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Abstract. It is shown that for smooth initial data solutions of the Robinson-
Trautman equation (also known as the two-dimensional Calabi equation) exist
for all positive "times," and asymptotically converge to a constant curvature
metric.

1. Introduction

One of the most interesting problems in classical general relativity is the under-
standing of the formation - or lack thereof - of singularities in space-time in the
course of evolution of the metric via Einstein equations. Since the tools to analyze
this problem in its whole generality do not seem to be available yet, it is of interest
to try to understand such issues under various restrictive hypotheses, e.g. small-
ness of initial data (cf. e.g. [6,11]), or under some symmetry hypotheses [5, 20,
16, 8, 7], or both, or under some other restrictions (cf. e.g. [9]). In this paper we
prove semi-global existence and convergence for a class of vacuum solutions of
Einstein equations known as the Robinson-Trautman metrics [25], thus no cur-
vature singularities (other than the singularity r = 0 which is already present in
the initial data set) develop for finite values of the retarded time1 u in this class
of metrics. The Robinson-Trautman metrics have played an important role in
the early understanding of gravitational radiation, providing the first known class
of solutions of Einstein vacuum equations which could be interpreted as repre-
senting a gravitationally radiating isolated system. These metrics have the amusing
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1 More precisely, no curvature singularities develop for finite positive values of u if the total
mass is positive, for negative values of u if the total mass is negative. It should be noted that
the space-times the existence of which is established here will still be singular in the sense of
being geodesically incomplete, cf. [28] and Proposition 2.1.
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property that the four-dimensional space-time metric, which satisfies a second
order hyperbolic system of equations, is constructed from a solution of a fourth
order parabolic equation for a Riemannian metric on a two dimensional manifold.
At the origin of this is the fact that the initial data for the space-time metric are
prescribed on a null (rather than spacelike) hypersurface. As has been stressed
by Tod [28], the Robinson-Trautman equation turns out to be the two-dimen-
sional version of an equation considered by Calabi [3] in the context of extremal
Kahler metrics. Curiously enough, the problem of local existence and uniqueness
of solutions of the Robinson-Trautman equation seems to have been first dis-
cussed in the physical literature only in 1988, by Schmidt [26]. The linearized
equation has been studied by Foster and Newman [10], by Vandyck [29], and
recently by Robinson [24]. Numerical results of Perjes [22] and Singleton [27]
suggested semi-global existence (i.e. existence for all wΞ> w0) and asymptotic con-
vergence of solutions to constant curvature metrics on the two-dimensional man-
ifold 2M. It was noted by Rendall [23] that this is indeed the case for all "small
initial data" unless 2M«»S2, the two-dimensional sphere; in this last case A.
Rendall showed semi-global existence and convergence provided the initial data
satisfied a (rather unsatisfactory) parity condition. Let us finally note that the
global structure of the Robinson-Trautman space-times has been studied by
Schmidt [26] and Tod [28]. In this paper we show that for all compact, orientable
two dimensional topologies and all (say, smooth) initial data solutions of the
Robinson-Trautman equation exist for all positive2 values of the "retarded time"
u. The key elements of the proof are a) the Calabi - Lukacs-Perjes-Porter-
Sebastyen (LPPS) [3,18] monotonicity property of the integral of the square of
the scalar curvature, and b) an expression for the Bondi mass of the Robinson-
Trautman metrics derived by Singleton [27]. We point out that for smooth non-
analytic initial data no backwards solutions of the Robinson-Trautman equation
exist, thus the results presented here are necessarily of a semi-global rather than
global character. We also show that all solutions converge exponentially fast to
constant curvature metrics.

It is of some interest to compare the results and methods of this paper with
the analogous existence and convergence problem for the Ricci flow [14, 4, 21].
One would expect the problem here to be more difficult, due to a lack of the
maximum principle for higher order parabolic equations, an extensive use of
which is made when studying the Ricci flow. It is the author's belief that the
proofs here are actually simpler, though certainly less elegant, than in the Ricci
flow case.

This paper is organized as follows: in Sect. 2 we briefly discuss some of the
properties of the Robinson-Trautman equation. In Sect. 3 an a priori £«, bound
is derived. In Sect. 4 higher order a priori estimates are established, which prove
global existence of solutions. In Sect. 5 asymptotic convergence of solutions to
constant curvature metrics is proved.

