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Abstract. The q = 0 combinatorics for Uq($l(ή)) is studied in connection with
solvable lattice models. Crystal bases of highest weight representations of Uq($l(ri))
are labelled by paths which were introduced as labels of corner transfer matrix
eigenvectors at q = 0. It is shown that the crystal graphs for finite tensor products
of/-th symmetric tensor representations of Uq($l(rή) approximate the crystal graphs
of level / representations of Uq($l(n)). The identification is made between restricted
paths for the RSOS models and highest weight vectors in the crystal graphs of
tensor modules for UJ<A(n)).

1. Introduction

1.1 R Matrices and Paths. The eminent role of the quantized enveloping algebras
in solvable lattice models is widely known. The R matrices, which are the intert-
winers of tensor product representations, give the Boltzmann weights of lattice
models with commuting transfer matrices [1].

Consider Uq($l(ή)). Let (V,π) be the Z-th symmetric tensor representation of
Uq($l(ή)). We can extend this representations to a family of representations (V,πx)
of Όq(ύ(ri)) with an auxiliary parameter x. The R matrix R{x,y) is an element
of End(V®V) which intertwines two representations (V ® V, πx ® πy) and
(V®V,πy®πx). Set

( n-ί n-1
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Fig. 1.1. Elementary configuration for vertex models

( j \
where €,- = I 0,. . . , 1 , . . . , 0 I ( 0 g j < n ) . We choose a vector vve V with weight v
so that {vv\vesrff} constitutes a base of V. The matrix elements of R(x,y) with
respect to this base give the Boltzmann weights of a solvable vertex model. The
fluctuation variables of the model live on the bonds of the lattice, say Jδf, and they
take values in the set {uv| ve«fl/z

+} which we identify with sif. (Fig. 1.1.) The simplest
case n = 2, / = 1 is the 6 vertex model.

An interesting phenomenon was found in the study of the 1 point functions of
solvable lattice models. The spectra of the logarithm of the corner transfer matrices
in the infinite lattice limit (N->oo) have an equally spaced distribution [2] and
their generating functions often coincide with the characters or the branching
functions of some affine Lie algebras (see e.g. [3]).

For the models corresponding to {V9πx)9 the statement is as follows. Let At

(i = 0,...,n—1) be the fundamental weights of Uq(ύ(n)\ Fix a dominant integral
weight A = Ayι -f ••• 4- Λyι. A ground state of the model is specified by this choice.
A path of length N is a sequence (ηθ9...,ηN-1)e{jtff)N. The corner transfer matrix
is a matrix indexed by paths of length N. It depends on the choice of the ground
state. A Λ-path is an infinite path [ηo,ηu...) such that ηk = ηΛ fc for k » 1, where

ηΛ,k
:=eγι+k+ '" +eγι+k We denote the set of/1-paths by ^(A). The following is

proved in [4].

Theorem 1.1. Let M(Λ) be the irreducible highest weight representation of sl(n) with
highest weight A, and M(A)μ the weight space of weight μ. Define the weight μη of
a A-path η by

μη = A- Σ (ίk - >Ufc) - o)(η)δ (δ: the null root),

ω{η)= X k(H(ηk.l9ηk)- H(ηΛtk-ί9ηΛtk))9

where

€ ef

i

= min £

0 ( 0 = 1 if i^O

= 0 otherwise.

Then we have
#{ηe&(Λ)\μη = μ}=dimM{Λ)μ for any μ. (1.1)
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The proof in [4] is to construct an explicit base of M(A) labelled by Λ-paths.
However, it is somewhat unnatural to consider the case q = 1 in dealing with paths,
because the corner transfer matrix method is based on the behaviour of the R
matrix in the low temperature limit, i.e., q = 0. In this paper we shall give a natural
proof of (1.1) by constructing the crystal base of the irreducible L^(sl(n))-module
with highest weight A using Λ-paths as labels.

1.2. Crystal Base and Paths. Kashiwara [5] found certain bases of the integrable
highest weight representations of the quantized enveloping algebras which exhibit
a remarkably simple structure at q = 0. He named them the crystal bases. Misra
and Miwa [6] noticed that the paths (/ = 1) as explained in the previous section
give appropriate labels to the crystal base in level 1 representation of Όq(ύ(n)). It
is apparent that the crystal base provides a powerful tool to attack the com-
binatorial problems related to the corner transfer matrix method. The aim of this
paper is to establish the role of paths as the labels of crystal bases in arbitrary
level representations of Uq(ύ{n)).

Let e,f,t be the Chevalley generators of Όq(ύ{2)\ and (Vl9πt) the / + 1
dimensional irreducible representation with the distinguished base {vik)0^k^i such
that

π(t)v =Qι~2kv

Let ei9 fh U (i = 0,..., n - 1) be the Chevalley generators of Uq(k(n)\ and l/β(sl(2))j
the algebra generated by e^f^tf1. Let M{Λ) be the irreducible ί7€(sl(n))-module
with highest weight A = Aγι + ••• + Aγι. Set K = Q(#) and A = {feK\f has no pole
at q = 0}.

Kashiwara's result is rephrased in this case as

Theorem 1.2. There exists α base (ub)beB of M(A) with the following properties. Set

beB

and identify the subset {ubmodqL\beB} czL/qL with B. For each ί there exists an
isomorphism of Uq($l(2))rmodules

φ.: 0 0 yϋ) _I*M{A\ where V\j) is a copy of Vh

I = 0 jeJi

ι Λ0 0 Av$ I, where vγl is a copy ofvlk9
O jeJιk )

^ / < oo, jeJh0^ k ̂  /}.

The pair (L, B) is called the crystal base.
The set B is endowed with a structure of colored oriented graph [5]. Suppose

that ft, b'eB, and set φ^φ) = v^k\ φ^~ι(b') = t?j{λ We draw an arrow of color i from
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b to b\ if and only if j = f and k -f 1 = k!. We write this as b -U> b'. The graph B
is called the crystal graph.

1.3. Main Results. We study the crystal base and the crystal graph of the
Uq(sl(n))-moώxle M(Λ).

The first result is to make the crystal graph B out of the paths ^(Λ). This gives
an alternative proof of Theorem 1.1. We give a simple combinatorial criterion for
two paths η^η'e^iλ) to be joined by an arrow of color i:η -^η'.

The second result is to show that the crystal graph of the finite tensor product
V®" ®V approximates the crystal graph B.

