =0, if x— —o0.

With (38), (40), and (43) taken into account it follows that at any { in the upper
half-plane Im { > 0 the following asymptotics hold:

Py (6 ) = Su@), if x—o0,
of(x, ) = Su@), if x— —co0.

Thus, according to (38) we find that at any { in the upper half-plane Im{ > 0
the equalities

lim [o3 (x, O) exp(ilx)] = lim [y (x, {) exp(—i{x)] =0, “
lim [p3 (x, O expliL] = lim_[gF (e ) oxp(—it] = Su@)

are fulfilled.

4. Evolution Equation for the S-Matrix in the Case
of a Source Satisfying the Conditions (5)

Now we proceed to deriving evolution equations for the scattering data of the
operator L of the form (6), (7) with the potential u = u(x, t) satisfying the system
(1)—(3). However, to avoid cumbersome formulae, we shall derive these equations
first for the case of a source satisfying the conditions (5) and then for the case of
a source satisfying the conditions (8).

Now, we take arbitrarily N points { = {,,n =1, ..., N, in the upper half-plane
Im{ > 0, and accordig to equalities (22) assume at n =1, ..., N that

@] et )
P = e () | =% [t G |
C g @] | ) Gl
Y=l | =P st 8 |2
o+ = | P10 | _ | P2 6n)
" pf () "y (x, G |
g;F (x) i, &) ¢2)
+ _ n __ p+ s bn
= | =B ot to |
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where the quantities «,;, B, and «f, B are independent of x. Then, taking
account of (23) and (47) we assume at n =1, ..., N that

N Y CO N B i R N B L)

Nen T =@ () | " | =i (x, Ln) "l G|

_ _ 5 (53)

o = p;(X) — B— (02_()(7, Cn) — _B—- (2] (x9 gn)

Ne4n dn (%) "=y (x, &w) " o7 (x, |’
o l PO | g | 9200 L) | g | 0106 )

N4n —@I(X) " —(TJZ(X, Cn) " 1/)1_(')(5 Cn) ’ (54)
- 17;;'- (X) — B+ (-PT(X, Cn) — B-l— 'PSL(X, gn)

Ntn _‘j:(x) " _@il-(x’ Cn) " (p'{(x, |-

According to (25) and (51)—(54) the quantities
N
YT = (P —®ndy),  vh =) (oipt —Far
n=1
can be represented as

N
7= [er of (% Loz (%, L) + & 07 (%, T)e3 (x, T,

n=1

N
pt =Y lef ot (%, Loz (%, Ln) + & o7 (%, Tnod (x, Tn)l,
n=1

where ¢; = o, B, and ¢ = o B} ,n=1,..., N. By virtue of (37), (41), (49), and
(50) it follows that |y~ (x)| + [y*(x)| — 0 as x — Fo0. Moreover, if ¢, = ¢ = ¢,
at n =1, ..., N, then we have identically y~(x) = y*(x). This means that two
possibilities we have for deriving determining relations for the system (1)—(3)
finally lead to the same result if we will not violate the condition ¢, = ¢ = ¢,

n=1,..., N. With this remark in mind we assume at n =1, ..., 2N that
X [ee]
fr= [Befie0d, 5f=- [Heme s 69
—©0 x

It follows from these equalities that f, and f; at n = 1,..., 2N are vector-
rows, respectively, with two components f, , f,, and f,‘: » f,‘,f , each. Obviously,
by virtue of (37) and (41) the components f,’; and f;f , admits an analytic
continuation in { into the lower half-plane Im{ < 0 and the components f,,
and f;,f , admit an analytic continuation in { into the upper half-plane Im{ > 0,
n=1,...,2N.

Finally, according to equalities (15) we assume that

5f_ 2N
- _ 9o _ o
8o ot +Af0 +z¢nfna (56)

n=1

g =P Afg —il—C)fy, n=1,...,2N,
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i = sarf + Zd’*f

g,*,’:'[’,fAfO—l(C—(:n)fn, n=1,...,2N.