2. The Robinson-Trautman Equation

As has been shown by Robinson and Trautman [25], in every space-time which
contains a hypersurface-orthogonal, shear-free, null geodesic congruence, there

Positive if the total mass is positive, negative if the total mass is negative
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exists a coordinate system in which the metric takes the form

ds2=-Φdu -2dudr + r2e2λgabdxadxb , ( 2 χ)

where gab is a fixed metric on a two dimensional manifold 2 M, which we assume
to be compact and orientable, with local coordinates xα, α = l , 2 . As has been
discussed by Robinson [24], a suitable redefinition of u and r which preserves
(2.1) leads to

Vw j e2λ dμo = j ί/μ0 > φ o = l/detgαZ,rf2x . (2.2)

Whenever (2.2) holds, Einstein equations imply [25]

R , r Λ _ 2m

where w i s a constant, and R(g) = Rah

ab is the curvature scalar of the metric

gab = e2λgab , (2.3)

^ denotes the Laplacian of the metric g{g). If the constraint (2.2) is im-
posed, Einstein equations for a metric of the form (2.1) reduce to the single first
order quasilinear parabolic equation

which implies the following equation for gα/,,

dw 12m 8

an equation considered by Calabi in [3]. If m > 0 (2.4) is parabolic for w-increas-
ing, while for m < 0 it is parabolic for w-decreasing, thus for generic initial data
one does not expect to have existence of global solutions of (2.4), i.e. existence
of solutions defined for (u,p) e (— oo, oo)χ 2 M. In fact, every solution of (2.4)
immediately becomes analytic [17], thus one has

Proposition 2.1. Let λ0 be a non-analytic smooth function on 2M, let gab be an
analytic metric on 2M. There exists no solution of (2.4) defined on ( — ε,ε)x2M
such that λ (0,/?) = A0(/?).

Proposition 2.1 shows one-sided non-extendability of the metric (2.1) in the vac-
uum Robinson-Trautman class whenever the metric (2.1) is smooth but non-
analytic at u = u0. This is an amusing example of pathologies which may occur
when considering the characteristic initial value problem for Einstein equations.
In [8] a similar non-existence result was exhibited, when the null surface is a
smooth but non-analytic compact Cauchy horizon. It may well be possible that
there exist vacuum extensions beyond a smooth non-analytic surface u = u0 which
are not in the Robinson-Trautman class.

The above discussion establishes generic non-existence of global solutions of
(2.4), it is therefore natural to ask whether "semi-global" solutions exist, i.e.
solutions defined for all u^u0 when m > 0, or for all u<±u0 when m < 0. As



292 P. T. Chrusciel

stated in the Introduction, we shall show that this is indeed the case - the results
of the subsequent sections may be summarized as follows:

Theorem 2.1. Let (2M,g) be a smooth, compact, orientable, two dimensional
Riemannian manifold. For any3 λoe C6(2M) there exists a function
λeC1 ([0, oo) x 2M) n C°° ((0, <χ>) x 2M\ λ (u, ) e C 4 ( 2M) for u ̂  0, satisfying
(2.4), such that λ (0,p) = λo(j>) (if λoe C°°(2M), then λ e C°°([0, <χ>)χ2M)).
Moreover the metric e2λ °g converges exponentially fast 4 to a constant curvature
metric on 2M.

Before closing this section let us recall that g can always be chosen so that

with Ro > 0 on S2, Ro = 0 on Γ 2, Ro < 0 in the remaining cases. Changing the
orientation of the w-axis if necessary, by a rescaling of u we may always achieve

and in the remainder of this paper we shall always assume that this normalization
has been chosen. We have the following formulae:

(2.5)

dR

du
— =-ΔgΔgR-RΔgR, (2.7)

(2.8)
σu

and we also have

\ dμg= \ e2λ dμQ= \ e2λodμo = A ,
2M 2M 2M (2 Q\

A = \ d μ 0 , A 0 = A | M = 0 ,

1 ' ~ Ί - f Rodμo = Ro , (2.10)
A 2M

\u^\(R-R0fdμg\U0 , (2.11)
(2.12)

3 As mentioned in Sect. 4, the result still holds with λoe W2 2(2M,dμ0\ in which case
λeC([0, oo); W2ι2(

2M9dμo))nCco((09oo)x2M)
4 The convergence rate of the metric is made precise in Proposition 5.1; the results of that
proposition can be sharpened by establishing an asymptotic expansion of λ for large u - these
results and their implications for the global structure of the Robinson-Trautman space-times
will be discussed elsewhere
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Equation (2.9) follows from (2.2); (2.10) is the Gauss-Bonnet theorem; (2.11)
is the Calabi-LPPS inequality [3,18]; (2.12) is D. Singleton's version of the
Bondi mass-loss formula [27]; for completeness (2.11) and (2.12) are derived
in Appendix A.