N

Let &N(Λ) denote the set of Λ-paths η such that ηk = ηΛk for k^N. We have
a natural inclusion

The finite dimensional representations are excluded from the category of the
integrable representations of Uq(sl(n)) in [7]. However, we dare to consider this
case. The set stff can be identified with the crystal graph of V. Then (srff)N+ι is
the crystal graph of V® ••• ® V (see [5]). Our assertion is that the graph structure

N+l

of 0*N(Λ) inherited from (j/f)N+ί and the one inherited from 0*(Λ) are the same
but the direction of the arrows are all reversed. Namely, there is an arrow of color
i from η to η' in (jtff)N + 1 if and only if there is an arrow of color i from η' to η
in ^(Λ). We have no explanation of this inversion.

The third result is to prove certain combinatorial identities arising from the
restricted solid-on-solid (RSOS) models.

Set

n-l

For the vertex model the fluctuation variables are located on the bonds of the
lattice ^. Consider the dual lattice ^*. The RSOS model [8] is given on £f*. Fix
two positive integers / and Γ. The fluctuation variables now live on the vertices of
if* and take values in Pf+V. The Boltzmann weights are attached to configurations
round a face. (Fig. 1.2.)

K λ

V \1 Fig. 1.2. Elementary configuration of RSOS models

We impose two restrictions on κ,λ,μ9vePj^+v. The first condition is that

λ — κ,μ — λ, v — κ,μ —

Note that ξestff is uniquely written as

ξ = σ(v)-v,
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Here σ is a Z-linear map such that σ(Λf) = Λ i + 1 . Suppose that μ,μteP^+v and
μ ' - μ = σ(v)- ve^/,+ (vePz

+). The pair (μ,μ') is called admissible if and only if
μ — v = μ' — σ(v) belongs to P zt. The second condition is that the pairs (κ9 λ\ (λ, μ),
(/c, v), (v, μ) are admissible. We omit the expression of the Boltzmann weights. See
[8]. The simplest case n = 2J = Γ = 1 is equivalent to the Ising model.

For this model the definition of the paths is slightly modified. (We call them
restricted paths.) A path is a pair of sequences (μ,η) such that μ = { μ k ) k ^ ΐ
and η = {ηk)k^o,ηkε£#ΐ with the restriction

Let A and A be dominant integral weights of level I and /', respectively. A
(Λ',/l)-path (μ,η) is such that η is a /1-path, μ is admissible, i.e., {μk,μk+Λ) is
admissible for any k ̂  0, and for k » 1,

μk-Vk = μk+i-Φk) = Λ\
where

Suppose that (μ, η) and (μ', 77') are (Λ\ /i)-paths. If η = η' then μ = μ'. Therefore we
can say η is a (/I', Λ)-path (if ever μ exists).

Consider the L^(si(n))-modules M(Λ) and M(Λ'). Let B = 0>(Λ) and B' = 0>(Λ')
be the crystal graphs. The crystal graph of M(Λ) (x) M(Λ) is B' x £. Our assertion
is that (b\b)eBf x B is highest, i.e., there is no arrow in B' xB pointing to (b\b),
if and only if V is highest and b is a (Λ'9 7l)-path. To put it in a different way, we
obtain a combinatorial way of labelling the highest weight vectors in the tensor
product M(Λ')®M(Λ).

The plan of this paper is as follows. In Sect. 2 we review the basic facts about
the crystal base. In Sect. 3 we make the crystal base for M(Λ) in terms of 0>(Λ).
In Sect. 4 the finite size approximation to the crystal base is discussed. In Sect. 5
the restricted paths are identified with the highest weight vectors in the crystal
baseof M(Λ')®M(Λ).

2. Crystal Base

The purpose of this section is to give a brief review of the crystal base following [5,7].

2.1. Uq($l(n)). Let us first fix notations concerning the affine Lie algebras [9]. We
shall consider the affine Lie algebra sl(n) over the field Q. Let C = (co)"7io denote
the associated generalized Cartan matrix: ci3 — 26$ — d^L x — δ^+u where δff = 1
if i = j mod w, δ\f = 0 otherwise. Let I) be a Q-vector space and I)* its dual, with
distinguished bases such that

/n-ί \

ί)*= ©QΛ
\;=o /

Let further ai = 2Λi-Λi-1 —Λi + 1 +δ($δ. Here and in what follows we extend
the suffixes of Λt to ίeZ by At = Av for i ^ Γ m o d n . We define the weight
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/π-l \ (n-\ \

lattice P = @ZAi)®Zδ, its dual P v = 0 Zft£ ® ZD and the root lattice
n-l \i=0 / \i = 0 /

ρ=0Zα,.
ί = 0

Throughout this paper we set

K = Q(q), A = {feK\f has no pole at q = 0}.

The algebra Uq = Uq(£l(n)) is an associative algebra over K with 1, generated
by the symbols {ei9fi\0^ i^n-ί} and qh (hePv). The defining relations [10,11]
are as follows (we set ίf = qhi):

(i) qhqh' = qh + h' (Kh'ePv), q° = 1,

(ϋ) (fejq-h = q<*>h>ej9 qhffl~h = <f^f>,

(iv) Σ
k = 0

\n~cii-kfjfϊ=o
Here

Note that the algebra Uq has a Hopf algebra structure with comultiplication
Δ:Uq-*Uq®Uq given by:

The tensor product of [/^-modules becomes a l/€-module via zl.

2.2. Crystal Base. Let M be a L^-module. The weight space MA (/IGP) is defined by

Mλ = {ueM\qhu = q<λ>h)u for all hεPv}.

For each i, let l/gι = l/€(sl(2))f denote the subalgebra of l/€ generated by eί5 fh tt

and ί;"1. A L^-module M is called ίntegrable if

(i) M =

(ii) dimMA < oo for each ΛeP,
(iii) for each i, M is a union of finite-dimensional representations over Uqi.

In [5] Kashiwara defines the following operators on M: for 0 £Ξ i ̂  n — 1,

g ^ ^ ί Λ ) - 1 ' 2 ^ / ; = ί ;(^4-)" 1 / 2/;,

where

4 = «" ^ί + ί ί Γ ' + («-«" 1)2e,-/ί - 2.



Combinatorics of Representations 549

Definition 2.1. [5] A pair (L, B) is called a crystal base of M if it satisfies the
following conditions:

(i) L is a free y4-module such that K®AL^M,
(ii) B is a base of the Q-vector space L/qL,

(iii) L=@Lλ and B = [j Bλ, where Lλ = Lr\Mλ and Bλ = Bn(Lλ/qLλ),
λeP _ λeP

(iv) etL c L, / f L c L for all i,
(v) e{B^B\j {0}, JIB^BKJ {0} for all i,

(vi) for any i and w, t;e£, w = eft> if and only if v = J μ.

