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Abstract. The ¢ =0 combinatorics for Uq(s/»\l(n)) is studied in connection with
solvable lattice models. Crystal bases of highest weight representations of Uq(gl(n))
are labelled by paths which were introduced as labels of corner transfer matrix
eigenvectors at g = 0. It is shown that the crystal graphs for finite tensor products
of I-th symmetric tensor representatlons of U,(sl(n)) approximate the crystal graphs
of level I representations of U, (sI(n)) The identification is made between restricted
paths for the RSOS models and highest weight vectors in the crystal graphs of
tensor modules for U, (sI(n))

1. Introduction

1.1 R Matrices and Paths. The eminent role of the quantized enveloping algebras
in solvable lattice models is widely known. The R matrices, which are the intert-
winers of tensor product representations, give the Boltzmann weights of lattice
models with commutlng transfer matrices [1].

Consider U, (sI(n)) Let (V,n) be the I-th symmetric tensor representation of
U, (sl(n)) We can extend this representations to a family of representations (V, )
of U, (sI(n)) with an auxiliary parameter x. The R matrix R(x,y) is an element
of End(V® V) which intertwines two representations (V® V,n,®m=,) and
(V®V,n,Q@m,). Set

n—1 n—1
+
"dl = {V = z viEi viGZ§0, ZO vi = l},
i=0 i=

* Partially supported by NSF grant MDA904-90-H-4039
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1) Fig. 1.1. Elementary configuration for vertex models

where ejz(O,..., I,...,0) (0= j<n). We choose a vector v,eV with weight v

so that {v |ve.s/;"} constitutes a base of V. The matrix elements of R(x,y) with
respect to this base give the Boltzmann weights of a solvable vertex model. The
fluctuation variables of the model live on the bonds of the lattice, say %, and they
take values in the set {v,|ve.o/;" } which we identify with /;". (Fig. 1.1.) The simplest
case n=2,1=1 is the 6 vertex model.

An interesting phenomenon was found in the study of the 1 point functions of
solvable lattice models. The spectra of the logarithm of the corner transfer matrices
in the infinite lattice limit (N — o0) have an equally spaced distribution [2] and
their generating functions often coincide with the characters or the branching
functions of some affine Lie algebras (see e.g. [3]).

For the models corresponding to (V,x,), the statement is as follows. Let A;
i=0,. —1) be the fundamental weights of U (s[( )). Fix a dominant integral
weight A A, + -+ A, A ground state of the model is specified by this choice.
A path of length N isa sequence (05 ---»Nny—1)€(Z;")N. The corner transfer matrix
is a matrix indexed by paths of length N. It depends on the choice of the ground

state. A A-path is an infinite path (y9,7,,...) such that #, =# 4, for k> 1, where

Ak iifeﬂ +x+ -+ €, We denote the set of A-paths by #(A). The following is

proved in [4].

Theorem 1.1. Let M(A) be the irreducible highest weight representation of s:\l(n) with
highest weight A, and M(A), the weight space of weight u. Define the weight p, of
a A-path n by

py=A Z (M — M a) —0()d  (6: the null root),

k=0

w(n) = Z K(H (- 15m0) — HM k- 151 a8))s

where

H(€“ + -+ 6”,6 + -+ E,';) = min 421 e(io'(j) - l;)a

0i)=1 if i=0
=0 otherwise.

Then we have
#{ne?(A)|p,=p} =dim M(A), for any pu. (1.1)
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The proof in [4] is to construct an explicit base of M(A) labelled by A-paths.
However, it is somewhat unnatural to consider the case g = 1 in dealing with paths,
because the corner transfer matrix method is based on the behaviour of the R
matrix in the low temperature limit, i.e., ¢ = 0. In this paper we shall give a natural
proof of (1.1) by constructing the crystal base of the irreducible Uq(gl(n))-module
with highest weight A using A-paths as labels.

1.2. Crystal Base and Paths. Kashiwara [5] found certain bases of the integrable
highest weight representations of the quantized enveloping algebras which exhibit
a remarkably simple structure at g =0. He named them the crystal bases. Misra
and Miwa [6] noticed that the paths (I = 1) as explained in the previous section
glve appropriate labels to the crystal base in level 1 representation of U, (sI(n)) It
is apparent that the crystal base provides a powerful tool to attack the com-
binatorial problems related to the corner transfer matrix method. The aim of this
paper is to establish the role of paths as the labels of crystal bases in arbitrary
level representations of Uq(sl(n))

Let e, f,t be the Chevalley generators of Uy(sl(2)), and (V,,m;) the [+1
dimensional irreducible representation with the distinguished base (v;4)o <k <; such
that

m(@)vy = [k]v— 1>
(o= [ —kloyes 1,

() = q' "y, 1k

Lete, fi,t; (i= ,n— 1) be the Chevalley generators of U, (sl(n)) and U,(sl(2));
the algebra generated by e, f,,til Let M(A) be the 1rredu01ble U (sI(n)) module
with highest weight A=A, 4+ -+ A,.Set K=Q(q)and A = {f eK | f has no pole
at ¢=0}.

Kashiwara’s result is rephrased in this case as

Theorem 1.2. There exists a base (u,),.g of M(A) with the following properties. Set

L= Au,
beB
and identify the subset {u,mod qL|beB} = L/qL with B. For each i there exists an
isomorphism of U,(sl(2)),-modules

qSi:l(—Bo (—:IJ} VP s M(A), where V) is a copy of V,
=0 Jedi
such that

© 1
L= ¢,-<(—B @ Av}{"), where v{) is a copy of vy,
150 jo5h k=0
and
B={¢:0})mod gL|0 < I < 0, jeJ,0 <k <I}.

The pair (L, B) is called the crystal base.
The set B is endowed with a structure of colored oriented graph [5]. Suppose
that b,b’eB, and set ¢; }(b) = v\, ¢; 1 (b') = v}i). We draw an arrow of color i from
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b to V', if and only if j=j and k + 1 =k'. We write this as b b, The graph B
is called the crystal graph.

1.3. Main Results. We study the crystal base and the crystal graph of the
U,(sl(n))-module M(A).

The first result is to make the crystal graph B out of the paths 2(A). This gives
an alternative proof of Theorem 1.1. We give a simple combinatorial criterion for
two paths 7,7 €2(A) to be joined by an arrow of color iz —7.

The second result is to show that the crystal graph of the finite tensor product
V®---® V approximates the crystal graph B.

N——

N
Let #y(A) denote the set of A-paths # such that #, =#, , for k= N. We have
a natural inclusion

Py(A) < (VL.