3. Uniform W2^
 a priori Estimates

Let Lp = Lp (
2M, dμ0) be the space of functions the pth power of which is integrable

on 2M with respect to the measure dμOi let WktP= WktP (2M, dμ0) be the Sobolev
space of functions the derivatives of which up to order k are in Lp. In this section
we shall derive an a priori W2t 2 bound for solutions λ (u) of (2.4) such that
λo = λ (0) e W2t2. Since (2.4) is in divergence form the notion of weak solution
for λ e C([0, T); W2i2(

2Midμ0)) can be defined in a standard way. Proposition
3.1 is the key to the global existence proof and is specific to the problem at hand
- the rest of the proof, as carried on in the next sections, is rather standard and
applies to a quite general class of equations. We shall thus consider the following
problem:

~du = 2ΔgR '

λ e C([0, T); W2,2(
2M,dμ0)) , 0 < T^ oo ,

λ(u = 0) = λ0eW2,2(
2M,dμ0) ,

^ j e2λodμo= I dμ0 .

If λ0 is e.g. smooth, then a solution of (3.1) will be smooth both in u and in
p e 2M, and will thus be a classical solution of (2.4) (cf. also the remarks at the
beginning of the next section). Throughout this paper the letter C denotes a
generic constant which may vary from line to line.

Proposition 3.1. Let λ satisfy (3.1). There exists a constant C depending only upon
\\λ(0)\\W2>2 andgab such that

VWe[0,Γ) || λ (ii) || ̂ C , (3.2)
in particular

V«e[0,Γ) sup \λ(u,p)\^C . (3.3)
p e M

Proof. Equation (2.5) inserted into (2.11) gives

\ e-2λ(A0λ-λ

2R0)
2dμ0^C , ( 1 4 )

C=C(\\λo\\W22,gab) .
Holder's inequality implies

\\AQλ-{R0\
6/5dμo=le6λ/5\e-λ(Aoλ-{Ro)\6/5dμo

Λ3/5

(3.5)
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and we have used (3.4) and D. Singleton's inequality (2.12). Equation (3.5) leads
to

\\A0λ\\L6/5^C . (3.6)

Let us recall the following, well known fact, which we prove here for complete-
ness:

Proposition 3.2. Let g be a smooth metric on a compact two dimensional manifold
2M, let 1 <p < oo, let φ e W2,p satisfy

\φd = 0 , A = \dμQ ,

Δoφ = p , peLp(
2M,dμ0) .

There exists a constant C(g) such that

\\Φ\WXrύC\\p\\Lp . (3.7)

Proof We have the well known estimate

(cf. e.g. [1, Theorem 15.Γ, p. 703]; the result presented there extends immediately
to manifolds); to establish (3.7) we thus have to show

(3.8)

Integrating

one obtains

over M

ίM

the
II

identity

U ids t>
* a \Ψ *

2dμ0 =

011

φ

— f

LPύC\\P\\Lp.

φAoφ dμ0

From Sobolev's inequality (cf. e.g. [2, Theorem 3.67, p. 91]) and (3.9) one gets

ll0lU

and (3.9) yields

(3.8) follows again by Sobolev's inequality. D

Returning to the proof of Proposition 3.1, let

φ = λ-{λ) ,

Proposition 3.2 and Eq. (3.6) give

(3.11)
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Since (3.11) controls the modulus of continuity of A we are done, an elegant way
to proceed is as follows: from Moser's inequality [2, Theorem 2.46, p. 63]

for some constants C and μ, from (2.9) and (3.11) we have

e - 2 < Λ > ^ C = > ( A ) ^ - C / , (3.12)

on the other hand

<A>= \ λdμo + \ λdμ0^ J

Equations (3.12) and (3.13) thus give

\(λ)\^C (3.14)

from (3.10), (3.11), and (3.14) it follows

| | A | U , 6 / 5 ^ C . (3.15)

From (3.15) and the Sobolev embedding [2, Chap. II, Sect. 3, p. 35] we have

\\λ\\LoΰύC (3.16)

(3.16) and (3.4) imply

(3.14) and Proposition 3.2 establish the claimed assertion. D

4. Higher a priori Estimates

In this section we derive a priori bounds on all Wka norms. This, together with
the local existence results discussed e.g. in [26] or [23] shows semi-global existence
of solutions5. The estimates of Lemma 4.2 can be used to show that A e C([0, Γ);
W2t2 CM)) implies λ e C°° ((0, T); C°° (2M)) = C°° ((0, T) x 2M) and thus A is a
classical solution for u > 0 [for u^>0 if λoe Wβ2 - this will be the case if e.g.
λ0eC6(

2M)l

Proposition 4.1. Let 0 < T<, oo, &^2, let A e C([0, T); Wka(
2M,dμ0)) be a so-

lution o/(3.1), A (0) e WA 2(
2M,dμ0). There exists a constant C such that

V0£u<T \\λ(u)\\Wk^C(l+uy/2 . (4.1)

The proof of Proposition 4.1 makes use of the lemma that follows. Wherever
convenient one may suppose that λ e C°° ([0, T) x 2M), appropriate results under
weaker differentiability conditions can then be established by a density argument.