Of course, we assume that an n = 1, ..., N the relation {y4, = (, is fulfilled.
Based on (37), (41), and (55) one can easily verify that the first column of the
matrix g; and the last column of the matrix g§ admit an analytic continuation
in { into the lower half-plane Im{ < 0, and the last column of the matrix g
and the first column of the matrix g§ admit an analytic continuation in { into
the upper half-plane Im{ > 0. Moreover, one can easily see that g, and g, at
n=1,..., 2N are vector-rows, respectively, with two components g, , g, , and
gh, gn 5 each According to (37), (41), and (55) the components g, ; and gn )
admit an analytic contmuatlon in { into the lower half-plane Im{ < 0 and the
components g, ", and gn’1 admit an analytic continuation in { into the upper half-
plane Im{ > 0,n =1, ..., 2N. From equalities (41) and (51)—-(54) n=1, ..., 2N
there follow asymptotics

(57)

¥, )| =0, if x— —oo,
1¥5 () =0, if x—oco.

Hence, by virtue of (55)—(57) it follows that at any { € (—o0, 0) andn =1, ..., 2N
the asymptotics

IF7 G Ol +1lgn &, O = 0, if  x — —o0,
Ifa e O+ liga &, Ol =0, if x— o0,

+
(3g; - 6ag; =0,n=1,..,2N, we
get that at x, { € (—oo, o0) the following identities hold:

g (6, ) =gy(x,)=0, n=1..2N. (58)

This means that in accordance with relations (16) the matrices g5 and g at any
real { satisfy the equations

(L—il)gg = (L—il)gg =0. (59)
According to (4), (11), and (51)—(57) there follow the equalities

g6 (x, ) = f5 (x, ) Qi*A + Cp),
g (x, 0) = f§(x, ) 2iL*’4+ CF),

N N
G - diag( S su(cn) HE izz(in))

N N
. () ; S11(Cn)
CH =dia + cr
’ g( DI S ARDI S
Now consider the matrix G of the form

Go = g5 (x, ) — g5 (x, 0)S(0) . (62)

(60)

where

(61)
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Based on (42) and (60) we find that

Go = fg (x, {) {=2iC*[4, S()] — Cy 8() + S(O)CF} - (63)
On the other hand, by virtue of (42), (56), and (57) the equality
& (5 0) = g3 (6 SO +fi (5, ) )
+ z (@5 () fa (x, §) — &5 () (%, S Q)] (64)

n=1
holds. Using equalities (37), (41), (42), (50), (51), (53), and (55) we can verify

that at any { € (—o0, ), n =1, ..., N and x — oo the following asymptotics are
valid:

&7 (x)f 7 (x, [)SQ) ~ iPcy C““C") explitx).
By n (O n (%, OS(O) ~ 10T gz“g’ exp(—ilx).

where P = diag(—1, 0) and Q = diag(0, 1). Then, taking account of equalities
(37), (41), (42), (50), (52), (54), and (55) we are convinced that at any { € (—o0, c0),
n=1,..., N and x — oo there hold the asymptotics

+ S1(n)
"=l
n sz(CCn) exp(iLx).

According to (59), (61), and (64) there follows the equality

Oy ()7 (x, () ~ iQc exp(—i{x),

¢,f,+n(x)fx,'+n(x, C) lPE

2N
DTS (O — &7 () f (%, OS]

n=1

= fo (x, ) (C5 — C) = fg (x, O)S(O) (CF — C7)-
Based on this equality relation (64) becomes

[53(6)

g D) = g5t 08O + 7o 0 | 58 L sy ¢ - co-)].

It follows that the quantity Gy determined by (62) admits the representation

95(%)

~ S5 s o[ L SQ) (€ - co-)].

Comparing this equality with (63) we immediately find that the evolution equation
for the S-matrix has the form

B 4 pica+ s =
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ie.