The finite dimensional represent/gtions are excluded from the category of the
integrable representations of U,(sl(n)) in [7]. However, we dare to consider this
case. The set «7," can be identified with the crystal graph of V. Then (&/;" )V *1 is
the crystal graph of V®N+ 1® V (see [5]). Our assertion is that the graph structure
of Zy(A) inherited from (o7;")"*! and the one inherited from 2(A) are the same
but the direction of the arrows are all reversed. Namely, there is an arrow of color
i from 5 to n' in («;" ) "1 if and only if there is an arrow of color i from %' to 7
in 2(A). We have no explanation of this inversion.

The third result is to prove certain combinatorial identities arising from the
restricted solid-on-solid (RSOS) models.

Set

n—1

j=o

n—1
mJeZ§0, 'ZO mJ= k}.
j=

For the vertex model the fluctuation variables are located on the bonds of the
lattice . Consider the dual lattice #*. The RSOS model [8] is given on £*. Fix
two positive integers [ and I'. The fluctuation variables now live on the vertices of
#* and take values in P}, .. The Boltzmann weights are attached to configurations
round a face. (Fig. 1.2.)

K A

A% WL Fig. 1.2. Elementary configuration of RSOS models

We impose two restrictions on , A, u, ve P}, .. The first condition is that
A=K p— AV —K,u—vel{lePy|Eecod] ).
Note that ée/;" is uniquely written as

E=0o(v)—v, veP/.
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Here o is a Z-linear map such that a(A;) = A;,,. Suppose that p,y'eP;’,, and
W —pu=0()—vesd; (veP;). The pair (u,u') is called admissible if and only if
u—v=yu —a(v) belongs to P; . The second condition is that the pairs (k, 4), (4, u),
(x,v), (v, u) are admissible. We omit the expression of the Boltzmann weights. See
[8]. The simplest case n=2,l=1 =1 is equivalent to the Ising model.

For this model the definition of the paths is slightly modified. (We call them
restricted paths.) A path is a pair of sequences (i, ) such that = (1) > 0> 4 €P 1rs
and 1= (M) 0, M€ With the restriction -

Mv1— =1 for k=0.

Let A and A’ be dominant integral weights of level | and I, respectively. A
(A’, A)-path (u,7) is such that n is a A-path, u is admissible, ie., (i, f; 1) 1S
admissible for any k>0, and for k> 1,

B — Vi = M1 —0(v) = A,
where
P+ 1— =0 (Ve) — Vi veP/.

Suppose that (u,7n) and (¢, %’) are (A’, A)-paths. If n =’ then u = y'. Therefore we
can say # is a (A’, A)-path (if ever p exists).

Consider the Uq(sAl(n))-modules M(A) and M(A’). Let B=2(A) and B' = 2(A’)
be the crystal graphs. The crystal graph of M(A')® M(A) is B’ x B. Our assertion
is that (b',b)eB’ x B is highest, i.c., there is no arrow in B’ x B pointing to (b', b),
if and only if b’ is highest and b is a (A, A)-path. To put it in a different way, we
obtain a combinatorial way of labelling the highest weight vectors in the tensor
product M(A')® M(A).

The plan of this paper is as follows. In Sect. 2 we review the basic facts about
the crystal base. In Sect. 3 we make the crystal base for M(A) in terms of 2(A).
In Sect. 4 the finite size approximation to the crystal base is discussed. In Sect. 5
the restricted paths are identified with the highest weight vectors in the crystal
base of M(A")® M(A).

2. Crystal Base

The purpose of this section is to give a brief review of the crystal base following [5, 7].

2.1. Uq(s'i(n)). Let us first fix notations concerning the affine Lie algebras [9]. We
shall consider the affine Lie algebra sl(n) over the field Q. Let C = (c; )i i2o denote
the associated generalized Cartan matrix: c;; = 20 — 6{}_; — 6{7 ;, where 6 =1
if i= jmodn, 6% =0 otherwise. Let h be a Q-vector space and h* its dual, with
distinguished bases such that

b= (@O th>@QD, b = (@0 QA)@Q&
<Ai> h]> = 5ij9 <Ai9 D> = 0’ <6, h1> = 0’ <55D> = 1

Let further a; =2A; — A;_; — A;4; + 6. Here and in what follows we extend
the suffixes of A; to ieZ by A;,=A; for i=i'modn. We define the weight
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n—1 n—1
lattice P = < @ ZAi> @ ZJ, its dual PY = < P Zhi> @ ZD and the root lattice
i=0

n—1 i=0

0= Z«
i=0
Throughout this paper we set

K=Q(g), A={feK]|f has no pole at g=0}.

The algebra U, = Uq(sAI(n)) is an associative algebra over K with 1, generated
by the symbols {e;, f;|]0 <i<n—1} and ¢" (he P"). The defining relations [10, 11]
are as follows (we set t; = g"):

(i) q'¢"=4"" (hheP”), ¢°=1,
(11) qhejq—h — q<°‘f’h>ej, thjq—h — q—<aj,h>fj,
t;— t,‘1
(iii) Lei, /31 =9y -1
q—
1- c,,
™ [ } [TThe el =0 (i# ),
k k

S im0 i
k=

Here

-m

m] [l B g
[k]‘[k]![m—k]!’ (mdt= 11 U Dml="p— =

Note that the algebra U, has a Hopf algebra structure with comultiplication
A:U, - U,® U, given by:
A" =q"®q" heP”,
Ale)=e,Q1 +1;®e;,
Af)=fi®t7 ' +1Q f..
The tensor product of U,-modules becomes a U,-module via A.
2.2. Crystal Base. Let M be a U-module. The weight space M ; (A€ P) is defined by
M; = {ueM|q"u=q"""u for all heP"}.

For each i, let U, = U,(sl(2)); denote the subalgebra of U, generated by e;, f,t;
and ;. A U, -module M is called integrable if

(i) M=PM,,

AeP
(i) dim M, < oo for each AeP,

(iii) for each i, M is a union of finite-dimensional representations over U,;.
In [5] Kashiwara defines the following operators on M: for 0<i<n—1,
& =(qu,A)" Ve, fi=tdqtA) V2,

where
Ai=q 't qt; " +(q—q e fi—
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Definition 2.1. [5] A pair (L,B) is called a crystal base of M if it satisfies the
following conditions:
(i) L is a free A-module such that KQ,L =M,
(i) B is a base of the Q-vector space L/qL,
(iii) L= (—BL,1 and B= U B,, where L, = LnM, and B, = Bn(L,/qL,),
(iv) eLcL fchL for all i,
) eBcBu{O} f,BcBu{O} for all i,
(vi) for any i and u,veB, u= &y if and only if v = fu.
As noted in [5] B has a structure of colored oriented graph (the colors are
labelled by i(0 < i <n— 1)): For u,ve B, we draw an arrow of color i u —v if and
onlyifv = f,u. The set Bendowed with this structure is called the crystal graph of M.