5 Let us note that energy estimates similar to the ones derived here can be used to prove local
existence of solutions for λoe WiaQM\ thus the results of the previous section are actually
sufficient to show semi-global existence
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In the remainder of this paper we shall assume that g is a smooth metric the
Ricci scalar of which is a constant. For any multi-index a = (ax,..., aj) let

v a y a\" ' v aj •>

where Ϋ is the covariant derivative of the metric g. For jeltί set

\γJλ\2=rbι 4ajbjK---KλK--'Kλ ( 4 2 )
Lemma 4.1. For every / e N , / ^ 1, there exist a finite set of indices B, a set of
constants 2 <ί TV (/,/?)< <χ>, β e B, and a constant C < <χ> such that

(4.3)

φ = λ-(λ) , (λ) = -\λdμ0, A= I dμ0 .

Moreover there exists a constant C depending also upon \\λ ( 0 ) | | W22 such that

— \\e \V λ\\\Ll^-\\V λ\\L2+C \\φ\\ιv2,2 . (4.4)

Let

with I V1 λ 12 as in (4.2). A straightforward though somewhat lengthy and tedious
analysis presented in detail in Appendix C (cf. Lemma C.4) gives

β*B (4.5)

Yang's inequality "with ε,"

ab£εap + -(pε)~q/pbq , - + - = 1 ,
q p q

with p = 2/(Xβ9 q = 2/(2 — 0Cβ), applied to each of the terms appearing in (4.5)
gives

2-aβ

which proves (4.3) when ε is chosen small enough. Since

for some function C( || 0(0) || w2t2), (4.3) implies (4.4). D

Proof of Proposition 4.1. Integration in u of (4.3) using (3.2) gives
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and (3.3) implies

which establishes (4.1). D

We shall now derive a "smoothing-out" inequality, which follows from Lemma
4.1. The method of proof follows [15]:

Lemma 4.2. Let λ satisfy (3.1), λ (u0) e Wka, k^2, w o ^0. For every / ^ 0 there

exists a constant C^k depending upon /, k, g and \\λ0\\ Wl 2 such that, for u^uθ9

+ ](l+(s-uo)')\\(λ-{λ))(S)\\2

W22ds) . (4.6)
MO

Proof. For u ^ u0 let

+ ...+cί(u-u0)'\\e2λΫk+2'λ\\2

L2,

where the c/s are positive constants to be chosen later. By (4.4) we have

+ (u-u0) {cι — \\e2λ Ϋk + 2λ\\2

L2 + 2c2\\e2λ Ϋk+4λ\\2

L2

+ ... +

v 7 - 1 /

c/-i 17.

+ Z c.iu-u^WΦW2^ . (4.7)

Let us choose the c/s so that

By Proposition 3.1 the constants ct can be estimated from above by a constant
depending upon | |λ (wo)|| ^ 2 ) 2 Equation (4.7), Proposition 3.1 and Proposition
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4.1 imply

dE

— ^C(H-(u-«b)') 11011^ , φ = λ-{λ) ,
thus

E(u)^E(uo) + c] (l + (s-uo)
ί)\\φ(s)\\2

ίVί2ds
«o

= \\elλ\Vkλ\(uo)\\2

L2+ c] {\Λ-{s-uo)')\\φ{s)\\2

W2ads ,
wo

and the result follows. D

Corollary 4.1. Let λ satisfy (3.1). For every ra^O there exists a constant Cm such
that

^ l \\λ(u)\\Wm^Cm . (4.8)

Remark. Cm depends upon | |A 0 | | ^ 2 > 2 .

Proof. It follows from Proposition 3.1 that (4.8) holds for 0 ^ m ^ 2 . Let m > 2,
thus m = k + 2l, with k= 1 or 2, le M. Let wΞ> 1, from (4.6) with uQ = u~ 1 one
finds

Corollary 4.2. Let λ satisfy (3.1). For every A > 0, 0 < δ ̂  1, m e N, w0 ̂  0,
exists a constant C such that if

\\λ{uo)\\Wχ2<,δ ,

then
\\λ(uo + A)\\IVm^Cδ . (4.9)

Proof. Let

F(u)=$e-4λ\Ϋ2λ\2dμ0.