As noted in [5] B has a structure of colored oriented graph (the colors are

labelled by z(0 ̂  i' ̂  n — 1)): For u, ueB, we draw an arrow of color iu—>viϊ and

only if v = f{u. The set B endowed with this structure is called the crystal graph of M.
Let A be a dominant integral weight. Let M(Λ) denote the irreducible highest

weight [/^-module with highest weight A and highest weight vector uA. Set

and

B(A) = {υ = fiί~.fikuΛmodqL\vϊ0}^L/qL.

The following states the existence and uniqueness of a crystal base.

Theorem 2.2. [7]
(i) Let M(A) be as above. Then the pair (L(A),B(A)) is a crystal base for M(Λ).
(ii) Let M be an ίntegrable module isomorphic to 0 M ( ^ ) , and let (L,B) be its

J

crystal base. Then there is an isomorphism M —>@M(λj) which sends (L,B) to

@(L(λj\B(λj)).
j

The crystal base of tensor product modules is given by

Theorem 2.3. [5] Let (Lp B3) be crystal bases ofMj (j = 1,2). Then {Lx ®L2, Bx x B2)
is a crystal base ofM1®M2. Here Bί x B2 <=^>(Lί (g)L2)/q(Lί ®L2) ̂  (L^^/qL^®
(L2/qL2) is given by (u,v)\-^>u®v.

The graph structure of Bί x B2 is described as follows [5]. For a crystal base
(L,B) and beB, we define ί j ^ ^ e Z ^ to be

= the length of the i string above/below b in the graph B. (2.1)

This means that there exists a sequence bU)eB{-l\+){b)^ j^l\~\b)) satisfying

6<o) = 6, &ϋ>_Uftϋ+υ such that if b'eB then neither V -Ub ( / - } (/_ = -l\+\b)) nor

&<«+> -U&' (J+ = l\-\b)) is valid. If beBλ then

ii" )(6)-/|+ )(6) = a * i > - (2.2)

Using these notations we have, for ueBλ and veB2,

fi(u®v) = fiu®v if l\-\u)>l<i+\vl

= u®fιV otherwise, (2.3a)

ei(u®v) = eiu®v if l\~\u)^l\+\v\

= u®e(v otherwise. (2.3b)
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3. Crystal Graphs for Integrable Representations

3.1 Fock Representation of Uq(sl(n)). The aim of this section is to determine the
crystal graph for highest weight modules M(Λ) with dominant integral highest
weight A. We begin with some combinatorial objects which will play a role in the
description of the graph.

Definition 3.1. An extended Young diagram Y is a sequence {yk)k^o such that
(i) ykeZ9ykβyk + 1 for all fc,

(ii) there exists fixed y^eZ such that yk = y^ for fc » 0.

The integer y^ is called the charge of Y:
For example, pictorially,

Fig. 3.1. Extended Young diagram

where Y=( — 2, — 2, —1,0,0,1,1,1,...) is an extended Young diagram of charge
jΌo = 1. Thus an extended Young diagram Y=(yk)k^0 is an infinite Young diagram
(see [4]) drawn on the lattice in the right half plane with sites {(iJ)eZ x Z\i ^ 0},
where yk denotes the "depth" of the /c-th column. Note that if yk φ yk + ί for some
fc, then we will have corners in the extended Young diagram. For instance, in the
above example yί φ y2. So we have a convex corner at site (2, —2) and a concave
corner at (2, — 1). If a corner is located at site (ij), it is called a d diagonal corner
where d = i +j.

Definition 3.2. We define a pattern to be a map

V.Z x Z ^ o ^ Z

j

such that
(i) for all j , (tjk)k^0 is an extended Young diagram,

(ii) tjk^tj+lkϊoΐ al l; and fc,
(iii) tj + lk = tjk + n for all j and fc.
We say the pattern t is normalized if 0 ^ yx ^ ••• ^ yt < n9 where yj = tjo0 is the
charge of {tjk)k^0. We call y = (yί9...,yι)ύίQ charge of ί. We identify the pattern t
with a sequence Y=(Yj)jez of extended Young diagrams Yj = (tjk)k^0. Iftjk < tjk+1

then Yj has a convex corner and concave corner at the fc-th column. (Fig. 3.2.)
Let 2Γ denote the set of all patterns.
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\

\
t j k +k+l

Fig. 3.2. Convex corner on the tjk + k+ 1 diagonal and concave corner on the tjk+ί +/c +
diagonal

In the sequel we fix a positive integer / and set

r ί — 1

= ^ J

7 = 0

n - 1

: Σ '
7 = 0

7 = 0

-th

Let €j = (0,.. . , 1 , . . . , 0) (0 ^ j < ή) denote the standard base vectors of Z". We
extend the suffixes of et to ίeZ by ev = ef for i' = ivaoάn. We set

7 = 0 ί = 0 Σ
i=0

Definition 3.3. A path is a pair (μ, f/) such that
(i) μ = {μk)k*

(ii) η = (ηk)k^
(iii) μk + 1-μk = ήkϊoτ all fc,
where —: J / -> P o is the Z-linear map given by e,- = Λj+ x — Λj.

Let /leP z

+ , A Λ-path (μ,η) is a path such that μk = σk(Λ) for fc»0, where
σ(Λj) = Λj+1 for all j . Note that in this case μ is uniquely determined from A and
η. Hence we will call η a Λ-path. Let 0>(Λ) denote the set of all Λ-paths.

We have a map

π: (J
+

where /̂fc = € ί l k + k + ••• + e ί I k + k . For a Λ-path r\e^(A\ we say ί is a /ι/ί of ^ if
ί e π " 1 ^ ) . The following proposition is analogous to Proposition 5.2 in [4].

Proposition 3.4. For any ηe0>{A\ there exists a unique normalized lift t = (tjk) such
that tjk ^ t'jk for all), kfor any t' = (t'jk)eπ~ 1(η). This t is called the highest lift ofη.
Furthermore, a normalized pattern t is a highest lift if and only if for each k ^ 0 there
exists some j such that tj+ίk> tjk+1.
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For fixed A = Ayι-\ 1- An with 0 ^ γx g ^ γt < n, define

has charge y = {γl9...9γt)}.

Note that Ye(&(A) is completely determined by (Y1,..., Yt) using periodicity with
respect to j with period /. So we will identify Y with (Y l 5..., Yt). The Fock space

Ye^(Λ)

is the vector space over the field K = Q(q) having all Ys<W(A) as base vectors.
For deZ,y = 1,2,...,/ define symbols e%J%,t% and let these act on &(Λ) as

follows. Let Y = (Y l 5..., Y^e&ίΛ). If Yj has a d diagonal convex corner, then

e%Y = {Y1,...,Y'j,...9Yι)9 (3.1)

wherein Y) is the same as Yj except the convex corner is replaced by a concave
corner,

eajY = 0 otherwise.

