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Abstract. We consider a classical Coulomb gas with a short distance cutoff in two
dimensions; equivalently a Sine-Gordon field theory. For low temperature β'1 and
low activity z the gas is in a multipole phase, the Kosterlitz-Thouless phase. For
β>Sπ and z sufficiently small we give a complete renormalization group analysis
for this phase and show that the flow of the effective measures is toward a free
field (infrared asymptotic freedom). This should lead to control over the long
distance behavior of the theory.

1. Introduction

A classical Coulomb gas in two dimensions with inverse temperature β and activity
z is defined by the grand canonical partition function

)\ (1.1)

where the sum is over charges qt= + 1. The potential v(x — y) is the inverse
Laplacian (Δ'^fay) with a short distance cutoff (essential for β large). An
equivalent expression is as a Sine-Gordon field theory, namely

Jexp(- 2z Jcos φ(x)dx)dμβυ(φ), (1.2)

where μβv is a massless Gaussian measure with covariance βv.
For a dilute gas (z small) there is a phase transition as the temperature is

lowered. At high temperatures (β small) there is a plasma phase with Debye
screening and exponential decay of correlations. This was rigorously established
by Brydges and Federbush [BF] and Yang [Y], At low temperatures (β large)
there is a multipole phase characterized by a power law decay of correlations. This
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8π
Fig. 1.

phase was predicted by Kosterlitz and Thouless [KT], and its existence was
subsequently rigorously established by Frδhlich and Spencer [FS] (see also
[MKP]). Heuristic arguments suggest that the transition point is at β = 8π.

Our interest is in giving a complete renormalization group analysis of the
Kosterlitz-Thouless phase. This involves successively integrating out short distance
modes to leave effective measures for the long distance modes. One expects that
the measures become increasingly Gaussian (i.e. like μβv) as the iteration proceeds.
One says that the theory is asymptotically free in the infrared.

Our main result is that for all β > 8π and for z sufficiently small (depending
on β) we have infrared asymptotic freedom in the above sense. The region of
validity is sketched in Fig. 1. We also sketch the flow of the renormalization group
transformations as tracked by certain effective parameters β,z. It should follow
from our results that the pressure exists in infinite volume and is analytic in z
near 0. It should also follow that the infinite volume correlation functions exist
and decay like those of the fixed point (i.e. as a power law).

An idealization of the Coulomb gas is the pure dipole gas. The Sine-Gordon
transformation applied to this model leads to a field theory in which the interaction
only depends on the derivatives dφ of the field. This model has been previously
analyzed by Gawedzki and Kupiainen [GK] using their powerful renormalization
group techniques. They also treat the infinite volume pressure and correlation
functions for the model.

Recently Brydges and Yau [BY] have provided an elegant and detailed
framework for the dipole gas and related models which in several ways clarifies
the earlier work of other authors. Among the improvements introduced in this
paper are: (i) an identification of appropriate Banach spaces of effective interactions;
(ii) no need to split into large and small field regions; (iii) a clear formulation of
the polymer activity expansions scale by scale; (iv) a simplified treatment of the
fluctuation integral at each scale.

In the present paper, we show that the methods of [BY] are also extremely
useful for a field theory which depends on the scalar field φ. In two dimensions
all local functions of the field φ are superficially relevant variables, and this seems
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to work against asymptotic freedom. However, the Sine-Gordon theory has the
extra feature that the effective interaction at each stage is a periodic function of
φ with period 2π and can be analyzed by Fourier series. We carry this out by first
reducing the φ dependence to a dependence on {φ(x)} for a finite number of points
x by a judicious use of the identity

(•)
φ(') = φ{x)+ $dμφdxμ.

X

Then we Fourier analyze in the variables {φ(x)}. The zero modes are then functions
only of dφ and local functions of dφ are marginal or irrelevant and so can be
treated as for the dipole gas. The non-zero modes are irrelevant because of a
mechanism which corresponds physically to the suppression of charged particle
distributions.

To illustrate this new mechanism, suppose there is only one degree of freedom.
Then the Fourier modes are the functions exp(iφg), the fluctuation integral is
effected by convolution with a Gaussian measure dμβ of covariance β, and we have

ζ))dμβ(ζ) = e x p ( - l/2β\q\2)exp(iqφ)9

which shows the contraction for q Φ 0. The above is exactly the situation for a
hierarchical version of the Coulomb gas. (The hierarchical model was recently
treated in this fashion by Dimock [D]. However this paper turns out to substantially
duplicate earlier work of Marchetti and Perez [MP]. For other treatments of the
hierarchical model see [BGN], [KPW].)

For the full model our task is to develop a systematic framework for treating
the {φ(x)} dependence and the dφ dependence at the same time. Given this, we
then want to show that it is exactly for β>Sπ that the contractive factors dominate
other growth factors in the problem.

The methods of this paper are also useful for studying the infrared properties
of QED in dimensions d ^ 2, a problem we take up elsewhere [DH].

2. Renormalization Group Transformations

2.1. We define the initial measure in detail. The base space is taken to be the
2-torus with sides of length LN for integral L, N9

Λ = Λ(N) = R2/LNZ2. (2.1)

Define v° = ( — A)~x on (const.)1 and v° = 0 on constants (the value of v° on
constants should not matter in the infinite volume limit). Then v° has the kernel:

v°(x-y) = \Λ\-1 X eip{χ-y\p2έ2p*)-1 (2.2)
peΛ*\{0}

for t = 0, where Λ* = 2πL~NZ2. For t > 0 there is an ultraviolet cutoff: we take
t = 1 for simplicity, but our results hold for any t > 0. Note that the kernel is C00.