Let A be a dominant integral weight. Let M(A) denote the irreducible highest
weight U;-module with highest weight A and highest weight vector u 4. Set

L) =Y Afi, -+ Jyuac M(A)
and 5
B(A)={v=f,- f,usmodqL|v#0} c L/qL.

The following states the existence and uniqueness of a crystal base.

Theorem 2.2. [7]
(i) Let M(A) be as above. Then the pair (L(A), B(A)) is a crystal base for M(A).
(i) Let M be an integrable module isomorphic to @M (4;), and let (L, B) be its

crystal base. Then there is an isomorphism M —>6—)M(/I) which sends (L, B) to
@(L(l,) B(4))).
The crystal base of tensor product modules is given by

Theorem 2.3. [5] Let (L;, B;) be crystal bases of M;(j = 1,2). Then(L;®L,, By x B;)
is a crystal base of M, ® M,. Here B, x B, = (L; ® L,)/q(L; ® L,) =~ (L,/qL,)®
(L,/qL,) is given by (u, V) u®v. '

The graph structure of B, x B, is described as follows [5]. For a crystal base
(L, B) and beB, we define I{*)(b)eZ , to be

I{¥)(b) = the length of the i string above/below b in the graph B.  (2.1)

This means that there exists a sequence b¥eB(— I{H(b) < j < I{7)(b)) satisfying

b =p, b 5 pU+ D), such that if b'eB then neither b’ — b (I_ = —I{*)(b)) nor
b L b (I, =1$7)(b)) is valid. If beB, then
12(b) — I{D(b) = <4 hy). 22)

Using these notations we have, for ueB, and veB,,
fu®uv)=Ffu®v if 1Dw>I1"(),
=u® fiv otherwise, (2.3a)
Guv)=eu®uv if 1{Pw)zl"(),
=u®éuv otherwise. (2.3v)
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3. Crystal Graphs for Integrable Representations

3.1 Fock Representation of Uq(gl(n)). The aim of this section is to determine the
crystal graph for highest weight modules M(A) with dominant integral highest
weight A. We begin with some combinatorial objects which will play a role in the
description of the graph.

Definition 3.1. An extended Young diagram Y is a sequence (), o such that
(1) Yx€Z, yy < yi+, for all k,
(ii) there exists fixed y,€Z such that y, =y for k> 0.

The integer y,, is called the charge of Y:
For example, pictorially,

Fig. 3.1. Extended Young diagram

where Y=(—-2,-2,—-1,0,0,1,1,1,...) is an extended Young diagram of charge
Vo = 1. Thus an extended Young diagram Y = (y,), >, is an infinite Young diagram
(see [4]) drawn on the lattice in the right half plane with sites {(i,j)eZ x Z|i = 0},
where y, denotes the “depth” of the k-th column. Note that if y, # y, ., for some
k, then we will have corners in the extended Young diagram. For instance, in the
above example y; # y,. So we have a convex corner at site (2, —2) and a concave
corner at (2, —1). If a corner is located at site (i, j), it is called a d diagonal corner
where d =i +.

Definition 3.2. We define a pattern to be a map
L xZyo—7

(J, k)=t
such that
(i) for all j, (t;u)i >0 1s an extended Young diagram,
(ii) t;x =t;4, for all j and k,
(iii) t;4,4 = t;; +n for all j and k.

We say the pattern ¢ is normalized if 0=y, <..- <y, <n, where y;=t;, is the
charge of (t,),>0- We call y =(y;,...,7,) the charge of t. We identify the pattern ¢
with a sequence Y = (Y}); of extended Young diagrams Y; = (;)kz0- I £jx <lji41
then Y; has a convex corner and concave corner at the k-th column. (Fig. 3.2.)
Let 4 denote the set of all patterns.
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i

btk

t j l(+k+1
—

Fig. 3.2. Convex corner on the t;, +k+1 diagonal and concave corner on the t;; ., +k+1
diagonal

In the sequel we fix a positive integer [ and set
n—1 n—1
j=0 j=0

n—1
=0

j-th
Let ej=(0,...,}1 ,---,0) (0=j<n) denote the standard base vectors of Z". We
extend the suffixes of ¢; to ieZ by €, =¢; for i’ =imod n. We set

n—1 n—1 n—1
A=PZLe;, A= {v: Y vielvieZyo, Y Vi=l}-
j=0 i .

i=0 i=

Definition 3.3. A path is a pair (u,#) such that
() 1= (thkzo0> EP),
(i) 7=kzo> M,
(ili) s+ — e =1 for all k,
where —:/ — P, is the Z-linear map given by €,=A;,, — A;.

Let AeP;", A A-path (u,n) is a path such that p, = d*(A) for k>0, where
0(A;)= A, for all j. Note that in this case u is uniquely determined from A and
n. Hence we will call  a A-path. Let 2(A) denote the set of all A-paths.

We have a map

. I - ) 2A)
AePf
t=(t;)— n=0mn),
where n, =€, 1+ - + €, 4+ For a A-path ne?(A), we say t is a lift of ¢ if
ten~(n). The following proposition is analogous to Proposition 5.2 in [4].

Proposition 3.4. For any ne?(A), there exists a unique normalized lift t = (t;,) such
that t;, > t;, for all j, k for any t' = (¢;;)en ™ '(n). This t is called the highest lift of n.
Furthermore, a normalized pattern t is a highest lift if and only if for each k = 0 there
exists some j such that t;, ;> tj; 4.
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For fixed A=A, + -+ A, with0 <y, <--- <y, <n, define
Y(A)={Y =(Y));cz€7 | Y has charge y =(y;,.. SV}

Note that Ye®(A) is completely determined by (Y,,..., Y;) using periodicity with
respect to j with period L So we will identify Y with (Yy,..., Y;). The Fock space

F(A)= @ KY

Ye#%(A)

is the vector space over the field K = Q(g) having all Ye%#(A) as base vectors.
FordeZ,j=1,2,...,1 define symbols ef;, f 35,15 and let these act on F(A) as
follows. Let Y =(Y,..., Y))e%(A). If Y, has a d diagonal convex corner, then

Y=(Y,,...,Y,...,Y), 3.1)

wherein Y’ is the same as Y; except the convex corner is replaced by a concave
corner,

e;;Y =0 otherwise.
If Y; has a d diagonal concave corner, then
sY=(Y,..., Y], ...Y), (3.2)

wherein Y7 is the same as Y; except the concave corner is replaced by a convex
corner.

fEY=0 otherwise,

t;Y =qY, if Y; has a d diagonal concave corner, (3.3)
=q~'Y, if Y;has a d diagonal convex corner,
=Y, otherwise.