If Yj has a d diagonal concave corner, then

/ S Y = (i r

1,...,r;,...,r z), (3.2)

wherein Y) is the same as Yj except the concave corner is replaced by a convex
corner.

/ 2 Y = 0 otherwise,

ίg Y = qY, if Yj. has a d diagonal concave corner, (3.3)

= q~xY, if Yj has a d diagonal convex corner,

= Y, otherwise.

Define also the operator sjk by

For (dj)9 (d'J')eZ x {1,2,...,/} we say

(dj) < (</',/) if and only if d < d\ or d = d' and j > / .

The following proposition can be proved by an argument similar to Theorem 6.1
in [12].

Proposition 3.5. The algebra Uq(ά(n)) acts on $F{A) by the following equations:

*<= Σ ( Π tfXfj (3.4)

/.•= Σ /sf Π (W1) (3-5)
d = imod(n) \ (d',j')<(d,j)

1 ^ ; ^ / d' = imod(n),i^

and

t , = Π ' 2 . <?D= Π
d = imod(n)

l

Under the above action 3F(A) is an integrable Uq(sl(ή))-module.
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Set Φ = (φί,...,φι)e(2/(A), where φj (l^j-^l) denotes the empty extended
Young diagram of charge ys (i.e., tjk = y, for all k ̂  0). Observe that ΦG^(Λ) is a
highest weight vector with highest weight A. The space M(Λ) = Όq(ύ(n))Φ is the
irreducible integrable highest weight Uq(ύ{ri))-moάv\Q with highest weight A.

3.2. Uq(ύ(2)) Decomposition of the Fock Space. Let Y be any extended Young
diagram. We color the corners in Y as follows. If d is the diagonal number of any
corner and d = ί mod n, then we say it is a corner of color i. A convex (respectively
concave) corner of color i is called i-convex (respectively f-concave) corner.

Fix some color L For an extended Young diagram Y we denote by Ϋ the Young
diagram obtained from Y by removing all the f-convex corners. Let η be a A path
and t be the highest lift of η. We construct a sequence ε = (ε 1 ? . . . , εm) in such a way
that the following hold:

i _

(i) £ #{i-concave corner of Y}) = m.
7 = 1

(ii) Each εr is either 0 or 1.
(iii) We can define j (r)(l ^j(r)^l) and d(r) in such a way that Ym has a d(r)
diagonal i-concave corner.
(iv) If εr = 0 (respectively εr = 1) then Ym has a d(r) diagonal ί-concave (respectively
i-convex) corner.
(v) If rx < r2 then (dfy^j^)) > (d(r2),j(r2)).

With these conditions ε is uniquely determined from η and i. Fixing i we call ε the
signature of η (or Y). Set Ϋ = (Yu Y2, • • •, ?/). Note that Y is uniquely determined
by Ϋ and ε. So we write Y = (Ϋ, ε).

Example. Let n = 2, / = 2, i = 1 and

η = (e0 + elt 2eO )2eo, 2e l 5 . . .

Then Y = ( 7 t , y2), Ϋ = ( ? ! , ? 2) where

Y , =

Yi=π γ2=π

Note that as an ordered set

{(d,j)\ 1 ̂ j ' g 2, d = 1 mod2, ?,- has a d diagonal 1-concave corner}

Hence ε = (1,1,1,0) and Y = (Ϋ, (1,1,1,0)).
For fixed ε = (ε1? ε 2,..., εm) we partition the set

{l,2,...,m}=JUK1U" UKt

into disjoint subsets by the following inductive procedure (see [6]):
(i) If there is no j such that (εj,εj+1) = (0,1), define J = {1,2,..., m}.

(ii) If there is some j such that (ε7 , εj+1) = (0,1) define Kγ = {jj + 1}.
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(iii) Apply (i) and (ii) to {1,2,...9m}\Kί to choose J or K2 and repeat this as
necessary to choose J and K1,K2,...,Kt.
L e t εJ = ( ε i ί , . . . , ε i r ) , w h e r e J = {i1,...,ir} a n d iί< -<ir. W e c a l l 0 o r 1 i n t h e
signature ε relevant if and only if it is in Sj.

For i,Y,Ϋ,ε, J, K1,..., Kt as above, define an element of ̂ (A) by (see [6])

[ Y l = Σ Σ / ( J o ' 7 l ) ( - ^ ) | s | ( Ϋ , β ( J o ^ i ^ ) ) , (3.7)
J = JQUJγ Sc={l,2,...,ί}

where

nι=#{jeJ\εj=l},

and ε ( J 0 , J 1 , 5 ) = ( τ 1 , τ 2 , . . . , τ r ) is determined by
(i) τj = 0iϊjeJ0

(ii) τj=l iίjsJ1

(iii) (τj9τr) = (1,0) if j <j' and {;,/} = Ks, seS
(iv) (τpτf) = (0,1) if j <f and {;,/} - Ks, sφS.

The following theorems are analogous to Theorems 3.1 and 3.2 in [6] and
follow similarly.

Theorem 3.6. Let Y, Ϋ,ε,J,Kl9...9Ktbeas above. For each fc = 0,1, . . . , r there is a
unique vector Yk = (Ϋ, τ)e^(Λ) swcft ί/iαί ίfte partition {1,2,..., m} = J U K1 U U Kt

is the same with Y and #{jeJ\τj = 1} = fc. Furthermore, Vr= © K [ Y k ] j is arc
fc = 0

(r + lydimensional irreducible integrable Uqi-module with highest weight vector [Y0]f.

Set Lt = 0 ^[YJ i and ^ - {[YJf |0 ̂ k^r}. Then (Li9 Bt) is the crystal base for
k = 0

the Uqi-module Vr.
Theorem 3.7. LetL(^(Λ))= 0 AY and B(^(Λ)) = &(Λ). Then the pair (L(^(Λ)\

YeW(Λ)

B(έF(A))) is the crystal base for the integrable Uq(*l(n))-module JM/1).

The next theorem is an immediate consequence of Theorems 3.6, 3.7 and the
definition of crystal graph (see [5,7]).

Theorem 3.8. Let Y, YΈB{^{A)\ In the crystal graph B(^(A)\ Y -U Y' if and only
if the following hold

(i) Y = (Ϋ,( f i l,...,βJ),Y' = (Ϋ,(ε'1,...,4)).
(ii) The partition { l,2,.. .,m} = J U X x U ••• U Kt is the same for both Y and Y .
(iii) There exists keJ such that εk = 0, ε'k = 1, ε̂  = ε̂  = 1 ifjeJ and j < fc, ε ; = ε'j = 0
ifjeJ and j> fc.