Let μβvo be the Gaussian measure with covariance βv° on the restricted Sobolev
space {φeJ^s(Λ):jφ = 0}. Here s is a fixed integer and we assume s > 3 so for
φeJFs(Λ) the function and its derivatives δ > , 0 ^ |α| ^ 2, are bounded continuous
functions of A.
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For X czΛ define

Vx(φ) = 2z j cos φ(x)dx (2.3)
x

for ZGR. Then the model is defined by the measure

Z°(φ)dμβv0(φ) = exp( - VA(φ))dμpA<P) (2.4)
for /? > 0.

We rewrite (2.4) by making a Mayer expansion:

\Ai) \A J)

Here, in the first step, we break up VΛ into a sum over unit blocks AczA centered
on points in Z2. In the second step the sum is over collections of unit blocks {A^.
Finally in the last step the blocks are grouped together into connected sets. We
use the convention that the blocks are closed so two blocks are connected if they
only have an edge or a corner in common. The last sum is over all disjoint collections
{Xi}, where Xt is a union of unit blocks. The polymer activities of the initial
interaction are thus given by:

Y\ (exp(— VΔ(φ)) — 1) if X connected
K0{X,φ)=<Λ^x (2.6)

[0 otherwise.
We further rewrite (2.5) as follows [BY]. For functions X^K(X) on unions

of cells ("cell" = open blocks, open edge, or corner point) define the circle product

(K1oK2)(X)= X K^K.iZ) (2.7)
YKJZ = X

YnZ = 0

and the circle exponential

gχpK=J? + K + 1/2K o K + ,

where J(X) = 1 if X = 0 and J(X) = 0 otherwise. We also define Π(X) = 1 if X
is a cell and Q(X) = 0 otherwise.

Now enlarge the sum in (2.5) to a sum over partitions of A into unions of cells,
defining K°(X) = 0 if X is not a union of closed blocks. Then we have

Σ
i Xn)

K°). (2.8)

2.2. We perform renormalization group transformations designed to isolate the
long distance behavior. A single step consists of three parts: (i) a fluctuation integral:
high frequency modes are integrated out, (ii) relevant terms are isolated and the
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theory is reblocked on a larger scale, and (iii) we return to the original scale, but
in a smaller volume. The treatment follows that of Brydges and Yau [BY]. (However
they use the order (ii), (iii), (i).)

After j steps the base space is Λj = Λ(N — j) and we have a measure

Zj(φ)dμβvj(φ) = Λ ψ ( • + K'{φ))dμβΌj(φ) (2.9)

on functions on Ay The covariance of the Gaussian part is the operator vj with
kernel

vj(x -y) = \Aj\-1 £ eip{χ-y)(p2ep4 + σjp2)~x (2.10)
peΛf\{0}

for some constants σj.
The functionals Kj(X, φ) are still defined for unions of unit blocks X, although

now X need not be connected. The dependence on φ is to be localized near X in
a sense to be made precise. We assume that if S is any symmetry of Z 2 then
Kj(SX, Sφ) = Kj(X, φ). We also make the periodicity assumption Kj(X, φ + 2π) =
Kj(X,φ).

We isolate the dependence of Kj(X, φ) on low order derivatives and require
that there are functionals Kj(X, φ) defined on triples φ = (φ0, φί9 φ2) of continuous
functions ψa:Λ

J-*'S? such that

9) (2.11)

where

Φφ = (φ,dμφ,dμdvφ). (2.12)

The Kj(X, φ) are to have the same support, symmetry, and periodicity properties
as Kj(X, φ). We also assume Kj(X, φ) is analytic in φ (see Sect. 3). Still there is
some freedom in the choice of Kj(X, φ) which will be useful.

23. We now explain in detail the transformation from j to j + 1 starting with the
fluctuation integral.

Define a new covariance t># on Λj by

^" I HI
i.e. replace epA by eL*pΛ in (2.10). Then define the fluctuation covariance C by

VJ = v# + c so that

C(p) = P~2L(ep4 + σ ' Γ 1 - (eL4p4 + σO" 1 ] . (2.14)

Note that this is smooth and vanishes at p = 0 which is why we took a cutoff epA

rather than say ep2.
Now integrals with respect to dμβvJ can be expressed as integrals with respect

to dμβv# x dμβc. If we define

Z\ψ) = (μβc*ZJ)(φ) ΞΞ \Z\φ + ζ)dμβC(ζ\ (2.15)

then §Z*dμβv# = §ZjdμβvJ. The new density Z # has a local expansion Z # =

<fxp ( • + K#\ where K# has the same properties as Kj. There is an explicit formula
for K« (see Sect. 6).
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Fig. 2.

<

We next extract relevant and marginal pieces for K#(X, φ). The first step is to
reduce the φ0 dependence to a single point. A set X is said to be small (Xe£f) if
the centers of the constituent blocks have diameter ^ 1 in an /°° metric. The possible
small sets are shown in Fig. 2. For each small set X we pick a distinguished point
XGX as indicated in the figure. The choice is unaffected by lattice symmetries.

We define for XeS?, ΦeR, and φ = (φu φ2\

(2.16)

where the integral is along a straight line. Then (K#)f is equivalent to K# (written
(K^y = K#) in the sense that they agree when Φ= φ(x), φ = φφ.

Now (K#y is periodic in Φ and we may expand in a Fourier series. The Fourier
coefficients for qeZ are:

, q, φ) = eι«φ(K#y(X, Φ, φ)dΦ. (2.17)

The relevant terms are from the low order terms in a Taylor expansion of
\ q == 0, φ). These are (for Xe£f)

(2.18)F{Xy φ) = δV(X) - β~ 72 Σ J ΨiJx)δσίv(X)ψUv(*)dx>
μ,v X

where

(the notation is explained more fully in Sect. 3). We calculate

£F(X,φ) = \Λj\δEj- ιδσj

(2.19)

(2.20)
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where

δσJδμv = £ δσj

μv(X), any A (2.21)
Xz>Δ

Here we have used the lattice symmetry to obtain the δμv.