From Proposition 3.1 and Lemma 4.1 it follows that

From the inequality (cf. e.g. [1, Theorem 15.Γ, p. 703 and Proposition 3.2])

| | 0 | | 2 ^ C ί \Ϋ2λ\2dμ0£C \e~*λ \ϊ2λ\2dμ0 , (4.10)
we have

dF(u)
—~<CF(u)

du —
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integrating in u one obtains

u-uo) , (4.11)

hence (4.11) and (4.10) lead to

Now

2(A)

(4.12)

Since (0) = O there exists pe2M such that 0(u,p) = O. By Sobolev's embedding
there exists a > 0 and a constant C such that the α-Hόlder continuity modulus
of 0 is bounded by C\\ 0 || Wl 2, thus

11 - e2φ I (iι, 9 ) = I (1 - e2φ) (u,q) - (1 - e2φ) (u,p) |

and (4.12) implies

which finally gives

(4.13)

which establishes (4.9) for m^2. If m > 2, let m = k + 2l, k^ 1 or 2, l e R
Equation (4.6) with w = wo + J and (4.13) imply

which gives (4.9).

5. Convergence to a Constant Curvature Metric

The results of the previous section show that all the Ck norms of λ,R(g)9 etc.,
are bounded for u Ξ> 1. In this section we shall show that R (g) asymptotically
converges to a constant, exponentially fast with decay rate equal to the decay
rate of the linearized equation ("modulo gauges-
Proposition 5.1. Let λ satisfy (3.1) (with T= <χ>), let gij = e2λ giJf where gy is a
constant curvature metric on M, letμ be the smallest eigenvalue of —Δo satisfying
μ > max (0, Ro). The metric g^- converges exponentially fast to gυ, up to a conformal
dίffeomorphism. More precisely, there exists a function λ^ e C°° (2M) such that
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and for all k there exists a constant Ck such that

v=μ(μ-R0) . (5.2)

Remark. If 2M=t=S2, then λ^ is a constant (necessarily equal to zero with our
normalization conditions) and μ is the first non-zero eigenvalue of —Δo. If
2M=S2, then λ^ is in general not a constant, and μ is the second non-zero
eigenvalue of — Δo.

To prove Proposition 5.1 we shall use a series of auxiliary lemmata:

Lemma 5.1. Suppose that (5.1) holds with some constant v satisfying
v > f μ {μ - Ro). Then (5.1) also holds with v=μ(μ- Ro).

Proof. To avoid (non-essential) problems with non-linear subspaces of Banach
spaces it is useful to replace λ by

h = e2λ-\ .

It follows from (2.9) that

{h) = — \ hdμo = 0 . (5.3)
A J

If 2M=t=S2 we shall write the equation for h in the form

(5.4)

where L is the linearization of —- at h = 0,
du

Lφ=-A2

oφ-RoAoφ , (5.5)
and

ζ (5.6)

In the case 2M = S2 we set

2M

where the 0/s form an L2-orthonormal basis of the first non-trivial eigenspace
ofzl0,

and μ2 is the second non-trivial eigenvalue of — Δo (recall that on a two dimen-
sional sphere with a constant curvature metric the eigenvalues of — Δ 0 are of the
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form /// = /(/+ l)R0/2). As discussed in Appendix B, solutions of (5.4) on *S2

with L,g defined in (5.7) are in one-to-one correspondence with solutions of the
original Eq. (5.4) with L,g defined by (5.5)-(5.6). Since g(h) consists of terms
which are at least quadratic in A, for all k we have

-2vu . (5.8)

Equation (5.4) yields

Now

j hLhdμo = - j (Aofιfdμ0 + Ro J (Ϋh)2dμ0

c=β2(β2~RQ) for 5 2 , c = 0 otherwise .

From (5.3) a straightforward eigenfunction expansion together with an approx-
imation argument give

which for Ro ^ 0 (c = 0) implies

I hI h2dμ0^ " 2 μ 1 ( / / 1 - Ro) \h2dμ0 + 2 [ hgdμ0

In the case cΦO a slightly more careful argument is needed. Let

2M

Let y/α denote an L2 - orthonormal basis of eigenfunctions of — Δ 0 with eigen-
values greater than or equal to μ2,

~AoψCί=μCίψOi ,
let

Aβ= j ψahdμ0 .