0811(§) _ 95x(0) -0
oo ot

98120 A O (A I ()
gzt +{4l(2_znz=; [cn Cu—Cn +c, CzZ—Z,,]}SIZ(C)zo, (65)

- )
0Su@ { =iy [c; Su) | o S”“:")] } Su(0) =0
n=|1

ot (=0 " {0

It is easily seen that by virtue of these equations the diagonal elements of the
S-matrix are independent of time t. This implies that in the case of a source
satisfying the conditions (5) the points of the discrete spectrum of the operator
L of the form (6), (7) are also independent of time if the potential u = u(x, 1)
satisfies the system (1)—(3). Then, with (48) taken into account we get that
relations (46) will be fulfilled at any { € (—oo, 00) and ¢ > 0, if they are valid at
any { € (—oo, 00) and ¢t = 0. Finally, if the points { = {, are the points of the
discrete spectrum of the operator L, i.e. S11((n) = $»((,) =0,n=1, ..., N, then
equations for the elements S;2({) and S,;({) become

B2 | gip2sp(0) = 21O _gips, () =

i.e., in this case the evolutlon equations for the elements of the S-matrix coincide
with those that are valid for the nonlinear Schroedinger equation without a
source [1].

5. Evolution Equations for the Normalisation Constants
in the Case of a Source Satisfying the Conditions (5)

Let o, and ;' be vector-columns formed, respectively, by the elements of the
r® column of the matrice f; and f& of the form (29), r = 1, 2. Then, let 7, and
7} be vector-columns formed, respectively, by the elements of the r'® column of
the matrices gy and gi of the form (56) and (57), r = 1, 2. Finally, let { = {},
be zeros of the function S;;({) in the upper half-plane Im{ >0, m =1, ..., my.
According to equalities (44) and (45) we assume that at m= 1, ..., my

m =11 (X, () — BnT3 (%, (),

Gm = T;(xa m) - m’Cl_(X, Z:n) .

According to equalities (60) and (61) we have

N
(x, m) — <21612 i Z =+ SZZ(C") ) afL(x, C,/n) ,

(66)

C/ _Cn

N
06 (o) = <2ic:3 iy g ) o35 ),
n=1 m n

N
i §) = -(zu:'2 -3l ;“ = ) of (%, 5.
=1 n

N
7, ) = (2:5’2 X e ) o 5.
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From equalities (44) and (45) it follows that the quantities G,, and G, determined
by (66) can be written in the following form:

N
<4IC'2 2 Z SZZ(Cn) ) Buoy(x, (),

; (67)
(a2 2 Z S11(n) Buor(x, T,
C/ - Cn
where ¢, = ¢, =c¢f,n=1,..., N.
On the other hand by v1rtue of (44) and (45) the equalities
ot (x, £) 005 (x, L)
ot Bm T + T 0y ( Cm)
daF (x, &) _ & Ooi(x, Cm)
. P - 0T 0 G
hold. Using these equalities, from (44), (45), and (55)—(57) we find that
2N x
T (%, () = Buty (%, ) — [dmx) / ()03 (2, Lj)dz
n=1 o
+ &y (x) / ¥ ()03 (2 &, )dZ} Bpn+ ——= aB oz (%, Cm) s
- - ) (68)
6 8 = B (6, 0) = Y [ev;(x) / ¥, (o7 (2. L)z
n=1

A

0By,
+ & (x) / ¥ ¥ (z)o7 (2, m)dz] nt 0 T, 0.
According to (51)—(54) at m =1, ..., mg and n =1, ..., 2N the equalities

i, — ) / ¥ (2)oy (@, )z = ¥y (x) Aoz (x, L),
i — L) / P+ (2)o3 (2, Udz = — B (x) Aoy (x, 1),
i@, — ) / &7 @)or (2, Tz = W7 () Aor (x, T,

(G = Cn) / ¥ (@)o7 (2, Gdz = — ¥ f () 407 (x, T)
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hold. Of course, we assume that {y,, = {», n = 1, ..., N. Then, in accordance
with (43) and (51)—(54) at n =1, ..., N there hold the equalities
@, (x) P, (x) — D7 ()P} (x) = cnS11(Ln)4,
Py (X)) Py n(0) — DF 1, ()P, (%) = —EuS0(@n) 4.