We define Z* by extracting a Gaussian piece from Z#,

Z#(φ) = exp(\Λj\δEJ-l/2β-1δσJj\dφ\2)Z*(φ). (2.22)

Then Z* has a local expansion Z* = ^xp(Π + ^*) and K* has the same properties
as Kj, except that now K* = K*(U, φ) is only non-zero for sets U which are unions
of L-blocks. The explicit formula for X* is given in Sect. 7.

Next we absorb the quadratic piece into the measure:

dμβv# = ^jdμβv*, (2.23)

where

if V Φ 0,

(2.24)

(0 if p = 0,

T h e n w e h a v e \ Z * d μ β v # = J ^ μ ^
Finally we scale down to Λj+1. With σj+1 = σJ + δσj we have

We also define

&+1(X,φ) = K*(LX9Rψ)9 (2.25)

where {RφJM^L-'φJtL^x), and then J Z * d μ ^ = J Z ^ 1 ^ , - ,
To summarize we have transformed the interaction density; Zj-+Z#^>Z*-+Zj+1

in such a way that \ZjdμβvJ = Λr

j$Zj+1dμβvJ-ί. Our goal is to show that Zj~* 1
as j-> oo. At the same time we shall use the bounds we obtain for δEj and δσj to
control Y\ Jίy

3. Analyticity and Norms

We consider general functions K(X,φ) indexed by XGΛ and defined on triples of
continuous functions φ = (Φo^Φi^Φi) o n Λ As explained in Sect. 2, the polymer
activities for our functional measures are restrictions of such functionals K(X9 φ)
to the subspace

Jlo = {* = Φφ'.φe#JLΛ)}. (3.1)

A basic regularity assumption is that K(X,φ) is an analytic functional on a
neighbourhood of Jί0. That is, for any decomposition φ = φφ + f with φφeJΐ0 and
f = ( / 0 , / 1 , / 2 ) sufficiently small there is an absolutely convergent expansion

X , ^ ; Γ ) (3.2)
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Here for n = (n o,n 1,n 2) we have n! = n o ! n 1 ! n 2 ! and fπ = /J° f\x / 2

2 (Cartesian
product). The quantity Kn(X, φφ) is a multilinear functional on C(Λ9 R)"° x
C(Λ,R2)Wl x C(Λ9R*)Λ2

9 symmetric on each sector and can be identified as the
(Frechet) derivatives of K(X, φ) at φ = φφ.

The derivatives are assumed to have further regularity properties. Identify
C(Λ, R2*) with C(Λ x Ωa\ where Ωo = 0 , Ωx = {μ}, β 2 = {μ, v}, 1 ̂  μ, v ̂  2. We
define Λn = (A x ί20)

πo x (Λ x ί^J"1 x (Λ x ί22)"2, and assume that Xn(X, ^ φ ) deter-
mines a continuous linear functional on C(Λn) and thus a signed regular Borel
measure on Λn. (Then fn is interpreted as the tensor product in C(Λn).) For general
FeC(Λn), we write formally

where the integral is over Λn and iV = |n|.
Norms on the functional K(X9φ) are defined as follows. For the measure

Kn(X9 φφ) we take the total variation norm, i.e. the norm as the dual of C(Λn):

\\Km(X9ψ9)\\= sup \Ku(X9ψφ;F)\. (3.4)

For any large field regulator

G(JT, φ) = exp[ιc/21| φ | | ^ ] (3.5)

(|| φ | | s ί is a restricted Sobolev norm on X = Xu {corridor}; see Eq. (5.2)), we define

= Σ S U P ΠKAXtψJlJGiXtφ)-1!, (3.6)

where A = Δ1 x ••• x ΔN and each At is a closed unit square in A.
Next, for any large set regulator

(where A = constant and Θ is an increasing function of the length of the shortest
tree on X) we define

l|K.llcr= Σ Γ(X)\\Kn(X)\\G. (3.7)
XBΔ0

Our functionals will be translation invariant so the norm does not depend on the
choice of a fixed square Ao.

Finally for h = (h0,hl9h2),ha ^ 0, we define

(3.8)

Note that the n and X summations can be interchanged:

llxilCiΓifc= Σ ΠJOIIJΦOIU
XBΛ0

where

(3-9)
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For each h let Jί^ be the open neighborhood of Jί0 defined by

Let JΓ G Γ h be all functionals K = K(X,φ) defined for φeJΐh with the following
properties:

1. K is analytic in the sense that it has expansions (3.2) with symmetric measure
valued coefficients on each sector,
2. | | K | | C Γ h < o o ,
3. For any symmetry S of Z2,K(SX, Sφ) = K(X, φ\
4. Kn(X, φφ) is supported in (X)n.

Note that for such a functional we have

| |Xn(X,^)| |^G(Z,φ)Γ(Z)-1n!h-n | | iC| |G > Γ ) h. (3.11)

It follows that the expansion (3.2) converges for all f = (/0, fx, f2) with \fa\oo<h0C

as required, and that

\K(X,φ)\ < G{X,φ)Γ{XY' Π ( l " 1/αlooAα)"1 \\K\\GtΓχ (3.12)

The last inequality shows that | |* | |G Γ h is a norm on JfGtΓM.

Lemma 3.1. ^ίGΓM is a Banach space.

Proof. (Sketch) We must show it is complete. Let Kj be a Cauchy sequence in
/ G Γ h . By (3.12) we have that the limit K(X,ψ)= lim Kj(X,φ) exists for φeJi^.

By (3.11) KJ

n(X,φa) is Cauchy sequence in the space of measures on Λn and by
the completeness of that space there are limiting measures Kn(X, φa). By limits
one shows that K(X,φ) has the expansion (3.2) around any point φφ with
coefficients Kn(X,φφ). Now (l)-(4) follows, so KeJfGΓh. Finally one shows

\\κjκ\\o. •
We say that K is a local analytic functional if it is in Jf G>Γfh for some G, Γ, h.