Suppose that η,η' are Λ-paths and Y, Y'e(&(A) are their highest lifts. Then for
any i = 0,1,.. ., n - 1, we write η -Uηf if and only if Y -U Y' in

3.3. Crystal Base for M{Λ). Recal l t h a t M{Λ)= Uq(sl(n))Φ, w h e r e Φ = ( φ l 9 . . . , φ ι ) ,
and φj(l ̂ j ^ /) is the empty extended Young diagram of charge y}. Let B(tF{A))φ

denote the Φ-connected component in the crystal graph B(^(A)). By Theorem 2.2,
B(^(A))φis the crystal graph of M(Λ). Let tf(A) denote the set oϊYeB{^(A)) = <
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such that Y is the highest lift of some ηe£P(Λ). Suppose that t = (tjk)k^0 is the
pattern of Y = {Yl9...9Yι)eB(&r{Λ)). Recall that by definition Yι+j denotes the
extended Young diagram of charge (y,- + ή) which is obtained by giving an upward
vertical shift of n units to Yy It follows from definition and Proposition 3.4, that
Y = (Yt,..., Y^eJfiΛ) if and only if the following conditions hold:

Ti^ 2 3. oy, (3.8)

Yι^Yι + i (3.9)

For each fc ̂  0 there exists some j such that tj+ίtk > tjik + ί . (3.10)

The following lemma is an immediate consequence of Theorem 3.8.

Lemma 3.9. Let Y, Y'eB(^(Λ)) and Y -U Y' in the crystal graph B(3?(Λ)) for some
i. Let ε = (ε l 5 . . .,εm) (respectively ε' = (ε\,...,ε'm)) be the signature ofY (respectively
Y') with respect to this color i. If εa = 0 and ε'a=l for some l^a^m, then

Proposition 3.10. Suppose YeJtf(Λ\ Y'eB{&(Λ)) and Y -U Y'for some color I Then
Y'eJf(Λ).

Proof. Suppose that t = (tjk) and t' = (t'jk) are the patterns of Y and Y', respectively.
Let ε = (εx,..., εm) and ε' = (ε\,..., ε'm) denote the signatures of Y and Y' respectively
with respect to color L Suppose Y' does not satisfy condition (3.8). Then there
exists d = imodn and j (1 ̂ j^l) such that Yj-l9 Y'j-i and Yj have d diagonal
concave corners and Y) has a d diagonal convex corner. Therefore, for some a
(1 < a ̂  m), we have εα_ x = 0, εa = 0, but ε̂ _ x = 0, ε'a = 1 which is a contradiction
by Lemma 3.9.

Now suppose Y; does not satisfy condition (3.9). Then there exists d = imodn
such that Yz and Y\ have d diagonal concave corners, Y1 has a d — n diagonal
concave corner, but Y\ has a d — n diagonal convex corner. Again, this implies
that εa _ x = 0, εa = 0, ε'a _ x = 0 and εa = 1 for some 1 < α ̂  m, which is a contradiction
by Lemma 3.9.

Finally, suppose that Y' satisfies conditions (3.8) and (3.9), but does not satisfy
condition (3.10). Then there exists k0 ̂  0 such that t'j+lko ^ t'jko+1 for all jeZ. Since
Ye Jf (A\ there exists Ό (1 ύk ^ 0 such that ίjo + xko > tjoko + x. This implies tjo +lko =
t'jo+iko + h tjoko = t'joko = t'jo+lko. Note also that YJo+ί has an /-concave corner and
Yj0+ί has an ί-convex corner. They have the same diagonal number, say, d. For

j =j0 there are two cases.
(i) tjko < tjko+ί and Yj(= Y)) has a d diagonal concave corner,

(ii) tjko = tjko + 1 and Yj(= Y's) has no d diagonal corner, and tJko = tj.lko+1.
The case (i) implies that for some a (1 < a ̂  m) we have εfl_ x = εα = ε̂  = 0 and
ε'a_ 1 = 1, which is a contradiction by Lemma 3.9. In the case (ii), we argue similarly,
replacing j by j —1. Because of the periodicity in j , we will come to the case (i) in
finite steps. This is a contradiction. Π

Proposition 3.11. Suppose YeJ^(Λ) and Y Φ Φ. Then there exists a color i (0 ̂  i < ή)
such that the signature ε of Y with respect to i contains 1 which is relevant.

Proof Let t = (tjk) be the pattern of Y. For 1 ̂ j ̂  /, set m,- = max {k\tjk < yy}. Set
m = max {m }. By (3.10) there exists an integer j 0 (1 ^jo^l) such that tjom>
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Oo-im + i Choose the minimal integer^ that satisfiesy\ ^j0 and tjιm<tjιm+ί =
tjί oo. Then Yjί has a tjίm + m+ I diagonal convex corner. Let i be the color of this
corner. We shall show that the signature ε of Y contains εα = 1, which is
corresponding to this corner (or, if j 1 > /, corresponding to the shifted corner in
Yji-i), as a relevant element. If it is not so, there is α! such that d < α and εα, = 0.
This means that there exists; (1 ̂ j^ /) such that tjm<tjm + ί9tjm + 1+m+l = imod n.
This is contradictory to the fact tjom >tjo-ίm + 1. •

Proposition 3.12. B(^(Λ))Φ=

Proof. By Proposition 3.10, £ ( ^ ( Λ ) ) φ g ^f(Λ). If Ye^(Λ) and Y / Φ, then by

Proposition 3.11 there exists Yx such that Yx -U Y. Hence using induction we get
) φ . So B{F{Λ))Φ= JtT(Λ). D

To sum up we have shown

Theorem 3.13. There is α one to one correspondence between the set of Λ-pαths
9{A\ the set of their highest lifts J f (A) and the crystal graph
of M(A). Their graph structure is described in Theorem 3.8.

4. Finite Size Approximation

4.1. Symmetric Tensors and the Crystal Graph for its Tensor Power. Let U'q denote
the K-subalgebra of Uq generated by ei9 ft and tfι (O^i^n- 1). In this section
we shall consider finite dimensional representations of Uq and the crystal graph
for their tensor powers.

Let V= © Kvv be the vector space spanned by basis elements υv

over K. We define the action of U'q on V as follows:

Here in the right-hand side vv with vφjrff is to be understood as 0. With respect
to the subalgebra L^(sl(n)) c U'q, V is a highest weight module with highest weight
vector υUo and the highest weight IΛX. Note however that it is not a highest weight
module over U'q.