Define also the operator s by
s Y=q"Y, a=#{peZity<p=<y;, p+k=mod(n)}.
For (d,j), (d',j')eZ x {1,2,...,1} we say
d,j)<(d,j') ifand onlyif d<d, or d=d and j>j"

The following proposition can be proved by an argument similar to Theorem 6.1
in [12].

Proposition 3.5. The algebra U, (sl(n)) acts on F(A) by the following equations:

d=imod(n) (d,j)>(d.j)

1! d'=imod(n),1<j <l

= 2o 1w 63
d=imod(n) (d.j') < (d,))
1<js! d'=imod(n),1 <j' <!

and

= [l & =11 s (3.6)
d=imod(n) 1<jsl
1sjsl k=0

Under the above action F(A) is an integrable Uq(sﬁ(n))—module.



Combinatorics of Representations 553

Set @=(¢y,...,¢)e¥(A), where ¢; (1 <j=<1) denotes the empty extended
Young diagram of charge y; (i.e., t;, =7v; for all k2 0). Observe that PeF(A) is a
highest weight vector with highest weight A. The space M(A)= U, (sI(n))(D is the
irreducible integrable highest weight U,(sl(n))-module with highest weight A.

3.2. Uy(sl(2)) Decomposition of the Fock Space. Let Y be any extended Young
diagram. We color the corners in Y as follows. If d is the diagonal number of any
corner and d = imod n, then we say it is a corner of color i. A convex (respectively
concave) corner of color i is called i-convex (respectively i-concave) corner.

Fix some color i. For an extended Young diagram Y we denote by Y the Young
diagram obtained from Y by removing all the i-convex corners. Let  be a A path
and ¢ be the highest lift of 7. We construct a sequence ¢ = (g4, ..., ¢,) in such a way
that the following hold:

(@) Z #{i-concave corner of Y;} =m.

(ii) Each ¢, is either O or 1.

(iii) We can define j(r)(1 <j(r) <) and d(r) in such a way that YJ(,) has a d(r)
diagonal i-concave corner.

(iv) Ife, = O (respectively ¢, = 1) then Y, has a d(r) diagonal i-concave (respectively
i-convex) corner.

() If ry <r, then (d(ry),j(r1)) > (d(r2),j(r>)).

With these conditions ¢ is uniquely determined from # and i. Fixing i we call ¢ the
signature of n (or Y). Set Y = (Y, Y,,..., Y;). Note that Y is uniquely determined
by Y and &. So we write Y =(Y, ¢).

Example. Let n=2,1=2,i=1 and
n=(€o + €1,2€p,2€q,2€,,...)EP2A,).
Then Y=(Y,,Y,), Y=(Y,,Y,) where

Y1=F_ Y2=

T
VL=[T =[]

Note that as an ordered set
{(d,j)I1<j<2,d=1mod2, Y, has a d diagonal 1-concave corner}

= {(19 1)9(132)9(_ 1) 1)3(_ 192)}
Hence ¢ =(1,1,1,0) and Y = (Y, (1, 1, 1,0)).
For fixed ¢ = (¢, ¢,,...,¢&,) We partition the set
{1,2,...,m}=JUK,---UK,

into disjoint subsets by the following inductive procedure (see [6]):
(i) If there is no j such that (¢;,¢;, ;) = (0, 1), define J = {1,2,...,m}.
(i) If there is some j such that (g;,¢;, ;) = (0, 1) define K, = {j,j + 1}.
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(iii) Apply (i) and (ii) to {1,2,...,m}\K, to choose J or K, and repeat this as
necessary to choose J and K, K,,...,K,.

Let &;=(g;,,...,&;,), where J = {i,...,i,} and i; <--- <i,. We call 0 or I in the
signature ¢ relevant if and only if it is in ¢;.

Fori, Y, Y, J,Ky,...,K, as above, define an element of #(A) by (see [6])
[YL= ) Y (=Y, e, 1, S)), (3.7

J=JoUJ; Sc{1,2,..,t}
Mil=ny

where
ny = #{jed e =1},
#U o, ) = #{G N <Ji€dori'e] 1),

and ¢(J4,J,S)=(14,75,...,7,) is determined by

(@) t;=01if jeJ,

(i) t;=1if jeJ,
(i) (t;,7;)=(1,0)if j<j" and {j,j'} = K,, s€S
(iv) (t;,7;)=(0,1)if j<j" and {},j'} = K, s¢S.

The following theorems are analogous to Theorems 3.1 and 3.2 in [6] and

follow similarly.

Theorem 3.6. Let Y, Y,e,J,K,,...,K, be as above. For each k =0,1,...,r there is a
unique vector Y, = (Y, 1)e%(A) such that the partition {1,2,...,m}=J UK L UK,

is the same with Y and #{jeJ|t;=1} =k. Furthermore, V,= @ K[Y,]; is an
(r+ 1)—dimrensi0nal irreducible integrable U,-module with highest w2i=g(l)1t vector [Yo];.
Set L= P A[Y,]; and B; = {[Y, 1,0 <k <r}. Then (L;, B;) is the crystal base for
the Uq,--rrfozdoule V,.

Theorem 3.7. Let L(F(A))= @ AY and B(F (A))=%(A). Then the pair (L(F (A)),

Ye(A) N

B(#(A))) is the crystal base for the integrable U (sl(n))-module F(A).

The next theorem is an immediate consequence of Theorems 3.6, 3.7 and the
definition of crystal graph (see [S, 7]).

Theorem 3.8. Let Y, Y €B(F(A)). In the crystal graph B(F(A)), Y — Y’ if and only
if the following hold B
D) Y=Y, (e0s.--6m), Y =(Y, (1, .., ).
(i) The partition {1,2,...,m} =J UK, U --- UK, is the same for both Y and Y'.
(iii) There exists keJ such that ¢, =0, e, =1,¢;=¢;=1if jeJ and j<k, e;=¢;=0
if jeJ and j> k.