This definition only requires convergent expansions around points φφ. But of
course there are expansions around any φeJίh. We have:

Lemma 3.2. //XeJΓG Γ h + N f, where N ^ ί l / o l ^ l / i l ^ l / J J , then Kf defined by
Kf(X, φ) = K(X9 ψ + t) 'is in JfG Γh and

Proof. Let g satisfy \g(X\o0<ha. Then φ + f + ge^ h + N f and

where

cUX,ψψ;gm)= Σ l/(n-m)\Km(X,φ9;Γ-'f)
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and Γ g b = fao0gbo0faigbifa22gb22' The same formula defines a measure on Λn and we
have

^Σ £ l/(n-m)!||Kn(^^)l4l4,||Nrm,

and hence

m \ n^ m

•N f )7n! | |K n | | G , r

The product of local analytic functional is now considered. For K€Jf0Γh we
define

\K\GΓ_h = supΓ(X)\)K(X)\\Gh, (3.13)
X

and note that

\K\GtΓtkύ\\K\\GtΓth. (3.14)

Lemma 3.3. Let K1eJfGitΓvh and K2€JfG2^h. Then K1K2sJfGlG2iΓlΓ2ih and

(i) for all XeΛ,

| | K 1 ( X ) K 2 ( X ) | | G i G 2 5 h ^ I I K ^ X ) | | G i ) h I I K 2 ( X ) | | G 2 > h ?

(ϋ)

II ̂ 1 ^ 2 HGiGa.ΓjΓa.h = 1 ^ 1 Ic^Γ^h II ̂ 2 llc2,Γ2,h

Proo/. Part (ii) is immediate from part (i), so we prove part (i). By definition,
(KtK2)(X9 ψ) = KX{X9 ψ)K2{X, ψ). We compute

(K1K2)n(X,Ψφ)= Σ n\/a\b\SymtKlΛ(X,ψφ)®Kλh(X,ψφ)l
a + b = ή

where Sym denotes an average over permutations of the points for each sector.
We find

G^^ Σ n!/a!b!

a + b = n A'A' <P

'U\κχh(x^ψ)\AG2\x,Φφ)Λ

S Σ n\/a\b\\\KJX)\\Gί\\Kλh(X)\\G2
a + b = n

and part (i) follows. •

We now use these norms to bound the initial interaction given by the activity
expansion with activities K° defined by (2.6).

Proposition 3.4. Let the large set regulator Γ(X) = A{XιΘ(X) be such that Θ(X) = 1
if X is a connected set. Then, for any ho>0 with 4%A\z\eho + ί < 1, the functional
K°isinjrltΓthand \\K0\\ltΓth£δ0 =

Proof The functional K° depends only on φ0 = φ, and we may ignore any reference
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to φliφ2- Clearly V(Δ9φ) is analytic and has derivatives

Vn (Δ, φ; F) = 2z J cos(M) (φ(x))F(x,..., x)dx.
AJ
A

Therefore || KB(4,φ)|| ̂  2|z| and so V{Δ)eJflh with norm || F(4)||1>h g 2|z|eΛo.

Next consider

( - K ( 4 , φ ) ) - l = Σ V(Δ,φ)N/N\.

By Lemma 3.3(i)
\\V(Δ)N\\ιhS\\V(Δ)\\lh

and so the series is norm convergent:

For any connected set X, Lemma 3.3(i) implies

and thus

II«°IIIΛ= Σ nx)\\κ\x)\\lM
X3Δ0

ί Σ

This standard sum is estimated by a spanning tree argument:

Σ r'*' ^ Σ r W Σ #ixconnected, a4 0 , |X| = N9τ c G(X))},
X B Δ O N>1 τ o n { l , . . . f W )

ΛΓ connected

where τ is any spanning tree on {1,..., N} and we count sets X whose connectivity
graph G(X) contains τ. For each τ, the number of such sets is rg iV δ^" 1 , Cayley's
theorem bounds the number of trees by NN~2, and so

< y rN-SN~1-(NN-1/Nl\
ΛίSΊ

where r = 3A\z\eho. By Stirling's formula, this is convergent provided Ser < 1, and
for 8er < 1/2 the sum is bounded by δ° = 2r (i.e. twice the JV = 1 term). •

4. Some Basic Lemmas

In this section we want to establish bounds on K\ k (defined as in Eqs. (2.16) and
(2.17)) in terms of K, and also bounds going the other way. We write K! as

(4.1)

where H = H(X) denotes the operator

U (4.2)
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and xeX is the distinguished point. The Fourier coefficients are

) , qeZ. (4.3)

We only consider functionals K' (X,Φ,ψ) on small sets X. We define norms
\\K.'\Xey\\GXM just as in Sect. 3 except that now the first variable is in C = C({x})
instead of C(Λ). Also, for the functionals k(X,q,\j/) we have for each qeZ a norm
\\KΦχe<?\\G,r,h which is just the restriction of || ||GίΓ>Il to a functional independent
of the 0-component of φ (note ίi = (hί9 h2)).