The notion of a crystal base as given in Definition 2.1 carries over to ^-modules
n— 1

by replacing P with P'= (J) ZAt. Setting L= © Avv and B = {vxmoάqL\vej^ι

+}

one finds easily that (L, β) is the crystal base of the L^-module V. We shall identify
β with s^i . The crystal graph structure of s$ϊ is given as follows: A vertex of the
graph is represented by an element VGJ/^, and for v, v'estff an arrow from v to
V of color i is drawn if and only if V = v — £;_ 1 + et . If VG^/Z

+, then / + )(v) = vt and

Remark. For L^-modules, existence of a crystal base is not always guaranteed; a
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simple example is the two dimensional module (in the case n = 2) defined by

However Theorem 2.3 for the tensor product modules is valid without change.
Let now N be a positive integer. The crystal base for the tensor representation

F 0 N is given by (L®N,BN = (<s/f)N). The crystal graph structure is described
inductively as follows.

Suppose that the graph structure on (^t)N is already given. Let v, v'estff and

V9b'e(s/ff. Then (v,fc)-U(v',f/) in ( J / Z

+ ) N + 1 if and only if one of the following

is valid.

Case A:

l\-\v)>l\+){b\v-^V and b = b'.

Case B:

l\-\v)Sl\+)(blv = v' and fc-Ub'.

In Case A we have

In Case B we have

Example. Let n = 2. Then the graph (J^, + )N for the cases (/, N) = (1,2), (1,3), (2,2) is
given as in Fig. 4.1(a),(b),(c), respectively.

Set

@M) = {Ά = (iίo.1i.• )e?(Λ)\ήk = σ"+1(Λ) - σk(Λ) if fe ̂  N}.

We identify ^,(/l) with a subset of (.s/,+)*+1 by

For η,η'e^N(Λ) we write

if and only if ιw(if) -U i ^ ' ) in (^,+

Our goal in Sect. 4 is the following theorem.
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^0,1 _ 1,0,1 ^ 00,11

u / ô 1 / in1

0,0 ' ' 0,1,0 1.1-1 I*- 00,01 π,6i

( a ) M ^ / /\ /

j χ y .o / \ 11,00

I 1,0,0 I 01,00

t/ 1/
0,0,0 00,00

(b) (c)

Fig. 4.1. Crystal graphs of ( ^ + ) ^ for t79($l(2,C)). The color i = 0,1 corresponds to the dashed
and ordinary arrows, respectively. The symbols 0,1 represent e0, eu so that 0,1 means (e0, ex\ 00,01
means (2eo,eo + e j , and so on

Theorem 4.1. Suppose that η,ηfe^N(Λ). Then

Ά "if* rf if and only if η' -U> η in

The proof will be given in 4.3. Here we note only the following fact.

Lemma 4.2. Suppose that b ( 1 ),b ( 2 ),b ( 3 )e(j/ /

+) i V + 1 satisfy

and suppose also that bffl = b^\ Then we have b^ = bψ.

Proof. We use induction on NΛϊN = 0, b(2) -U b{3) and b{2) = b{3) are contradictory.
Therefore the assertion is true. Suppose that the lemma is proved for {s$χ )N. For

v(D jV(2) jV(3)GJ^+ a n d b{1\bi2\bi3)e(jtff)N assume that

is valid in ( j/ ί

+ ) i V + 1 . We shall show that if b^l1 = bi^l1 then bi^l1 = b^lί.

If Case A is valid for (v(1), fo(1)) ̂ ( v ( 2 ) , b(2)), then fe(1) = b{2\ and therefore we have

6 ^ = 6 ^ . If

Case B is valid for (v(1), b(1)) -U (v(2),
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and

Case A is valid for (v(2), b(2)) - U (v(3), b ( 3 ) )

then we have

l\+ψ2)) < /J->(v(2)) = /P(v(1 )) g /ί+)(b(1)) = l\+ψ2)) - 1.

This is a contradiction.
Finally assume that Case B is valid for both

Then b(1)-Ub(2)-^b(3) in (J*, + ) * Therefore, by the induction hypothesis, if
btfl^b™, then b^L^h™,. •

4.2. Signature of a Path. Fix color i. In 3.2 we defined the signature ε of an
extended Young diagram. Take ηe^(Λ) and let t be the highest lift oϊη. We shall
give another description of the signature ε of η in terms of the pattern t. For
k = - 1,0,1,..., we define

Φ) = #U\ lύjύh tjk < tjk+l9tjk+ί + k + 1 = /mod n}9

β(k) = #{j\l£j£l,tjk<tjk+utJk + k+l = imodn}. (4.1)

Here by convention we set ί, _x = — oo and β(— 1) = 0 Set

Lemma 4.3.

ε = (...,ε ( f c ),ε ( f c- 1 )

)...,ε (" 1 )).

Proof. Suppose that tjk<tjk+1. Then the extended Young diagram Y} corres-
ponding to (tjk)k^0 has a concave corner at the (tjk+1 + /c + l)-th diagonal and a
convex corner at the (tjk + fe + l)-th diagonal (see Fig. 3.2).

oo oo

Therefore Y α(fc) is the number of i-concave corners in (Yl9..., Yj), and V β(k)
k=-\ _ k=-ί _

is the number of /-convex corners in (Y ί9..., YJ). Hence ε and (..., εik\ ε{k~ υ , . . . , ε( υ )
have the same numbers of O's and Γs.

Now we shall prove that the ordering of O's and Γs are also the same in ε and
in ( . . ^ ε ^ ε ^ " 1 * , . . . ^ " 1 * ) . First we consider the ordering within a single ε(k).
Suppose that 1 ̂  j l 9 j 2 ύ I and

hik < tjih+u d\ = tJιk + fc + 1 = imodn,
ιhk < hik + u d2 = tj2k+i + k + ! = imodn.

There are four cases.

& t 2

(ii) d1=d2JjL^J2.
(iii) dί=d2,j1>j2.
(iv) d1<d2.
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We shall show that (i),(ii) are contradictory. The cases (iii),(iv) mean the 1
corresponding to the /-convex corner at the drih diagonal of Yjι is located to the
right of the 0 corresponding to the /-concave corner at the d2-th diagonal of Yh

in ε. This is consistent with the definition of ε(k) = (0,..., 0,1,.. ., 1).
Consider the case (i). We have

thk + k+l=tj2k+1+k+l+rn ( r ^ l ) .

Therefore tjιk ^ tj2 + lk + 1 > tj2 + lk. On the other hand we have j 2 + l> h This is a
contradiction.

Next consider the case (ii). We have thk + k + 1 = thk+1 + k + 1. Therefore
tjίk = tJ2k + 1 > tJ2k. On the other hand j ί ̂  j 2 . This is a contradiction. Thus we
have checked the ordering in ε(k) is consistent with the ordering in ε.