We have, formally,

J {(Δ 0hf - Ro (Ϋh)2} dμ0 = Σ M. (μ. - R0)K

(5.9)
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(recall that μ x = Ro), and the above calculation can be easily justified by an
approximation argument. Thus

J hLhdμo£-μ2(μ2-Ro) \ ( P A ) 2 d μ 0 - μ 2 { μ 2 - R o ) %hf
s2 s2

-Ro) \ h2dμ0 .
s2

Therefore in either case

£ \h2dμ0^-2μ(μ-R0)\h2dμ0+Ce-3vu ,

μ =μ2 if 2M= S2, μ =μx otherwise, so that

2μ(μ-R0)
V > 3

Integrating (5.10) in u one has

(\h2d

because, by hypothesis,

thus

Note that

so that repeating the above argument for Δoh, AQ h, etc. (cf. (5.8)), one obtains

which by elliptic estimates yields the claimed result, D

Lemma 5.1 reduces the proof of (5.1)-(5.2) to a proof of (5.1) with some
sufficiently large exponent6 v. The following lemma shows that such an estimate
holds if ||h\\ W22 is sufficiently small:

Lemma 5.2. There exists ε0 > 0 such that if for some u0 ^ 0

\\λ(uo)\\ma£eo , (5.11)

then the hypotheses of Lemma 5.1 hold (and thus Proposition 5.1 holds).

Proof Equation (5.11) and Corollary 4.2 imply that for any k there exists a
constant Ck such that

6 Note that if v in (5.1) is too small one can iterate a finite number of times the argument of
the proof of Lemma 5.1 and again obtain the conclusion of Lemma 5.1 this will however not
be needed in our proof
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if | |λ(wo)||w2 2 is small enough. Let k=5. If 2MΦS2, it follows from e.g. a
theorem by Lunardi [19] (cf. [23]) that for ε0 small enough and for u^u0 + 1 we
have

-βu , (5.12)

with any β<μ(μ—R0), in particular (5.12) holds with β = 3μ(μ — R0)/4
> 2μ (μ — JR0)/3. Corollary 4.2 implies now that for wΞ> wo + 2 and for all k

which had to be established. If 2M=S2, a modification of the equation for λ as
in (5.7) (cf. Appendix B) allows one to apply Lunardi's theorem7 in the same
way. D

Proof of Proposition 5.1. We shall show that there always exists u0 such that (5.11)
holds. D. Singleton's Bondi mass-loss formula (A. 12) implies

mo

where

+ n]( \ f-1)DoDof\
2dμo)(u)du = ,

0 \2M /

Woo = lim j e3λ dμ0
M—• o o

[existence of m^ follows from (A.12)], thus

f J Γι\D0D0f\
2dμ0du< co ,

0 2M

and since from Proposition 3.1 we have

WΓ'WL^C , H/IU^C, (5.13)
it follows that

oo

j \ \D0D0f\
2dμ0du<«> . (5.14)

Equation (5.14) implies that there exists a sequence M,-> OO such that

I \DoDof\
2dμλ(u,) -^ 0 . (5.15)

2 M /

From the identity (A.5) (with D = D0) integrated over 2M and from (5.15) we
have

«-«, J2=* 0 . (5.16)

^O (5.16) gives

7 In the S2 case a similar argument has been independently used by D. Singleton [27] to prove
global existence and convergence for small data
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and elliptic estimates together with (2.9) yield

which shows that there exists a u0 such that (5.11) holds if 2M is not a sphere.
When 2M=S2, a spectral expansion argument along the lines of (5.9) gives

\[A0(Pf)]2dμ0^l \ [(A0f)
2-R0\Ϋf\2]dμ0 ,

thus (5.16) implies

\\(Pf)(Ui)\\ fv^-^O . (5.17)

The first spherical harmonics are restrictions of coordinate functions x( to S2,
when S2 is embedded in IR3 in a standard way, thus / (w, ) can be written in the
form

for some constants At and some vectors B f. Equation (5.13) together with (5.17)
imply

for i large enough. It follows that we can choose a subsequence, still denoted w/5

such that

and we have

H/^-^-BooXll^^^O . (5.18)

The area conservation condition

\ f~2dμ0=\ ldμ0

implies that there exists τ e IR and a unit vector n such that

which is precisely the condition for the existence of a conformal diffeomorphism
0 of S 2 such that

Consider the metric

let
- ί \ ?-2

cr i I TV I = / Q L
oaoV^y J Sab

e όab

Equation (5.18) implies
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thus

and Proposition 5.1 follows by Lemma 5.2. D

A. Appendix

In this Appendix we shall derive the inequalities (2.11) and (2.12) - these are key
inequalities in all our results. From (2.7) and (2.8) by elementary manipulations
one obtains

γu ί R2dμg=-2\{{ΔgRf-R\VR\*}dμg . (A.I)
2 M

Following [18] we shall use the Kahler structure of 2M to show that the right-
hand side of (A.I) is nonpositive (cf. e.g. [13, 12] for an introduction to the
theory of Kahler manifolds). Choose a holomorphic structure on 2Λf, let
z = x + iy; for any tensor field 4"".Jι on 2M, let

D4:-h=vzfk.:
J

t^g

z2v2 tϊ .i=kzs{Vx tti+ivy ttJ

t) .