Lemma 4.1. There is α constant B so

(i)
II K'lxeSf llc.Γ.h = II K W ^

(ϋ)
\\Hq)heAβ,rM^exP\_-

Note: Combining (i) and (ii) with ho->ho — Bht leads to

IIk(q)ίχ^IIG,r,6 ^ exp[ - ( h 0 - Bh^qU IIK||G,Γ>h. (4.4)

Proof, (i) For g = (flfo.0i.02)eC({jc}) x C(Λ x ΩJ x C(Λ x β 2 )

= Σl/m\K'm(X,Φ,ψφ;g
m).

m

In the last step we have made the change of variable m0 = n0 — l,m1 = n1-\-l,
m2 = n2, and identified the derivatives of K' as

A similar formula (with a symmetrization) defines a measure on Λm, and

\Kmo + ι,mί_lίm2(X,ψφ;lΔ,H
ι(FlΔ)\

where the linear operator F^lΔH
ι(FlΔ) is bounded by (diameter (A))1 = /

When we sup the bound over φ, the sum over A is done by noting the conditions

for alii;

t = Δt for i ̂  m0 and i > m0 + /,

and hence



Renormalization Group Analysis of Kosterlitz-Thouless Phase 275

where B = 16^/2. Now we have

m,/

Σ 1/n! fto«/Ir^(β/ll)Γ

(ii) If K'etfGΓM, the functional K' is analytic in Φ on the strip |Im Φ\ < h0. In
the formula for k(q), with q Φ 0, we shift the integration contour by Φ -• Φ + ϊ(/ι0 ~~ ε)
(+ corresponding to ±q > 0; any εe(0, /z0)). Then

fc(X,^^) = β- ( Λ°- ε ) k l(2π)- 1 f e-iqφK'(X,Φ + i(h0-εlψ)dΦ.
— π

The derivatives kA(q) are related to the derivatives K'0Ji by the same formula. This
leads to

I G,ΓM ^ e-(*°-β)l ί l II X'( + i(Λ0 - 4 , I G,r,o,h

by Lemma 3.2. This bound, true for any ε > 0, is therefore true for ε = 0. The bound
for k(q = 0) follows without shifting the contour. •

If we start with /c, we can recover Kf by summing the Fourier series. If we then
define K" by K"{X, φ) = K'{X, ψo(χ), φ) then K" = K, i.e. they agree on Ji0. In terms
of k we have

Σ 9 ψ . ) . (4.5)
qeZ

Lemma 4.2.

(i)
\\eiqφix)\\G=uh0Se^h^

(ii) // II fc(tf)ljre*ΊI G,r,fi ̂  Ce~lqlho then for any ε > 0 ί/im? is a constant Cε so

WheAG,Γ,ho-φ^CCε.

Proof, (i) It is straightforward that f(q, φ) = eiq*o(x) is analytic and has derivatives

We therefore have a bound | |/ Π o (^) | | G =i S kΓ° and part (i) follows.
(ii) Now let f(X, q, φ) = eiqψo{x\ where x is the distinguished point in X. By

Lemma 3.3 and (i):

II * " W CΓΛ,-J ^ ΣI/(ί)lG-i.r-iΛ,-. II * ( ί ) l ^ llc.rί
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5. The Main Theorem

The renormalization group transformations have given us a sequence K°, K1, K2,...
of interaction functional. We want to show Kj^0 asj'-• oo, which we characterize
in terms of the norms || || G Γ h . We discuss the specific choices of norms, state the
result, and outline the proof.

It turns out that the large field and analyticity properties of the functionals
deteriorate slightly as we iterate. No single norm is adequate and we must allow
some weak dependence on j . Thus we consider \\Kj\\GjΓihj with Gj+1 > Gj, GJ ^ G °
and h j + 1 < h J,h J ^ h° and Γj = Γ°. We want to show \\Kj\\GjΓjhj is decreasing in;.

A fundamental condition is that \\K°\\GotΓoMo is sufficiently small. Since
II ^° II G W = II jK-° lli,r°,h0 ^ follows by Lemma 3.4 that this is true if z is sufficiently
small. However to minimize the constraint on z we will not want to take Γ,h°
any larger than necessary.

A second fundamental condition is that L be sufficiently large. This guarantees
a sufficiently strong contraction. In fact we will be able to show that

for any ε < min(l/β/4π — 2); for definiteness say ε = min(l/2, ββπ — 1). (By com-
parison, for the dipole gas Brydges and Yau are able to obtain (4.1) with any ε < 1,
independent of β. Also, for their model analyticity properties improve and one can
allow hj to grow in j . This improvement corresponds to the absence of marginal
variables in the model.)

We now define Gj,Γj,hj. For the large field regulator we take:

(5.2)

Here Xη is an enlargement of X which has a smooth boundary and contains all
points y with d(y,X) ^ 3η/4 but no points with d(y,X) > η. The norm || | | x is the
norm on L\X). The exponent has a form suitable for dominating | d*φ \ by Sobolev
inequalities for |α | = 1,2. The coefficient κj is given by:

where cγ is a sufficiently small constant (so Gj(X,φ) is integrable with respect to
dμβC). Note that κ° = cxβ~1 and κ° ^ κj ^ 2κ°.

For the large set regulator we take

Γ\X) = y(X)Γ(X) = (γW)(AWθ(X)) (5.4)

with constants A = 2L3 and γ = 2 1 / 1 6 . The function Θ is defined by

(5.5)

where the infimum is over trees τ connecting the centers of the blocks of X and
where θ satisfies 0(1) = 1 and 0({s/L})^(2L3)"10(s) ({*} is the smallest integer
greater than or equal to x). For definiteness we define

θ{s) = {2L3)n+\ Ln<s^Ln + \ rc^O.
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Finally we define

(5.6)

where

( ^ A (5.7)

and c2 is a constant to be specified (see Sect. 6). We have h° = c2β and h°/2 < hj ^ h°.
The main result is:

Theorem 5.1. For any β > 8π, let L be sufficiently large (depending on β)9 and suppose
\z\ and hence δ° = 6Λ\z\eh° are sufficiently small (depending on L and β). Then for
O^j^N we have KseJfGjtΓJMj and for δj = L'jεδ°,

δj

9 (5.9)

\δσj\^β(hj)~2δj. (5.10)

Remark. As a consequence || Kj \\ G* Γoo hoo g δj. This gives the precise sense in which
Kj->0 asj-+co.