Suppose that #,n" are A-paths and Y, Y €%(A) are their highest lifts. Then for
any i=0,1,...,n— 1, we write # —>#’ if and only if Y > Y’ in B(Z(A)).

3.3. Crystal Base for M(A). Recall that M(A) = Uq(;\l(n))@, where @ =(¢,,...,P),
and ¢;(1 £j <) is the empty extended Young diagram of charge y;. Let B(#(A)),
denote the @-connected component in the crystal graph B(#(A)). By Theorem 2.2,
B(F(A))p1s the crystal graph of M(A). Let #(A) denote the set of Ye B(#(A)) =%(A)
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such that Y is the highest lift of some neZ2(A). Suppose that t = (t;)c, is the
pattern of Y =(Y,,..., Y)eB(#(A)). Recall that by definition Y;,; denotes the
extended Young diagram of charge (y; + n) which is obtained by giving an upward
vertical shift of n units to Y;. It follows from definition and Proposition 3.4, that
Y =(Y,,...,Y,)es#(A) if and only if the following conditions hold:

Y oY,>--2Y,.. (3.8)
Y, oY, (3.9
For each k > 0 there exists some j such that ¢;,, ;> t;44,. (3.10)

The following lemma is an immediate consequence of Theorem 3.8.

Lemma 3.9. Let Y,Y'€B(#(A))and Y Y in the crystal graph B(% (A)) for some
i. Let e=(gq,...,¢&y,) (respectively ¢ =(¢},...,¢&,)) be the signature of Y (respectively
Y') with respect to this color i. If ¢,=0 and ¢,=1 for some 1 <a=<m, then
&1 = B:z—l =1

Proposition 3.10. Suppose Ye#'(A),Y' €B(#(A))and Y 4y for some color i. Then
Y'e A (A).

Proof. Suppose thatt = (t;,) and t’' = (t};) are the patterns of Y and Y’, respectively.
Lete=(g;,...,&,) and & = (¢}, ..., &,) denote the signatures of Y and Y’ respectively
with respect to color i. Suppose Y’ does not satisfy condition (3.8). Then there
exists d=imodn and j (1 £j <) such that Y;_,, Y;_; and Y; have d diagonal
concave corners and Y has a d diagonal convex corner. Therefore, for some a
(1<a<m) we haveeg,_;=0,¢,=0, but &,_, =0, & =1 which is a contradiction
by Lemma 3.9.

Now suppose Y’ does not satisfy condition (3.9). Then there exists d =imodn
such that Y, and Y] have d diagonal concave corners, Y, has a d —n diagonal
concave corner, but Y| has a d —n diagonal convex corner. Again, this implies
thate,_; =0,¢,=0,¢,_; =0and ¢, = 1 for some 1 < a < m, which is a contradiction
by Lemma 3.9.

Finally, suppose that Y’ satisfies conditions (3.8) and (3.9), but does not satisfy
condition (3.10). Then there exists ko = 0 such that t;, ;,, < t};, +, for all jeZ. Since
Ye#(A), thereexists jo (1 < jo < )such thatt; ;> tjoxo+1- Thisimpliest; 1, =
tio+1ke T 1s Lioko = Ljoko = Ljo+ 1ko- INOtE also that Y; . ; has an i-concave corner and

Ji
Y’ +1 has an i-convex corner. They have the same diagonal number, say, d. For

j; Jo there are two cases.

(i) tjx, <tjko+1 and Y;(=Y}) has a d diagonal concave corner.

(i1) jx,=tjxo+1 and Y;(=Y7) has no d diagonal corner, and t;;, =1;_ ;4,4 1-

The case (i) implies that for some a (1 <a<m) we have ¢,_, =¢,=¢,=0 and
&,—1 =1, which is a contradiction by Lemma 3.9. In the case (ii), we argue similarly,
replacing j by j — 1. Because of the periodicity in j, we will come to the case (i) in

finite steps. This is a contradiction. []

Proposition 3.11. Suppose Ye#(A)and Y # @. Then there exists acolori(0<i<n)
such that the signature ¢ of Y with respect to i contains 1 which is relevant.

Proof. Let t=(t;,) be the pattern of Y. For 1 <j <1, set m; = max {k|t;, <7;}. Set

m= max {m;}. By (3.10) there exists an integer j, (1 <j, <[) such that t; , >
15js1
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tio—1m+1- Choose the minimal integer j; that satisfies j, = j, and t; ,, <tj i1 =
tii- Then Y; hasat; , +m+ 1 diagonal convex corner. Let i be the color of this
corner. We shall show that the signature ¢ of Y contains ¢,=1, which is
corresponding to this corner (or, if j, > I, corresponding to the shifted corner in
Y; _,), as a relevant element. If it is not so, there is a’ such that a’ < a and ¢, = 0.
This means that there exists j (1 <j <[)such thatt;, <t;,.1,tjm+1 +m+1=imodn.
This is contradictory to the fact t; ,,>1t; ;4.

Proposition 3.12. B(%(A))p= H#(A).
Proof. By Proposition 3.10, B(#(A))p S #(A). If Ye#(A) and Y # @, then by

Proposition 3.11 there exists Y, such that Y, Y. Hence using induction we get
YeB(F(A))p. So B(F (A)) o= H(A). [

To sum up we have shown

Theorem 3.13. There is a one to one correspondence between the set of A-paths
P(A), the set of their highest lifts #(A) and the crystal graph B(F (A))p < B(F(A))
of M(A). Their graph structure is described in Theorem 3.8.

4. Finite Size Approximation

4.1. Symmetric Tensors and the Crystal Graph for its Tensor Power. Let U, denote
the K-subalgebra of U, generated by e;, f; and ¢F' (0 <i<n—1). In this section
we shall consider finite dimensional representations of U, and the crystal graph
for their tensor powers.

Let V= 6—) Kv, be the vector space spanned by basis elements v, (vess;")

ve‘d,+
over K. We define the action of U, on V as follows:

e, = [vi]Uv+ei— 1€
fivv = [vi—ljvv—e.-—1+si’
tivv = q\’i— ! _Vivv'

Here in the right-hand side v, with vé¢.oZ;" is to be understood as 0. With respect
to the subalgebra U,(sl(n)) = U}, V' is a highest weight module with highest weight
vector v, and the highest weight /A,. Note however that it is not a highest weight
module over Uy,

The notion of a crystal bz}se as given in Definition 2.1 carries over to U;-modules
by replacing P with P'= (P ZA,. Setting L= ) Av, and B={v,mod gL|vesZ; }

i=0 veet|

one finds easily that (L, B) is the crystal base of thle U,-module V. We shall identify
B with .o/;". The crystal graph structure of o7, is given as follows: A vertex of the
graph is represented by an element ve.s/;", and for v,v'e.;" an arrow from v to
v' of color i is drawn if and only if v =v —¢;,_, +¢;. If veZ;", then I{*)(v) = v; and
L0 =vi-.