Now we will show that the ordering of ε(ft)'s is also consistent with the ordering
in ε. Suppose that k1<k29tjίki<tJιkι + 1 and tj2k2<tj2k2 + ί. Suppose also that
tjiki + &i + 1 or ίjiki + i +k1-\-l is equal to imodn, and denote it by d1. Since
Oifci + n > 0ifci +1 ̂ e ̂ i *s u n iQ u e ly determined. Similarly we define d2. This means
that Yjι has a convex or concave corner at the d^th diagonal and Yj2 has a
concave or convex corner at the d2-th diagonal. Again, there are four cases
(i)-(iv) for {dί,jί) and {d2,j2)9

 a n < i a similar argument shows that neither
(i) nor (ii) occurs. Therefore, in ε,0 or 1 corresponding to (dl9 J Ί ) is located to the
right of 0 or 1 corresponding to (d2, j 2 ) . This is consistent with the ordering
(....eW.,^1*). D

Remark. In the first definition of ε, we imposed the condition that 1 ̂  j(k) ̂  /.
Replacing this condition by lx ̂  j(r) ̂  l2 such that 12 — 1X = /, we can define ε
similarly. In fact, the equivalence to the second definition is valid for any choice
of ll9l2 (l2 — Zi = Z). Therefore the definition of ε does not depend on this choice.

4.3. Proof of Theorem 4.1.

Proposition 4.4. Let η,ηfe^(Λ). We have an arrow

if and only if we can take highest lifts t,t' corresponding to η,η' in such a way that
the following are satisfied.

(i) For some {jo,ko) we have

^•fc= 0* "•" ̂  $ 7 = 7om°dZ and k = k0,

= tjk otherwise.

(ϋ) hoko + ko + \ = t'joko + ko = ί mod n.

(iii) tjoko<tjoko + 1 and the corresponding 1 in the signature ofη is relevant.

(iγ) ^ofco-i < ôfco anά t n e corresponding 0 in the signature of η' is relevant.

Now we come to the proof of Theorem 4.7. The assertion is true for AT = 0,
since the set &Q(Λ) consists of one vertex. Supposing the assertion is valid for N,
we prove it for N + 1.

Take v,Vestff and ή,ή'e0>N(σ(Λ)). Set η = (v,ή) and η' = (y',ή'). They belong
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to 0*N(Λ). Assume that

(v,6)-U(v',&') in t θ " + 2 ,

where b = ιN(ή), V = ιN(ή'). We shall show that ηr -U η.
Let t be a highest lift of η. Recall the definitions of α(fc) and jS(fe) for ί. We also

define

Then we have vi.1 = β(0) + y(0). Set τ = (...,ε (2),ε (1)). Here ε is the signature of η.
The signature ε corresponding to ή is

(τ, 0 ^ 0 ), (4.2)

α(0) + y(0)

and ε reads as

firr^O^O, lj-1 ,0^0). (4.3)

α(0) Vf-i-y(O) α(-l)

Case A: We have v' = v-€i.1 +€hb = b' and /j-)(v)>/S+)(fc). Note that l\~\v) = vi.ί.
By the induction hypothesis and Proposition we also have l\+){b) = l\~\ή)9 where
the latter signifies the length of the i string below ή in 0>{Λ) defined similarly as
in (2.1). Therefore we have vi_1> l^iή). This implies that the rightmost 1 of the
block 1 ••• 1 in (4.3) is relevant. Now consider η'. Set

vi-i-y(O)

7o = m a x {j\ l^jύl tj0 < tjutj0 = i - 1}.

Since vi_ί — y(0) > 0, the set of; in the right-hand side is not void. Define a parttern
ί'by

t'jk = tjk + 1 if j = j 0 mod I and k = 0,

= tjk otherwise.

This pattern is a highest lift of ηr and the corresponding signature is

ε ' = (τ,0 0, 1^1 , 0 - 0 ) . (4.4)

α(0) Vi-i-y(O)-l α(-l)+l

By Proposition 4.4 we have η' —>η.

Case B: Define ε, ε' and τ as in Case A. The change from ε to ε' is that the 1 in ε
which is the rightmost in the 1 block of Sj changes to 0 in ε'. It can be checked

that this 1 is in τ. We have v = v'9ή' -^fj and /[~}(v) <Ξ l\+)(b). Therefore

From this we can check the conditions (iii) and (iv) in Proposition 4.4 and prove

that f/'-Ujf.

Finally we show that the arrow η' -U η implies (v, b) -U (v', b') in (Λ/Z

+ ) N + 2 . From
Proposition 4.4 the (j0, k0) is determined. First assume that k0 = 0. In this case
b = V. The signatures ε,εr and ε are given by (4.3), (4.4) and (4.2), respectively.
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Because of the condition (iii) of Proposition 4.4 we have vi_1> l\~\v). This means

l\-\v)>l{

i

+)(b). Therefore we have (v,ί>)-U(v',&) in (j/ /

+ ) Λ r + 2. Next assume that

k0 ^ 1. In this case we have v = v' and ή' —>fj. The signature ε is given by (4.3) but

η' is given by (4.3) with one 1 in τ replaced by 0. The condition (iv) of Proposition

4.4 implies that Zj->(v) = vi.ί^ /|")W) = l\ + )(b). Therefore we have (v, b) -U(v, V) in

5. Restricted Paths

5.1. Tensor Product of Integrable Modules. In this section we return to integrable
L^-modules in the sense of Sect. 2. Let (L, B) be the crystal base of an integrable
module. We shall call an element veB a highest weight vector if veBμ with some
μeP and etv = 0 for any / = 0,..., n — 1. The latter is equivalent to the condition
that there is no arrow pointing to υ.

Let Λ, A be dominant integral weights of level /, /', and (L, B\ (L, B') be the
crystal bases of M(Λ),M(Λ')9 respectively. In view of Theorem 3.13, we shall make
an identification B = 0>(A\ B' = &(A\ Let η(ΛΊ denote the highest weight vector
of F .

Let us consider the tensor product module M(Λ')®M(Λ). Take two paths
ηe0*(Λ),η'e0>(Λ'). In this section, we study the condition that η'®η is a highest
weight vector in the crystal graph B' x B of M(Λ') (x) M(A\ i.e.,

&M ®fi) = 0 for all i.

Lemma 5.1. The vector η' ®ηeB' xB is a highest weight vector in the above sense
if and only if

(ϊ)ηf = η{Λ'\
(ii) eiΛ>hi>+ίη = 0 for alii.