Proof. At any stage the bound on Kj implies the bounds on δEj and δσj. Indeed
by bounds like (3.11), (3.12) we have:

| |/c% = 0) | | G i ) Γ ^, (5.11)

Jr2\\V(q = 0)\\GjtΓlίj9 (5.12)

and by (4.4) and the bound on Kj

II H i ) WG{ΓW £ exp(BA'|ί |>H (5.13)

which gives the result (we have suppressed 1 Xe9, from the notation).
The bound for K° follows by Lemma 3.4. We now assume the bound on Kj and

use it to prove the bound on Kj+1 following the sequence Kj^>K*^>K*^>Kj+1.
To estimate K* (the result of the fluctuation integral) we introduce

(5.14)

Proposition 1.

(ϋ)

i«?ί | e χ p ( _ ( k | _ ί/2)βt + Bhj{ql)δj q φo'

We postpone the proof of Chap. 6 where β* is defined; roughly it is β logLβπ.
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The factor exp( — (\q\ — 1/2)jS*) gives the contraction for the q # 0 Fourier modes
for small sets.

To estimate K* (the result of extraction and reblocking) we introduce

Γ*{U)=y(U)Γ(U)9

h* = hJ+1(l9LΓι,LΓ2). (5.15)

Here U is a union of L-blocks and in Γ*(U) the \U\ refers to the number of
L-blocks, etc.

Proposition 2.

The proof is postponed to Chap. 7. The issue is to find contractive factors for
large sets and for q = 0 modes for small sets.

We complete the proof of Theorem 5.1 by scaling the above bound to obtain:

(Actually we get G*{LX,Rφ) which is Gj+1(X,φ) with X3/L instead of X1J6. Since
for L large X3/L <=Xί/6 the result follows.) •

6. Proof of Proposition 1: Fluctuation Integral

We consider the one parameter family K(t\ 0 ̂  t ̂  1 defined by the fluctuation
integral

K(ή) = μ ί / ? c *[^xp(D + K ' ) ] . (6.1)

By assuming inductively that Theorem 5.1 holds at the j t h level, we have estimates
on K(0) = K\ and we seek to produce bounds on K# = K(l). The proof follows
[BY, Theorem B]. Now K(ή is the solution of an integral equation:

K(t) = μtβc*K(0) + lβ^μ^βc^KMβCK^ds. (6.2)

We use the notation

with ξ = (x,ω)eΛ xΩ,Ω = ΩoxΩ1x Ω2,jdξ = jdxΣ, and K^ξ) = δK/δφ{ξ).
ω

Part (i): Part (i) of Proposition 1 is proved exactly as in Brydges and Yau by
considering the function (analytic in h)

where h = (h, h, h) and

g(t,X) =
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Note that g{\) = γG#, Γj = y~1Γ# and h# ^ hj+x so

Therefore, the bound of part (i) follows if we prove

k(0M^\\Kj\\GJΛhj. (6.3)

It is essential that the interpolated large field regulators g(t) satisfy the
homotopy property.

μ(t-u)βc*g(u)Sg(t) for all O ^ t / ^ ί ^ l . (6.4)

The proof of this result given in [BY, Proposition 9.1] applies here provided κj

is sufficiently small; in particular we need

U W - , ^ ) - 1 . (6.5)

Lemma A.2 in the appendix shows that ||C||_S_»S, the norm of the fluctuation
covariance as a linear operator C: J f '_s(Λ)-> Jf's(Λ)9 is bounded by 0(1) (the prime
indicates no zeroth order derivatives). Thus we can satisfy (6.5) by taking c1 small
enough (recall κj ^κ° = Ic^'1).

The homotopy property leads to the following result [cf. BY, Proposition 8.3)]:
the power series for fe(ί, h) is term by term dominated by the solution of

i C J I vk (S, ") \
k*{t, h) = /c(0, A) + β || C || Jds[ ^ ^ ) (6.6)

or equivalently,

In our setup we have an extra derivative (d/dψ0) not present in [BY]. This does
not affect the proof, but it does modify \\C\\:

| |C | | = sup X sup \dΛd*'C(x-x')\θ(d(Δ9Δ')). (6.8)
ΔeΛ Δ'eΛxeΔ,x'eΔ'

a,a'eΩ

Lemma 8.4 of [BY] applies to (6.7) and shows that the solution fc* is analytic
in 0 ^ t ^ 1 and h near the origin, and that

k*(l, hγ) S k*(09 ho\ (6.9)

provided ho,hl9 and fe*(0,Λo) are chosen such that 0 < hί < h0 and

k*{0>h^Wm- (6 10)

With h0 = hj and hγ = hj+1 the bound (6.9) gives the required bound (6.3). The
condition (6.10) holds if

5

~ l6β\\C\\
This is true if <5° is small: Lemma A.2 says || C \\ ^ Θ(\)L? and moreover, from (5.7)
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we have hj + hj+1 = Θ{l)βL~jε/2. Thus the bound holds provided we choose

Part (ii): The analysis for the small set part K(ήlXe^ is simplified by noting that
the circle product of two activities vanishes, (K°K')(X) = 09 whenever X is a
connected set. This means the non-linear term in (6.2) drops out if X is a small set:

K«(X) = μβC*(Kj(X)\

We are concerned with the Fourier components of K#. By the definition of fe#,

= (2π)-iμμβC(ζ) f

where ζ = (dζ, ddζ) and we have used

Because Kj is periodic in Φ, we can shift the integration variable Φ-+Φ-ζ(x) to
produce the desired fluctuation integral:

] + ΰζ\φ + ζ)

The case q = 0 is easily dealt with:

= 0)| |G # > Γ # > ί i #S IIμβC*kJ{q =

The first inequality requires ίi# S hJ The second inequality follows from

' \\lht-u)βc*A\\g(t)ύ\\A\\βiu)9 O ^ u g ί g l , (6.11)

which holds for any functional A(X9φ) or derivative as a consequence of the
homotopy property (6.4). The last inequality is (5.13).