Remark. For Uj-modules, existence of a crystal base is not always guaranteed; a
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simple example is the two dimensional module (in the case n = 2) defined by

00 -1
n(eo)=<q 0>> n(fo)=<8 q‘o >a
wed=(o o) w0=(] o)

However Theorem 2.3 for the tensor product modules is valid without change.
Let now N be a positive integer. The crystal base for the tensor representation
V®N is given by (L®N, BN = (o, )V). The crystal graph structure is described
inductively as follows.
Suppose that the graph structure on («/;")" is already given. Let v,v'e./;" and

b,b'e(/})N. Then (v,b) — (v, ) in («£;")V* 1 if and only if one of the following
is valid.

Case A:
10w > EH(b),v—v and b=b.
Case B: ‘
D) S IPDB),v=v and b—b

In Case A we have

(v, b)) = 1),

(0, B) = £70) — 1E9(B) + b)
In Case B we have

(v, b)) = [P v) = I70) + 1(b).

§7(v, b)) = I{7)(b).

Example. Let n= 2. Then the graph (/" )" for the cases (I, N) = (1,2), (1,3),(2,2) is
given as in Fig. 4.1(a), (b), (c), respectively.

Set
Pu(A) = {n=(10,11,-..) €PNl = 6** 1(A) — a*(A) if k2 N}.
We identify 2,(A) with a subset of (=;")¥*! by
P )= (LT o) =Wo, -, 1w).

For 7, n’é%,(/\) we write

if and only if 1y(1) — 1x() in (¥ 1.

Our goal in Sect. 4 is the following theorem.
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/0’1 _ 1,0,1 00,11
/ \\ J/ / // \\
/ AN / / AN
/ 1,1 / 01,11
/ /O / s
/ / / / \\\ / AN
1 | 01 -- 0101 11,11

S
\
\

(b) ©

Fig. 4.1. Crystal graphs of («7;")" for Uq(sAl(z, C)). The color i =0,1 corresponds to the dashed
and ordinary arrows, respectively. The symbols 0, 1 represent €, €, so that 0, 1 means (€,, €, ), 00,01
means (2€,,€, + €,), and so on

Theorem 4.1. Suppose that n,1'ePy(A). Then
n —;»:{ if and only if n/—im in 2(A).
The proof will be given in 4.3. Here we note only the following fact.
Lemma 4.2. Suppose that b, b'®, b®e(f [N+ satisfy
pO L p@ L p3)
and suppose also that by’ = by). Then we have b)) = b.
Proof. We useinduction on N.If N = 0,5® -5 b® and b® = b® are contradictory.

Therefore the assertion is true. Suppose that the lemma is proved for (o, )V. For
v y@ e ofF and b, P, b3 e(ofF)N assume that

(D, pDY L5 (v, p2) Ly (3, 3y
is valid in (& )¥*1. We shall show that if b# , =b§), then b, =b{ ;.
If Case A is valid for (v, bV) 5 (v®, b@), then b'" = b, and therefore we have
B¢, =b@ . If

Case B is valid for (v, b)) -5 (v, p2)
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and
Case A is valid for (¥, @) -5 (v®), )
then we have
[90®) < IOE®) = 106D) S IOGD) = 106P) - 1.

This is a contradiction.
Finally assume that Case B is valid for both

oW, b L (@, p@) and (v, b@) L (v3), p3)),

Then b 5p® 6@ in (o). Therefore, by the induction hypothesis, if

bsvz)_1= g)—l thCn b}vl)_].: Nz)_l. D

4.2. Signature of a Path. Fix color i. In 3.2 we defined the signature ¢ of an

extended Young diagram. Take ne#(A) and let ¢ be the highest lift of . We shall

give another description of the signature ¢ of # in terms of the pattern t. For
=—1,0,1,..., we define

ak)=#{jI1 S jS Lt <tps1 tjsr +k+1=imodn},
Here by convention we set t;_; = — oo and f(—1)=0 Set
g =(0,...,0,1,...,1).
——
a(k) B(k)

Lemma 4.3.
e=(...,eM, k"1 D)

Proof. Suppose that t; <t; ;. Then the extended Young diagram Y; corres-
ponding to (¢;;);>0 has a concave corner at the (¢, + k + 1)-th diagonal and a
convex corner at the (t;, + k + 1)-th diagonal (see Fig. 3.2).

Therefore Y, of(k) is the number of i-concave corners in (Yy,..., Y),and Y (k)
k= -

1
is the number of i-convex corners in (Y,,..., Y;). Hence e and (...,e®,e* =1, .. ¢71)
have the same numbers of 0’s and 1’s.
Now we shall prove that the ordering of 0’s and 1’s are also the same in ¢ and
in (...,e®,e% "1 D) First we consider the ordering within a single &®.
Suppose that 1 < j;, j, <l and

Livke <ljik+1s dy = j1k+k+ 1 =imodn,

tjzk<tj2k+1’ d2=tj2k+1+k+lEim0dn.

There are four cases.
(i) d,>d,.

(11) d1 = dz, J:1 < Ja-

(i) dy =d,, j; > j,-

(iv) d, <d,.
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We shall show that (i),(ii) are contradictory. The cases (iii),(iv) mean the 1
corresponding to the i-convex corner at the d,-th diagonal of Y}, is located to the
right of the 0 corresponding to the i-concave corner at the d,-th diagonal of Y},
in &. This is consistent with the definition of é® =(0,...,0,1,...,1).

Consider the case (i). We have

i +tk+1=t 1 +k+1+rm (r21).

Therefore t; , 2 t;, 151 > tj,+1,- On the other hand we have j, +1> j;. Thisis a
contradiction.

Next consider the case (i)). We have ¢;,, +k+ 1=t +k+ 1. Therefore
tik =ljk+1 >t On the other hand j, £ j,. This is a contradiction. Thus we
have checked the ordering in ¢® is consistent with the ordering in e.