For any smooth function / on 2M we have

\Vf\2 = 2DfDf, (A.2)

Δf = 2DDf= 2DDf , (A3)

DDDf- DDDf= -1 Df . (A.4)

From (A.3)-(A.4) one finds the identity

DDfDDf= D (DfDDf) - D (DfDDf) + DDfDDf + ̂  DfDf. (A.5)

Integrating (A.5) over 2M with f=R, the D{- •) and D(- •) terms give no
contribution (cf. e.g. [12]), and from (A.1)-(A.4), one finds

du
J R2dμg=-4$ DDRDDRdμg£0 , (A.6)

which together with (2.10) establishes (2.11). D. Singleton's inequality (2.12)
requires some more work. From (2.5) and (2.6) one finds

(A.7)
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(Ro = const). Let

(A.7) can be written as

\ (A.8)

Let Z)o, Do be the Kahler derivative operators of the metric g0. One has the
identities

ΓιDoD0fDoD0f = D0(f-ιDofDoD0f)-Ό0(f-ιDofDoDof)

+Γ2D0fD0fD0D0f~r2D0fD0fD0D0f, (A.9)

Γ2D0fD0fD0D0f=D0(Γ2DQfD0fD0f)

+ 2Γ3D0fD0fD0fD0f

-2f~2D0fD0fD0D0f . (A.10)

Integrating (A.9)-(A.1O) over 2M leads to

+ 3 $ f~2\Ϋ f\2A0fdμ0-2 $ f~3\Ϋ f\4dμ0 . A.ll)

Equation (A.ll) inserted in (A.8) gives D. Singleton's formula [27],

^ $ e3λ dμo= -12 $ Γι DoDofDoDofdμo£0 , (A.12)

which establishes (2.12). Let us mention that the integral

is related to the Bondi mass of the metric (2.1) [27].

B. Appendix

When 2M=S2

9 the operator obtained by linearizing the right-hand side of the
Robinson-Trautman equation has zero eigenvalues, which leads to difficulties
when trying to prove convergence of the metric to a constant curvature metric.
The origin of these difficulties may be traced back to the existence of non-trivial
conformal motions of the sphere, as a result of which λ in (2.3) is defined only
up to the addition of the logarithm of a conformal factor for a conformal trans-
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formation of S2. To handle this problem8, let φ (u) be a w-dependent conformal
diffeomorphism of gab, let

&*(«) = *(«)*&,*(«) • (B.I)

We have

where

X{u) = {φ-\ ψu (B.2)

is the w-dependent conformal Killing vector field generated by 0(w), and 2*x

denotes a Lie derivative. X(u) is of the form

where the 0/s form an L2-orthonormal basis of the first non-trivial eigenspace
of ΔQ, V is the gradient operator of the metric g, and the α;(w)'s are w-dependent
constants. We have

For a metric gab (u) satisfying the Robinson-Trautman equation one obtains

where λ is defined by

Let Fe C°° (IR) be any function such that F(0) = 0, F' (O)Φθ. The choice

aί(u)= \ FtffapVhWdμo (B.4)
2M

is especially convenient because in this way one gets rid of zero eigenvalues of
the operator which arises by linearizing the right-hand side of the modified Ro-
binson-Trautman equation (B.3). Given λ(u,p) satisfying (B.3), such that
λ(0,p) = λo(p), a solution of the original equation can be recovered by inte-
grating φ(u) from (B.2), with 0(0) = id9 at given by (B.4), and inverting (B.I)
gives gab(u). It is simple to check that if λ converges exponentially in C°° to 0
with some decay rate β, then φ will exponentially converge to a smooth conformal
diffeomorphism φ^ of S2 with decay rate β, and that λ will exponentially con-
verge to a limiting function λ «, defined by

e gab = Φoogab

(cf. [27] for a more detailed exposition).

The same method as presented below has been independently used by Singleton [27] to get
rid of the zero-eigenvalue problem
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C. Appendix

In this Appendix we shall prove some estimates use of which is made in Sect. 4.
Let us define the convention, that for ije N the "equality"

f=g+ "Ϋhλ--Ϋisλ"

is a shorthand for the statement that /— g consists of a sum of terms of the form

constPβ lλ P β 'λ , \oij\=ij ,

in particular there exists a constant C such that

Lemma C.I. For any multi-index a — {aγi...,α/), 05ϊ | a | = /, we have

d ^ ^k kk , (C.I)

(C.2)

(C.3)

^ a = Σ Ϋuλ- -Ϋuλ . (C.4)

il + ~- +hί |a| +4

Proof. One shows by induction that

ΫaΔ
2 = ΔZΫa + £ζ , (C.5)

where A 0 is the Laplacian acting on tensors, and ^ is a sum of terms of the
form