When q^O, we use analyticity to make a complex shift ζt-+ζ±if in the
fluctuation integral for k#(q):

, q, φ) = e

(X,q,φ + ζ± if).

The sign of the shift depends on the sign of q. The function / is chosen to minimize
-f(x)+\β(f,βC)-ιf):

= βC(y,x),
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and then

f(x) = β* = βCφ,0)

l/2(f,(βCyιf)=l/2β*.

This choice of / produces optimal bounds on k#(q) for \q\ = 1.
Taking derivatives and estimating the integral we find

Using the homotopy property (6.4) again yields

|| k*{X, q) \\gW £ e"<l"l - W || k{{X,q, • ± it) | |, ( 0 ),

| | k * ( q ) \ \ G W # Ϊ e - ( l « l - I W O ||k'(q,• ± it)||

But Lemma 3.2 implies

IIfc% ± i?)WGJ,ΓJM« ^ II

where Nf = (\dfU\ddf\J. By Lemma A.2, | 3 / | 0 0 , | δ δ / | 0 0 < Φ ( l ) i8, and so for c 2

large enough

The result now follows by (5.13). •

7. Proof of Proposition 2: Extraction and Reblocking

It remains to pin down the definition of K*, and to bound it using the bounds on
K§. The proof is an extension of [BY, Theorem A], with extra care needed to treat
the various Fourier modes.

The overall requirement on the reblocked activities is that

K*(l/)= Σ Λίu
{Xi}-+U

that is, the equation holds for fields φ = φφeJ?0. The sum is over collections of
disjoint sets Xt such that (i) the Mayer graph on {Xt} (L_e. the graph on {Xt} of
lines joining overlapping pairs Xi9Xj) is connected, (ii) u ^ = U, where Xt denotes
the smallest union of L-blocks which contains Xi9 a union of unit blocks. The
quantities h,R, J are defined in terms of F (which is given by Eq. 2.18) by:

= Π exp-F(r,<A), (7.2)

) - l , (7.3)

where in (7.4) the sum is over collections of distinct sets Xt such that (i) the Mayer
graph is connected, (ii) u fX; = X.

K* is defined as a sum Kf + K%. The first term Kf is chosen to include all
contributions which are first order in the Fourier modes of K#. It will be small
due to renormalization subtractions for k#(q = 0) and the overall smallness
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of k#(q φ 0). The remainder K\ contains only terms which are either higher order
in K# or have factors of K# on large sets.

For unions U of L-blocks, we define

K*(U) = Σ
XeS?:X=U

K*2(U)= Σ h(X)l(K*(X)-R(X))lXφ£,-R+(X) + J+(X)l (7.6)
X:X=U

The quantity / is defined in the next paragraph in such a way that I = K# — R,

κ + ( * ) = Σ ΠR(χi)> (7 7)
{Xi)->X i
^ 2sets

J+m= Σ UJ(χil (7-8)
^ 2sets

where (7.7) is summed as in (7.4) and (7.8) is summed as in (7.1) except condition
(ii) becomes uXt = X. With Kf and K% chosen in this way, the reader may check
that (7.1) is indeed satisfied.

We define for Xeϊf

I(X,φ)=Σeiq*oix)ί(X,q,ψl (7.9)
qeZ

i{X, q = O,ψ) = \k*(X, q = 0,fo- δE\X) -\% $QJX; x, y)φμ(x)φv(y)dxdy]

+ \ Σ I X Γ l ί dz[\ Qμv{X; x, y) Wμv(ψ; x, y, z)άxάy\

+ ίF(X,ιj))-R(X,ψ)l (7.10)

) = k*(X,qΦ0,ιj}). (7.11)

Here

Qμv(X; x, y) = k%(X, q = 0, $ = 0; x, μ, y, v)

and

Wμv(φ; x, y,z) = ]dsΣ [(x - z)aφμσ(z + s(x - z))ψy(z + s(y - z))

Since

Wμv(φ; x, y, z) = φμ(x)φv(y) - φμ(z)φv(z)

and

δσJ

μv(X)=-β\X\-1JQμv(X;x,y)dxdy and K«" = K*

we have that I = K* — R. In addition, this definition has the desired feature that
it can be bounded directly in terms of the Fourier modes k#(q), rather than K#.
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Lemma 7.1.

(i)
(Θ(l)L~3δj g = 0

i i K Φ ι ι G W * ( e x p ( _ ( k | _ 1 / 2 ) r + B h J l q l ) δ J qφ0,
(ϋ)

Proof, (i) The bound for q φ 0 follows directly from the bound on k*(q) since h* < h#.
The bound for q = 0 uses the fact that ί(q = 0) is an irrelevant functional, i.e.

that the derivatives in(X9 q = 0, ψ = 0) vanish if dim n = n1 + 2n2 ^ 2. This of course
is the point of performing the extractions.

Lemma 4.3 of [BY], which deals with functionals whose low order derivatives
vanish, is applicable here since (κjhj+ί)~ί ^ Θ(l) and implies

II i(q = 0) IIG# Γ# f i ^ Φ(l) || /(« = 0) | | ^ ^ ^ 3 ,

where "dim ^ 3" indicates which low order derivatives are omitted from the norm.
By changing h* to h# in the dim ^ 3 norm, we can extract a factor of (2/L)3,

II i(q = 0)IIG#r#h* ^ &WL'31| i(« = 0)IIG#Γ#ίi#dim^

Finally, we need to bound the norm on the right by 0(1)||k*(q = 0 ) | | G # Γ # J ; # . This
requires estimating each of the three terms of (7.10) exactly as done in [BY, Lemmas
4.2, 4.4].
(ii) Following the proof of Lemma 4.2 and using the bounds of (i) for i(q), we have

Σ /)β )\
L 4*0

Lemma A.3 in the appendix shows that for L sufficiently large,

| j8*-j81ogL/2π|<l, (7.12)

and hence β* > (B + l)hj > Bhj + hj+1. Then the series converges and is dominated
by Φ(l)exp(-j5*/2 + (5+l)Λ 7 ) (the \q\ = l term). By (7.12) this is bounded by
Θ(l)L~β/4π exp ((B + ί)hj) to complete the proof. •

Lemma 7.2.