Now we will show that the ordering of é¥”s is also consistent with the ordering
in e. Suppose that ky <k, t;;, <tjx,+1 and t;,;, <t;, ;. Suppose also that
ti,y, tky+1or ¢, .1 +k; +11is equal to imodn, and denote it by d,. Since
tisk, T 1>t 1 the d; is uniquely determined. Similarly we define d,. This means
that Y; has a convex or concave corner at the d;-th diagonal and Y;, has a
concave or convex corner at the d,-th diagonal. Again, there are four cases
()—(@v) for (dy,j;) and (d,, j,), and a similar argument shows that neither
(i) nor (ii) occurs. Therefore, in ¢,0 or 1 corresponding to (d,, j;) is located to the
right of 0 or 1 corresponding to (d,, j,). This is consistent with the ordering

k k—1 -1
(..., e® =D LoDy O

Remark. In the first definition of ¢, we imposed the condition that 1< j(k) <L
Replacing this condition by [, < j(r) <, such that [, — [, =1I, we can define ¢
similarly. In fact, the equivalence to the second definition is valid for any choice
of I;,1, (I, —I; = ). Therefore the definition of ¢ does not depend on this choice.

4.3. Proof of Theorem 4.1.
Proposition 4.4. Let n,1'e?(A). We have an arrow
n—on
if and only if we can take highest lifts t,t' corresponding to n,n’ in such a way that
the following are satisfied.
(i) For some (jg,ko) we have
tw=ty+1 if j=jomodl and k=k,,
=t otherwise.
(i1) tjoxo + ko + 1 = tjoxo + ko =imod n.

(i) £0r, <ljono+1 and the corresponding 1 in the signature of n is relevant.
(V) toko—1 <ok, and the corresponding O in the signature of u' is relevant.

Now we come to the proof of Theorem 4.7. The assertion is true for N =0,
since the set Zy(A) consists of one vertex. Supposing the assertion is valid for N,
we prove it for N + 1.

Take v,ves/;' and #},7'€Py(a(A)). Set n=(v,7) and ' = (v,7’). They belong
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to Py(A). Assume that
(v,b) > (v, b)) in (£ )V*2,

where b = 1y(7), b’ = 14(7j'). We shall show that #’ —i>11.
Let t be a highest lift of 5. Recall the definitions of «(k) and f(k) for t. We also
define

YR)=#{jI1Zj<Ltp=tjs1,tp+k+1=imodn}.

Then we have v;_; = B(0) + y(0). Set 7 =(...,&e?@,e"). Here ¢ is the signature of 7.
The signature & corresponding to # is
(z, 0---0), 4.2)

——
«(0) +y(0)

£=(z,0:-0, 1-+1,0:::0). 4.3)

a0) vi-1— v(O) a(—1)
Case A: Wehave Vv =v—¢;,_; +¢;,b=>b"and I{7)(v)>I{*)(b). Note that ) (v)=v,_,.
By the induction hypothesis and Proposition we also have I{*)(b) = I{7)(7j), where
the latter signifies the length of the i string below 7 in 2(A) defined similarly as
in (2.1). Therefore we have v;_, > I{7)(#). This implies that the rightmost 1 of the
block 1 in (4.3) is relevant. Now consider #'. Set

and ¢ reads as

Vi-1— 7(0)
Jo=max {jI1S j< Lt <tj,tjo=i—1}.
Since v;_; — y(0) > 0, the set of j in the right-hand side is not void. Define a parttern
t' by
tiw=ty+1 if j=j,modl and k=0,
=tj otherwise.

This pattern is a highest lift of #” and the corresponding signature is

¢=(10-0, 1.1 ,0-0). 4.4)
a(0) vi-1—y0)—1 a(—1)+1

By Proposition 4.4 we have 1’ S
Case B: Define ¢,¢ and 7 as in Case A. The change from ¢ to ¢ is that the 1 in ¢
which is the rightmost in the 1 block of ¢; changes to 0 in ¢'. It can be checked

that this 1 is in 7. We have v=v,# —># and I{7)(v) < I{*)(b). Therefore
Ve =0 0) S 1) = 7).
From thjs we can check the conditions (iii) and (iv) in Proposition 4.4 and prove
that ' — 1. ' '
Finally we show that the arrow ' — 5 implies (v, b) — (v, b) in (£} )¥ 2. From
Proposition 4.4 the (j,,k,) is determined. First assume that ky =0. In this case
b=1b'. The signatures ¢,¢ and & are given by (4.3),(4.4) and (4.2), respectively.
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Because of the condition (iii) of Proposition 4.4 we have v;_; > I{7)(v). This means
1(v) > I$9)(b). Therefore we have (v,b) (v, b) in (</;)¥*2. Next assume that
ko = 1. In this case we have v =" and 7’ 7. The signature ¢ is given by (4.3) but
#’ is given by (4.3) with one 1 in 7 replaced by 0. The condition (iv) of Proposition
4.4 implies that I{)(v) = v,_ ; < I{7)() = I{*)(b). Therefore we have (v,b) — (v, ¥) in
(dl+ )N + 2. D

5. Restricted Paths

5.1. Tensor Product of Integrable Modules. In this section we return to integrable
U,-modules in the sense of Sect. 2. Let (L, B) be the crystal base of an integrable
module. We shall call an element veB a highest weight vector if ve B, with some
ueP and év=0 for any i =0,...,n— 1. The latter is equivalent to the condition
that there is no arrow pointing to v.

Let A, A’ be dominant integral weights of level LI, and (L, B), (L, B’) be the
crystal bases of M(A), M(A’), respectively. In view of Theorem 3.13, we shall make
an identification B = 2(A), B’ = 2(A’). Let n*) denote the highest weight vector
of B'.

Let us consider the tensor product module M(A')® M(A). Take two paths
ne?(A),n'eP(A’). In this section, we study the condition that #’' ®# is a highest
weight vector in the crystal graph B’ x B of M(A")® M(A), i.e.,

é(n®n) =0 for alli

Lemma 5.1. The vector ' @ ne B’ x B is a highest weight vector in the above sense
if and only if
() 1 =1
(i) &7 =0 for all i.
Proof. From (2.2) and (2.3b) it follows that

&n ®n) =02 =0, & 1p=0,
where 4’ is the weight of #'. This implies ' =, and therefore /' = A". [

Let u = (pg, 41,-..) be a sequence of integral weights, and let A be a dominant
integral weight. We write u — A to mean (uy — A, u; — A,...). Define the Z-linear
map ":o/ - P by €;= A;. Note that

M =0 () — Ty

Definition 5.2. We call (u,7) a (A’, A)-path if and only if the following conditions
are satisfied.

(@) (u— A, neP(A),
(i) p, — 7, €P; for all k= 0.