With these equalities taken into account relations (68) become

(% ) = Bata (%, )+ = 03 (x, L)
N

i z [ Sll(cz)n — @y ;ZZ_(_Z%)”] Bmaz_(x, (:n) »

A

06 8y) = Bui (e 5 + 20T )
N

. Sll(Cn) _ Sn() ]
+ 1 [cn %/ - C B m (-x Cm)
nZ=1 AT S

Hence, it follows that the quantities G,, and G,, determined by (66) admit the
representation

— 0By, . N S11(¢n) B SZZ(Zn) ~ ,
Gm‘{?"'lg [Cncr/n_cn—cncr/n—zn:'Bm Gz(x’cm)’

N _
6 = { L Z [ Su(Cn) e, ;:{Gg] B }01 (6, T1).

n

Comparing these equalities with (67) we immediately get that the evolution
equations for the normalisation constants B, and B,, have the form

N

0By, , Sn(Cn) : 52(Cn) _
a {‘“C "2 o c:,.—Zn]}B'”‘O’

N
aB,,, {41{'2 IZ[ ;11£c21 . 522(52)]} o,

Comparing these equations with (65) for the elements of the S-matrix, one
can easily verify that the evolution equation for the quantity By, results from the
equation for Sy;(¢) if one assumes in it { = {},, and the evolution equation for

the quantity ﬁm follows from the equation for S;,(() if one assumes in it { = {/,,
m =1, ..., mp. Then, it follows from egs. (69) that if the quantities B,, and I§m

(69)

at t = 0 satisfy the relation B,y = —B,y, this relation will be fulfilled at all ¢ > O
Finally, at my = N in Eqgs. (69) one can assume that {, =(, +d,, n=1,..., N,
and pass to the limit at 6, — 0. As a result we derive the equations

aB,,,

— [4iL;2 + icmS11(L)]1Bn = O,

6B

S T + iS5 (1)) B = 0.
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The system of Egs. (65) and (69) describes the evolution in time of all scattering
data necessary for solving the inverse scattering problem for the operator L of
the form (6), (7). Thus, in the case of a source satisfying the conditions (5) solving
of the Cauchy problem for the system (1)—(3) is reduced to finding a solution of
the direct and inverse scattering problem for the operator L of the form (6), (7).

6. Evolution Equation for the S-Matrix in the Case
of a Source Satisfying the Conditions (8)

Now, we consider another way of choosing solutions of the linear system (2),
(3), forming a source in the right-hand side of Eq.(1). Let { = {, be zeros of
the function Si;({) in the upper half-plane Im{ > 0,n =1, ..., N. In accordance
with equalities (22) and (23) we assume that at n=1, ..., N,

— (Pn(X) _ Qn(x) _ 1P+(x, Cn)
2= 0@ T | = ot |
_ | Pa(®) P | _ L | 9T (x )
Prvin = i—wx) o e = 0| T8 —px, L) (70)
=7 V’SL(X, (;n)
" CDEL(X, () |”

where the quantities ¢, are independent of x, and the solution @,(x), w,(x) of
Eq. (2) satisfies the condition

en)WT (%, &) —pn(¥)@f (x, L) =1, n=1,...,N. (M)

From (41) and (44) it follows that the solution ¢@,(x), w,(x) of Eq.(2) has
asymptotics
Byn(x) exp(—ilsx) — 1,
Yn(x) exp(—ilpx) = 0, if x—> —o0,
@n(x) exp(ilnx) — 0,
Pu(x) exp(ifpx) = —1, if x— o0.