For I a | = 0 from (3.1) and (2.5) we have

= e~4λ {-A2λ + "Ϋλ ί73A" + "(1 + Ϋλ Ϋλ + Ϋ2λ) V2λn

^e~4λ{-A2λ + ̂ 0 + Mo + Mo} , (C.6)

a

with MQ satisfying (C.2)-(C4). An induction argument using (C.5) yields the
result, G
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Let us recall the well known Gagliardo-Nirenberg inequalities:

Proposition C.I ([2], Theorem 3.70, p. 93). For2^p<:θo,0^j<m, there exists
a constant C such that the equality \ fdμo = 0 implies

2M
2

7+1 —
ι - ^ . (C.7)

Proposition C.I implies another well known result, which we prove here for
completeness:

Lemma C.2. For 2<^p <oo, 2<^k< 1+2, there exists a constant C such that the
equality J φdμo = 0 implies

k-x-1-
a = j-?- . (C.8)

Proof. Let f=Aoφ, set j=k- 2. By elliptic estimates ([ 1 ], Theorem 15.1', p. 703)
we have

(C.9)

Let us consider the case k = 2 first. Equation (C.9), Proposition C.I, the Sobolev
embedding and the definition of / imply

_ 2

which is (C.8) for k = 2. For k^3 (C.9), Proposition C.I and (CIO) similarly
yield

^ ^ C ( | | ^ / | U , + \\f\\Lp+ ||0|U,)

) , (C.ii)

with
2 2

k-1— 1 —

Yang's inequality

p q P q
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with x=\\r+2φ\\ί2\\φ\\^b/a

9 y=\\Φ\\%;,ϊV\ P = alb, q = al{a-b\ al-
lows one to get rid of the second term at the right-hand side of (C.I 1), and (C.8)
follows. D

Lemma C.3. Let

E,= \eΛλ\Ϋ'λ\2dμ0 .
2M

For every / ^ 1, / e N, we have

ψύ-2\\V+2λ\\l^C(\\r+xλ\\l2 + Φ,
au

where

φι= j \γλ\\γι+ιλ\\Ϋι+2λ\dμ0 ,
2M

2

Φ,= Σ I \Ϋ"λ\---\Ϋuλ\dμ0 . (C.14)
ί^3 2M

Proof. From (C.I) we have

dF 0 1

au
where

2M

| α | = / 2M

7^ = 2 Σ $ΫaλJkadμ0, 0 = 1 , . . . , 3 .
| α | =/ 2 M

The terms 7Z have to be estimated separately for / = 1, 2 and for / |>3. If / = 1,
(C.6) and several integrations by part to get rid of the fourth and some of the
third derivatives of λ give

+ Σ ί \Phλ\---\P
s>3 2M

Φl9 Φλ given by (C.13)-(C14). For 1 = 2, an integration by parts to get rid of
the fourth derivatives of λ gives
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while for /Ξ>3 one directly obtains

Consider now the terms ///. Commuting derivatives and integrating by parts
o

/// can be transformed to the form

| α | =1+2 2M 2M

= -2\\Ϋl+2λ\\l2+«\Vι+ιλΫl+iλdμ0» ,
2M

thus

1

An integration by parts in //, gives

2M

2M

which yields

Consider now //,: an integration by parts to get rid of the / + 2nd derivatives gives
for/^2,

2 2

while for /= 1 one has

3

Finally from the definition of Ma one obtains directly

and from what has been said (C.12)-(C14) follow. D

Lemma C.4. For every / e N ^ l , there exist a finite set B, a set of positive constants
®β> yβ> β £ B> and a constant C such that

au
β e B
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Proof. We have to estimate the three rightermost terms appearing in (C.12).
Proposition C.I yields immediately

rΓ (civ)
1

which is of the desired form. To estimate Φf we have

Φ,=

J I ^ A | U J | ^ A | | i 2 ! + = -
Pi Pi z

which by Sobolev embedding and Proposition C.I gives

which is of the form (C.I5) and satisfies (C.I6). To estimate Φ7 we shall use
Lemma C.2. Let

ψ= \ Ϋhλ- Ϋi

2M

2

be one of the terms appearing in Φh let &Ξ>0 be the number of zy's in (C.18) such
that ij=l. Reordering terms one may assume that for l^j^s — k we have
ij^29 thus

Pi Ps-k Po

From (C.8) one obtains

( C 1 9 )

for some finite set B' of indices yff. Note that for all β e Br we have α^ + y β ^ 3
and that the largest exponent ocmax = supβeB,(xβ in (C.19) is

S + —
Po

Choosing p0 > 2 we have

because ^ 3 , and (C.15)-(C.16) follow, D
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