Given ne2(A), we can define a sequence of integral weights u= (ug, tt1,...)
uniquely from the condition w,= A’ + ¢*(A) k>0 so that (i) is satisfied. The
condition (ii) then restricts # from being arbitrary. In this sense we call # a restricted
path if it is a (A, A)-path for some A’eP.
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Example. (n=2.)
ﬂ(l) = (2A1,A0 + A1;2A0’ AO + A192A03' . -),

’1(1) = (61361,60’61"- -)’
4D = (2Aq,3A0 — Ay, 240, Ag + A1, 240,

n® = (€,,€0,€0,€15-- - )-

2A, o
\
AgA,

24,

u(2)
3A4 A,

Fig. 5.1. Level 1 paths. (u, V) is a (A,, Ao)-path, but (u®,7?) is not.

13 = (20 + Ay, 341,240 + Ay, 245 + Ay, 2A0 + Ay ),
7 = (2€9,2€,,€0 + €1,€0 +€1,...),

1D = (20 + Ay, 3A,,3A,,240 + Ay, 240+ Ay, ),

N = (2€9,€0 + €1,2€,,€0 + €5,...).

3A,
@
u® \

Agr2A,

2A0-|-A1

34,

Fig. 5.2. Level 2 paths. (u®,®) is a (Ay, A + A;)-path but (u®, ) is not.

Our goal is to prove the following theorem.

Theorem 5.3.  ® neB’ x B is a highest weight vector if and only if 4 =#“) and n
is a (A’, A)-path.

Before proving the theorem, we prepare
Lemma 5.4. Consider a sequence of 0 or 1 of the form
e=(...,e®, kD D)
e®=(0,...,0,1,...,1).
——
a(k) B(k)
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We assume that a(k) = f(k)=0 if k »>0. We set y(m) = f(m) — a(m). Let n, (s=0,1)
be the number of s in ¢; (see 3.2 for the definition of ¢;). Then we have

ny = max Z (m), (5.1)
ny—MNo= >Z_1 y(m). (5:2)

Proof. By the definition of ¢, (5.2) is obvious. Put

k k—1 0
t=(...,e® "D O

If y(—1) =0 the proof of (5.1) is reduced to proving the same statement for t.
Therefore, without loss of generality we can assume that y(— 1) # 0. We apply the
induction on the number of m (= — 1) such that y(m) # 0. Let i1, (s =0, 1) be the
number of s in 7. Since y(— 1) # 0, by the induction hypothesis we can assume that

iy =max ¥ ym), i =iig= Y, y0m) (5.3)

m=k mz=0

Clearly, we have

e;=(t5,e7Y),=(,...,1,0,...,0,e7V),.

iy Aig
We devide the proof into two cases.
i) y(—=1)>0.
In this case, ¢; =(1,...,1,0,...,0,1,..., 1),. If n, <y(—1),n; =n; + y(—1) — A, and

ny ngy P(—1)

ny =0. From (5.3) and the inequality y(—1) — i, = 0, we have (5.1). If 7y > y(—1),
ny=ny,ng=n,—y(—1).Sinceny > 0,7, >, —fig+y(—1)= Y. y(m). Therefore
we get (5.1). mz -1

(i) 7(—1) <0.
In this case, &, =(1,...,1,0,...,0,0,...,0),. Therefore, n, =7, = max Y, y(m). O
— S kg—lm;k
Ay Ag —y(=1)

Remark. 1If ¢ is the signature of some YeZ(A) then f(—1) =0. Therefore we have

ny =max 3, y(m)

Proof of Theorem 5.3. We define p in such a way that Definition 5.2 (i) holds.
From Lemma 5.1, it suffices to show that

MWy~ 0 for all i<>(u, 1) satisfies Definition 5.2 (ii).

Fix i. Let ¢ be the signature of the highest lift of # with respect to the color i. Let
n{) be the number of 1 in &;. From Theorem 3.6, the following conditions are

equivalent.
gy = 0 n) < A By (5.4)
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On the other hand, we have
(e — 1) — (41 — Mk 1) = T+ 1 — ()
= z ’(Atjk+1+k+l_Atjk+k+l)'

1=5j=

From (4.1), it turns out that
(e — 1) — (41 — T4 1) = Z (x;(k) — Bi(K))A;.

0<i<n

Here we have exhibited the i-dependence of a, § explicitly. Recalling that y, —#, = A’
if k>0, we get

W—t= Y, Y. (a(m)—B(m)A,+ A"

m2k 0<i<n

Therefore
";k (Bi(m) — ay(m)) = <A" — e + 1, by ).

Using Lemma 5.4, we have

n = max (A" — p + 1, h; ). (5.5)

From (5.4-5),
MMy =0 forall i<s{py —fi,h> =0 for all i and k.

These are equivalent to the condition that u, — #j, is a dominant integral weight
for all k. This completes the proof of the theorem. [

5.2. String Functions and Branching Coefficients. Let us consider a A-path (u,#)
(or simply #) and calculate its weight A(y). For a=¢, +---+¢€,,B=¢€, + -
+ €, we define

!
H(d, ﬂ) = min X 0(#} - va'(j)),

o j=
0r)=1 if r=0
=0 otherwise.

Then we have
Theorem 5.5.

An) = po — ()9,

o) = k;l k(H (15— 1, mi) — HOE2 1, 1Y)
Let Y =(Y,,..., Y;) be the highest lift of 5. Recalling the Fock representation, we
see that the proof of Theorem 5.5 reduces to counting the number of nodes on
d-th diagonal with d =imod(n) in each extended Young diagram Y;. The same

problem was solved in a different setting ([4] Theorem 5.7). We omit the proof here.
From Theorem 5.5 we obtain
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Corollary 5.6. For A'eP, we have
Z dim M(A) o - sq" = Z q°™.

(mme?(A)
Ho=A
Next let A, A’ be dominant integral weights, and consider the following tensor
product decomposition:

M(A') ® M(A) = AZ 'QA' AA” ® M(A”)~

Here Q,. ,,- is the space of the highest weight vectors in M(A')® M(A) whose
weight is equal to A” modulo ZJ. Combining Definition 5.2 and Theorem 5.5 we
obtain

Corollary 5.7.
2 Adim( @y an)ar-ned"= Y, 477,

(M)e?(AA,:,A)

Ho=

where (24 an)s = 2y an» V(M(A')® M(A)), and P (A, A) denotes the set of (A', A)-
paths.

The quantities appearing in Corollary 5.6 and 5.7 are called the string functions
[13] and the branching coefficients, respectively. We have thus obtained a neat
expression for both of them using paths.
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