(72

According to (70) the quantiy y determined by (25) admits the representation

N
y = [ea@n(¥)0F (% Ln) — EnBa(X) BT (x, L))

n=1

By virtue of (41), (44), and (72) it follows that y(x) — 0 at x — +o0.

Now, we assume that atn=1, ..., 2N,
fi = [ B vz, 5i=- [ Bage o 03

0 X



376 V.K. Mel’nikov

Then, we assume

g_ fO +Af0 +Z ¢nfna

=1

,,_-—‘I’Afo—l({'—c,,)fn", n=1,...,2N, (74)

0
ga’: fO +Af0+z¢nfn,
=1

g:—WnAfo—l(C—Cn)fn, n=1,"'52N3

where {Nin =Cn, n=1, ..., N. One can easily see that the quantities, determined
by equalities (73) and (74), have the properties similar to those that have been
detected earlier for the quantities determined by (55)—(57). Indeed, taking account
of (44) and (70) we find that at n =1, ..., 2N the asymptotics are valid

1¥»(x) =0, if x— too.

Hence, it follows that the quantities determined by (74) satisfy equalities (58)
and (59). Then, by virtue of (4), (11), (59), (70), and (72)—(74) we find that the
equalities

g X ) =fox OQICZA+CT), gl (x)=1f(@iA+CT) (75

are valid where

N, N
C =dlag<_l§1—C—Cn’ I;C—Zn)’

(76)
+ . . al Cn . Y Cn
—dlag(l; C—_—'Z—n, —l; (_——4’;>
Consider now the matrix Gy of the form
=g (% {) — g5 (x 0)S(). W)
Taking account of (42) and (75) we find that
Go = fo (x, {) {=2i*[4, S(O)] — C™S() + S(O)C*}. (78)
On the other hand, according to (42) and (74) the following equality holds:
oS
& 00 1) = 87 (5 DS(Q) + 5 0, ) 2
+ Z @u(x) [f (%, O) — £ (%, OS] (79)

n=1
Using equalities (42) and (73) one can easily verify that at any { € (—o0, 00) and
n=1,..., 2N the equality
[e o]
FH 0 =76 080 = = [ TS e Dz

—00
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is fulfilled. By virtue of (70) the right-hand side of this equality equals zero at
any { € (—oo, o0) and n =1, ..., 2N. With this fact in mind equality (79) takes
the form

a8 (C)

g0 (%, 0) =25 (x, O)S) + fg (x, {) — =
Hence, it follows that the quantity Gy determined by (77) admits the representa-

tion a5
=7 ) B8

Comparing this expression with (78) we 1mmed1ate1y get the evolution equation
for the S-matrix

6‘;(5) +2i%[4, S()] +C7S() —SQ)Ct =0,
i.e.,, according to (76) we have at { € (—o0, 0),
Sul) .~ Cn
5 ,;1 (C—Cn - €n> Su() =
98120) | girzg 0y = 2520 _girzs, (o) o0, (80)

0 (3
5522(0
i Z(C o Cn>Szz(C)

Hence, it follows that the functions S1;({) and S;({) admit the representation

{—¢ (-t
$11(0) = S$i1(0) H = C" $20) =50 [] T
n n=1 n

where the quantities S1({) and S,({) are independent of time, and the points
{ = {, of the discret spectrum satisfy the condtion

dln
dt

By virtue of (8), (10), (70), and (71), Egs. (9) and (81) are equivalent to each other.