(i)
| |Kίllc.Γ.k.g0(l)(L-1 +L2-^")eχp((B+ ί)hJ)δJ

(ϋ)

Remarks, (a) This finishes the proof of Proposition 2. We have for L sufficiently
large:

& = δJ+1. (7.13)

(b) In the proof we need the definitions

^,h = Σhn/n! Σ Γ(X)\\Kn(X)\\G,
n X .XsΔ

o,h = Σ h"/n! sup Γ(X) || K.(X) | |e.
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Proof, (i) We have (cf. [BY, Eq. (7.4)]),

II K* | | G V V S I * I $ Γ v 11/ llGV yw (7.14)

where Γ * = yΓ# and 5G = G*(G#)" 1.
But |/z|(1) ^ 4 [BY, Lemma 6.1] provided δ° is sufficiently small (δ° ^ O(L"2κ:0^)).

Furthermore since y2 ̂  2 1 / 4 we have by [BY, Lemma 3.1]:

h*, (7.15)

and the result follows by Lemma 7.1 (ii).
(ii) The terms in K% are estimated similarly by

W i M φ ^ v (7 16)
For the first term, the large set restriction gives a contractive factor,

« % ^ 18L'1 ||K#

Here we have used [BY, Lemma 3.1] for the first step and the bound || R || ̂  Θ(\)L~1δj
from [BY, Lemma 4.2] combined with the bound on || K# || for the second step.

The second and third terms in (7.16) contract because they are higher order.
By [BY, Lemmas 3.1 and 5.2], if δ° is sufficiently small ( ^

% V ^ Θ(l)L2 \\R+ | | G # Γ i Γ # h # ^ 0(1)IΓ W (7.17)

Similarly, for the third term of (7.16), [BY, Lemma 7.1] implies

\\j+\Wr«M«ί Σ

Moreover, since J = K# — R — R+,

where in the first step we decrease Γ by y4 = 2 1 / 4, the largest factor allowed by
[BY, Lemma 3.1]. Therefore, provided (5° g Θ(L~5\

Ί ^ 1 ^ - •
Concluding Remark. We explain the sense in which we have established
Fig. 1. The conditions on the parameters (β,z) in Theorem 5.1 are satisfied if
z ^ Θ(\)L~n exp (— l/2c2β) for suitable n. Given this, z must be taken exponentially
small as /?->oo. As β-^Sπ we must have L->oo to ensure that the bound
(7.13) holds, and thus z->0 in this limit as well. Thus the constraints on (β,z)
describe a region roughly like that of Fig. 1.

The flow of the renormalization group transformations can be tracked by two
effective parameters. Of course the actual flow is in an infinite dimensional space.
For example we might define
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and then βj = β(l + σ-7)"1 converges to β^ = β(l + σ 0 0 )" 1 and z7->0 as j-+ oo. The
points (βpZj) would lie on the indicated flow lines in Fig. 1.

A. Appendix: Lemmas on C

Here we collect properties of the fluctuation covariance

Σ (A.1)

which are used throughout the paper. In what follows we take the torus A of side
LN,N>0 and assume |σ| ̂  1/2.

Lemma A.I. For each multίindex α , | α | ^ 5 and integer n = 0 , 1 , . . . , M , there is a
constant AsM such that

{ AStML2n~^(l + \x\2ny1 if \oc\<2n

^ l o g L ί l + lxl2")-1 if |α| = 2π

As^l + M2")-1 if l«l>2n.

Proof. We write
\x\2nd«C(x)=-2 f ds\A\-χ V eίp'x\x\2n(ίpYp-2sp\es2p4 + σ)

L2 peΛ*

When we rescale p->pr = s1/2p we find

^ 2 f
L2xeΛ

sup
\~2

The supremum over xe(s~ί/2A) is 0(1) for any value 1 ̂  s ̂  L2 and any volume
|s~1/2yl| ^ 1. To see this, note that

Σ
μ=l,2

(l-cosfixμ)), ε =

for any XGS~ 1 / 2 Λ. Insertion of this inequality and summation by parts on the
momentum lattice leads to

sup I
xe(s~1/2Λ)

\~2

^ (P(l)

where — Δp is the lattice laplacian. The three bounds of Lemma A.I now follow
by doing the s-integral. •
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Corollary A.2.

(0
\dC\x<&(\),

(ϋ)
\ddC\a<G(\),

(iii)
\\C\\<Θ(\)L9,

(iv)

Proof Bounds (i) and (ii) are immediate from Lemma A.I with n — 0. Starting
from the definition (6.8) of || C||,

IICII = sup X sup \d"δ«'C(x-x')\θ(d(AΔ'))
ΔeΛ Δ'eΛxeΔ, x'eΔ'

oc,a'eΩ

ύ sup X [0(l)L2n(l + d(Δ,A')2)-"]lΘ(l)L3(d{A,zl')3]
ΔeΛ Δ'eΛ

which, for n = 3 yields bound (iii).
For (iv), C is considered as a linear mapping C:3tf"-s{A)-*3tf"s(Λ)\

Σ (p")2c(p)

and bound (iv) is proved. •

Lemma A.3. For a torus A of side LN

9N > 0,

Proof Write

and ignore the error for the moment. Then the first term is

(2π)2 i>.* k dsy ' An ί> s I rdp

logL2

4π(l+σ)'

The error term is
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where p(p) is a point between p and [p]LN and [_P~\LN denotes the point on the

lattice 2πL~NZ2 nearest peR2. We now note that \pμ - [p]£»| < Θ(ΐ)L~N and check
that

μ P

and the result is proved. •
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