Proof From (2.2) and (2.3b) it follows that

eM®n) = Ooerf = 0, eγ!^+ιn = 0,

where λ' is the weight of η'. This implies η' = η(Λ'\ and therefore λ' = A'. •

Let μ = (μ o ,μi,. . .) be a sequence of integral weights, and let A be a dominant
integral weight. We write μ — A to mean (μ0 — A, μ1 — A,...). Define the Z-linear
map v \sd -> P by ij = Aj. Note that

Definition 5.2. We call (μ, η) a (A\ /t)-path if and only if the following conditions
are satisfied.

(i)(μ-Λ'9η)eP(Λ)9

(ii) μk - ήkePf for all k ^ 0.

Given ηe^(A\ we can define a sequence of integral weights μ = (μ o ,μ l 5 . . . )
uniquely from the condition μk = A' + σk{A) k»0 so that (i) is satisfied. The
condition (ii) then restricts η from being arbitrary. In this sense we call η a restricted
path if it is a (Λ',Λ)-path for some AΈP.
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Example. (n = 2.)

563

= (€l9€l9€09€l9...)9

2Λ

Λ 0 + Λ l

Fig. 5.1. Level 1 paths. (μ{1\η{1)) is a (ylo,Λo)-path, but (μ{2\η{2)) is not.

U 2ΛO + Λ l 9 . . . ) 9

ηW = (2€0,€0 + €u2eu€0 + 6 1 ? . . . ) .

3Λ 1

Λ0+2ΛJ

2Λσ<-Λ1

3Λ
0

Fig. 5.2. Level 2 paths. (μ ( 3 ), η(3)) is a (/io,/lo + ΛJ-path but (μ(4),/y(4)) is not.

Our goal is to prove the following theorem.

Theorem 5.3. η'®ηeB' xB is a highest weight vector if and only if η' = η(ΛΊ and η
is a (Λ\ Λ)-path.

Before proving the theorem, we prepare

Lemma 5.4. Consider a sequence of 0 or 1 of the form

φ) β(k)
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We assume that α(/c) = β(k) = Oifk»O. We set y(m) = β(m) - α(m). Let ns (s = 0,1)
be the number of s in 8j (see 3.2 for the definition of Sj). Then we have

n1 = max £ y(m\ (5.1)
k~ - 1 m^k

wi-«o= Σ y(my (5 2)
m£ - 1

Proof By the definition of ε7 (5.2) is obvious. Put

τ = (..., εV^. .Λ

If y(—1) = 0 the proof of (5.1) is reduced to proving the same statement for τ.
Therefore, without loss of generality we can assume that y(—l)Φ 0. We apply the
induction on the number of m {>. — 1) such that y(m) φ 0. Let ήs (s = 0,1) be the
number of s in τ3. Since y(—\)Φ 0, by the induction hypothesis we can assume that

ψ £ Σ y(m)> n ι = fίo= Σ y(m)- ( 5 3 )

Clearly, we have

We devide the proof into two cases.

(i) y ( - l ) > 0 .

In this case, εj = (l, . . . , 1,0,...,0,1,..., l)j. If n0 g γ(-l\n1 =ή1+γ(—ί) — ή0 and

n0 = 0. From (5.3) and the inequality y(— 1) — ή0 ^ 0, we have (5.1). If ή0 > y(— 1),
n1 = n1 ? n0 = n0 — y(— 1). Since rc0 > 0, «x > πx — π 0 -h y(— 1) = Σ ^(m) Therefore
we get (5.1). m = ~ 1

(ii) y ( - l ) < 0 .

In this case, Sj = (1 , . . . , 1,0,..., 0,0,..., 0)j. Therefore, n1=n1 = max Σ 7(m) Π

«i "o -y(-i)

Remark. If ε is the signature of some \e0>(A) then /?(—!) = 0. Therefore we have

Proof of Theorem 5.3. We define μ in such a way that Definition 5.2 (i) holds.
From Lemma 5.1, it suffices to show that

g<Λ\hiy + \rj = Q f o r a l l i^μ^) satisfies Definition 5.2 (ii).

Fix i. Let ε be the signature of the highest lift of η with respect to the color /. Let
nψ be the number of 1 in ε7. From Theorem 3.6, the following conditions are
equivalent.

ejΛ''hi>+1η = Oonψ ^ <A\ht). (5.4)



Combinatorics of Representations 565

On the other hand, we have

(μk — ήk) — (μk+ι—ήk+i) = ήk+\ — σ(ήk)

— V M — A \
— Lf Vvtjk+ι+k+l /ιtjk + k+l)'

From (4.1), it turns out that

(μfc~*/jt)~(μfc+i — ήk+ι)= Σ

Here we have exhibited the /-dependence of α, β explicitly. Recalling that μk — ήk = Λ'
if k » 0, we get

Σ (α,

Therefore

Σ (βi(m) — αί(m)) = (Λ — μk + ήk, hi >.

Using Lemma 5.4, we have

nf = max <Λ' - μk + f/k, Λ, >. (5.5)

From (5.4-5),

g<Λ' h*>+ιη = 0 for all io^k-fa9ht}^0 for all i and k.

These are equivalent to the condition that μk — ήk is a dominant integral weight
for all fe. This completes the proof of the theorem. •

5.2. String Functions and Branching Coefficients. Let us consider a Λ-path {μ,η)
(or s imply η) a n d c a l c u l a t e its weight λ(η). F o r α = € μ i + — h € μ i , / ? = €Vl + •••

^ we define

θ(r)=l if r^O

= 0 otherwise.

Then we have

Theorem 5.5.

ω(ι/)=

Let Y = ( 7 l 5 . . . , 7,) be the highest lift of η. Recalling the Fock representation, we
see that the proof of Theorem 5.5 reduces to counting the number of nodes on
d-th diagonal with d = imoά(n) in each extended Young diagram Yj. The same
problem was solved in a different setting ([4] Theorem 5.7). We omit the proof here.

From Theorem 5.5 we obtain
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Corollary 5.6. For AΈPι we have

Next let A, A' be dominant integral weights, and consider the following tensor

product decomposition:

M(Λ') ® M(A) = X ΩA. ΛA, ® M{A"\
A"

Here ΩΛ.ΛΛ.. is the space of the highest weight vectors in M(A')®M(A) whose

weight is equal to A" modulo Zδ. Combining Definition 5.2 and Theorem 5.5 we

obtain

Corollary 5.7.

where (ΩΛ,ΛΛ»)λ = ΩA, AA>, n (M(Af) (x) M(A))λ and 0>(A\ A) denotes the set of (Λ\ A)-

paths.

The quantities appearing in Corollary 5.6 and 5.7 are called the string functions

[13] and the branching coefficients, respectively. We have thus obtained a neat

expression for both of them using paths.
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