+ic, =0, n=1,...,N. (81)

7. Evolution Equations for the Normalisation Constants
in the Case of a Source Satisfying the Conditions (8)

Let o7 and ;" be vector-columns formed, respectively, by the elements of the rth
column of the matrices f and f¢ of the form (29), r = 1, 2. Then, let 7, and
7} be vector-columns formed, respectively, by the elements of the r* column of
the matrices g; and gaL of the form (74), r = 1, 2. Finally, let { = {,, be zeros of
the function Sy;({) in the upper half-plane Im{ > 0, m =1, ..., N. According to
equalities (44) and (45) we assume thatat m=1, ..., N,

G =T (% {n) = BTy (%, Ln)s Gu=1F (%, Cn) — But7 (x, Tw). (82)
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According to equalities (75) and (76) we have

T (%, n) = (2z¢2+zzc " )ol(x )

t;(x5 Cm) = _<2lCr2n —1i z C E_nz > 0-2_(x3 Cm):
=1 Sm n

N
T;(xs Zm) = _<2in%|+i Z zmc_nc ) G;(Xa Zm)a

(% Ln) = (21{2 —i Z C )af(x, L) -

WithAequalities (44) and (45) taken into account it follows that the quantities G,
and G,, determined by (82) can be written as follows:

G = HL3Buoy (%, (n), G = —4i3 Bt (x, Tn). (83)
On the other hand, by virtue of (44), (45), and (81) the equalities

ao‘i"(x, {m) 50’2 (>, Cm)

=B, oy (%, {m) +icmm(x)

ot - ot a
0 F s _m ~ 0 m
g3 S‘t {m) =B, g1 g‘t { ) 6 o7 (%, &m) — iCmim (%)

hold where

Im(x) = 0( [01 (6, §) = Bmoz (x, Olle=t,»
(84)

Im(x) = 4[02 (%, {) = Bnot (x, D]l -

Using these equalities, from (44), (45), (73), and (74) we find that there hold
relations

05 n) = B (5, L) + 2 65 (x, L)+ icmtn ()

B, S o) / V()07 (2, Cnbdz,
n=1 o
c?ﬁ‘ ®3)
T, (x ‘:m) = mfl (>, Cm) + ——o0 (x, Cm) lcmf(m(x)

B o) / P, (2)or 2, Ln)dz.
n=1 —0
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According to (70) at m = 1, ..., N the following equalities are fulfilled:
[0 @]
[ Bz etz =0, it ntm,

—00
[e o]

/ P,(2)07(z, {n)dz =0, if n=N-+m.
—0

Moreover, in accordance with (43) and (70) at m = 1, ..., N the equalities -

/WWMHLMM=EAM%L
/ Py om(@)0T (2, Tn)dz = —iCnShy(C)

-—00
are valid. By taking account of these equalities relation (85) becomes

£ 05 G) = Bt (5, ) + 20 037 (v, L

+icy [Xm(x) BmS11 (Cm)cpm(x)] )

A

06 G = Bt (6 T + 2% 67 3, T

— iCm [m(x) — BmS22 (Cm)¢N+m(x)] .

The quantities y,(x) and ¥.(x) determined by (84) by virtue of (47), (70), and
(71) admit the representation

Am(X) = Am@(X) + b T (X, Ln) s Am(X) = B @Nam(%) + b0 (X, T) s

where the quantities dy, by, and dp, l;m are independent of x. With the help of
(47), (49), (50), (72), and (84) we easily find that

an = BuS|i((m)>  8m = BuSy(Cn),

and b,, and by are arbitrary quantities satisfying theAcondition by = by, m =
1, ..., N. Hence, it follows that the quantities G,, and G,, determined by (82) can
be represented in the form

ot ot

Comparing these equalities with (83) we get that the evolution equations for the
normalisation constants B,, and B,, have the form

G = (aﬁ + ibmcmBm) o7 (% Ln)s G = (ai — b m) o7 (% B

0B _ i(402 — bycm)By =0, % + (422 — byém) By = 0. (86)

On the basAis of the equality b = by the system of equations (86) has an invariant
manifold B,, = —B,,.
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Thus, for a source satisfying the conditions (8) the system of equations (80)
and (86) describes the evolution in time of all scattering data for the operator L
of the form (6), (7) with the potential u = u(x, t) satisfying the system (1)—(3).
This means that for solving the Cauchy problem for the system (1)-(3) we can
also use the inverse scattering method for the operator L of the form (6), (7).

8. Conclusion

In conclusion, we should like to note that for a source satisfying the conditions
(5) the system (1)—(3) has a one-soliton solution of the form

L _expl2ilo(c— )]
1 +exp[du(x — )]’
o — L ap KB =200 (= )]
2 1+ exp[4u(x — )]
1 + an expldpu(x — f)] .
= exp[—il.(x — N, 87
e e R AR D) ®7)
_an+expldu(x — f)] .
expli({n — 2{o) (x — f)]
, n=1,...,N,
1 + exp[4u(x — f)]
where ¢, and {, are arbitrary complex-valued functions of time satisfying the
only condition Im{, > 0, n =1, ..., N, the quantity {; is independent of time
and has the form (o =iu+v, u > 0, v € (—o0, o0), and the quantities o, and S,
are determined by the equalities

b

i
qn = —5 apucn

Cn _ CO 1
Oy = =, ﬂn=—_, n=1,...,N.
"=l tn—lo
In this case, the quantities a and f are time functions satisfying the equations
i da v df
224y 2 2y — e ) —
adt+ W +v9) F+'uG, 2”(dt 4v>+G 0, (88)

where F and G equal, respectively, the real and imaginary parts of the quantity
H of the form

N
H =" (@tnfucn+ Baln) -

n=1

Moreover, the quantity a satisfies the condition |a| = 4u that, obviously, does
not contradict Egs. (88). One can easily see that choosing properly the quantities
¢n and {,, n = 1,..., N, we can make soliton (87) to have an a priori given
motion. However, an absolute value of the amplitude a will be conserved in
time. A detailed analysis shows that in this case a multi-soliton solution of the
system (1)—(3), describing the interaction of several solitons of the form (87), may
have a nontrivial dynamics. In particular, it can describe the decay and fusion
of solitons, the capture of solitons into the oscillatory regime of motion, and the
formation of a bound state of several solitons. ‘
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Then, for a source satisfying the conditions (8), a one-soliton solution of the
system (1)—(3) has the form

_,_expl2il(x—f)]
1+ expldu(x—1N’
explp(x =] .
T+ expléutx — 1 PO =l
_ . exp[=il(x— )]
~ Tt explautx— N1 (89)

i o . explil (x — )]
p_c{[2u 2 f)](p+lW1+exr>[4u(x—f)]}’

__HfIL _ ¢ expl4u(x —f)] o
T { [2# A f)} Y 2 Tt expln(x — /)] “PLEG f)]},

where W is an arbitrary complex-valued function of time, the quantity { has the
form { =ip+v, u >0, v € (—oo, 00), and the quantity c is determined from the
relation iac = 8°W. In this case, the quantities {, f and a satisfy the equations

@ = 2iuWw

d—c=iW, ﬂ=4v,
dt dt

Moreover, the quantity a satisfies the condition |a| = 4u that, as one can easily
verify, does not contradict equations (90). Due to the equality v = Re{, under a
proper choice of the function W we can make soliton (89) to have an a priori
given motion. However, if at the time moment ¢t = ¢’ the point { reaches the
real axis, i.e., the quantity u vanishes, the quantity a also vanishes. Thus, we find
that u(x, t') = 0, i.e., at the time moment ¢t = ¢' the obtained soliton disappears.
When at ¢t > ¢’ the quantity { leaves the real axis, the soliton considered appears
again. The multi-soliton solution of the system (1)—(3), obtained by the inverse
scattering method, describes in this case the interaction of several solitons of
the form (89). It has a rich enough dynamics. To investigate the interaction of
solitons of the form (87) and (89) with each other, we should take in Eq. (1)
a source formed by solutions of the system (2), (3) some of which satisfy the
conditions (5) and the others satisfy the conditions (8). One should remember
that an additive nature of a source composition corresponds to a multiplicative
nature of composition of scattering data.
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