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Abstract. We interpret N =2 superconformal field theories (SCFTs) formulated
by Kazama and Suzuki via Goddard—Kent—Olive (GKO) construction from a
viewpoint of the Lie algebra cohomology theory for the affine Lie algebra. We
determine the cohomology group completely in terms of a certain subset of the
affine Weyl group. We find that this subset describing the cohomology group can
be obtained from its classical counterpart by the action of the Dynkin diagram
automorphisms. Some algebra automorphisms of the N =2 superconformal
algebra are also formulated. Utilizing the algebra automorphisms, we study the
field identification problem for the branching coefficient modules in the GKO-
construction. Also the structure of the Poincaré polynomial defined for each N =2
theory is revealed.

1. Introduction

Recent progress in two dimensional conformal field theories (CFTs) have revealed
rich structures contained in the non-perturbative descriptions of the field theory,
or presented us much variety allowed in the field theory. Among them, an important
class of the CFTs are the so-called the rational CFTs [Ve, MS1]. The common
property we note for the rational CFTs is that these theories can be constructed
via Goddard-Kent-Olive (GKO) [GKO] construction using a suitable affine Lie
algebra pair (§, ) with § 2. In this formulation of the CFTs, it is known that a
suitable choice of § and § realizes the CFT with higher symmetry.

Recently Kazama and Suzuki [KS] showed that the N =2 superconformal
field theory (SCFT) [BFK] [DPZ] [Na] can be constructed through the GKO
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construction by the pair (§, b) such that the manifold G/H is the Kdhler manifold,
where G and H are the finite dimensional Lie groups whose Lie algebras are g
and b, respectively. We note that such a situation is quite reminiscent of the Lie
algebra cohomology theory by Kostant [Kos]. In fact, Vafa et al. [LVW] have
discussed the super-GKO construction by Kazama—Suzuki from this point of view.

Here, one of the main purposes in this paper is to formulate precisely the N =2
super-GKO construction in the context of the affine Lie algebra cohomology
theory. We will formulate the theory keeping a parallelism to the Lie algebra
cohomology theory by Kostant and its extension by Garland and Lepowski [GL],
and then we will make transparent what arises in our case of the affine Lie algebras.
One of the characteristic features which we should note for the affine Lie algebra
case is that the cohomology theory becomes semi-infinite due to the infinite
dimensional structure of the flag manifold. We will see that the semi-infinite
structure naturally follows from the viewpoint of the N =2 SCFT.

Another interest on the N =2 SCFT is in the following observations: Most of
the known CFTs are formulated by constructing representations for certain
conformal algebras. So it is difficult, in general, to write down a Lagrangian which
realizes a given CFT. However, owing to the non-renormalization theorem valid
for N =2 supersymmetry, we can describe some class of N =2 SCFT via the
Landau-Ginzburg effective Lagrangian [Zam, Mar, VW]. This occurs for the
N =2 minimal SCFT (c < 3) classified completely in terms of an A-D-E type Lie
algebra [CIZ] [Kat]. It has been observed that for each N =2 SCFT constructed
by A-D-E type modular invariants, there corresponds a Landau—Ginzburg
Lagrangian with the superpotential which is also classified via the same A-D-E
type Lie algebra in singularity theory [AGV]. Now our second purpose in this
article is to investigate the above correspondence between N =2 SCFT and the
Landau—Ginzburg theory for the general N=2 SCFT constructed via the
super-GKO construction. For this purpose, a certain Poincaré polynomial will be
introduced according to ref. [LVW]. We will reveal the structure of the Poincaré
polynomial and discuss the fixed point problem noted in ref. [LVW]. Apart from
the physical background mentioned above, our curiosity from a mathematical
viewpoint is in that the Poincaré polynomial thus defined might have an important
geometrical meaning associated to the semi-infinite flag manifolds [FF].

The construction of this paper is as follows; first, in Sect. 2, we will present the
N =2 super-GKO construction in the form which is suitable for our purposes. In
Sect. 3, we will interpret the N = 2 super-GK O construction from the viewpoint of
the Lie algebra cohomology theory. The main result there is summarized in
Theorem 3.8. Section 4 is devoted to formulate some algebra automorphisms.
These algebra automorphisms are used to reveal certain relations among the
branching coefficient modules. In Sect. 5, our second purpose mentioned above
will be investigated through the definition of the Poincaré polynomial. Several
results obtained in Sects. 2—4 will be connected in this section. Summary and
discussions will be given in the final section.

2. N =2 Super-GKO Construction

In this section we introduce the N =2 super-GKO construction formulated by
Kazama and Suzuki [KS] in the form which is suitable for our later arguments.
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To this aim, we must start with establishing our definitions and notations for the
(affine) Lie algebra.
Let g be a simple Lie algebra over C which has a root space decomposition as;
g=1® ZAga, 21)
where t is a fixed Cartan subalgebra and A=A, LI A_ is the root system. We take
the simple system for A as IT={u;),...,a,} (I=rankg) and normalize the
Cartan—Killing form (,):g x g— C by (6,0) =2 with 6 being the maximal root.
Consider a parabolic subalgebra p =g which contains the Borel subalgebra
b=t@® ), g,. Such a parabolic subalgebra p has a representation as a Lie algebra

acd +
semi-direct sum with its reductive subalgebra ) and its radical m,: p=Hdm,.

The reductive part § of p has an orthogonal decomposition with respect to (,) into
its abelian part b, and the simple parts h; (1 <j< N) as

h=bho Db, @ - Dhy. 22
According to this decomposition of [, the Cartan subalgebra t also decomposes as
t=t, @1, ®--- Dty. 23)

In addition, the root system of f has the following structure:
A(h) = A®H,)U - LU ADy) s 4. (24)

As a consequence of our definition of §) and m,, we have

g=h®m,®m_, p=h®m,, (2:5)
[bmilemy, [mymilsm,, (2.6)

where m, =) g, with aeA(m,)=(A\A(H))nA .. The direct sum p=h@m, is

the so-called the parabolic subalgebra of g.
Let {J., a()}m 1<i<: be the Chevalley Z-form for g. Then for our later
calculations, it is convenient to take our basis of g as {J 1} ,., = {Ju,H Yaca1<ic>

(®2)

where J, = /TJ , and H/s are orthonormal basis of ty = Z RH,  deter-
=1

LI6))

mined so that for each i there exists some je{0,1,...,N} such that H;et;, We
denote the index set {1,...,1} for Het as I=1I,Ll--- LIy with the definition
I;={iel|H;et;}(0< j< N). Then the basis of h(0<i<N) can be taken as
{J Yo, With =9/o =1, and &; = {aeA(h;)} LU I(1 i< N). Adopting these bases for
I)(O<1<N) we naturally introduce a non-degenerate bilinear form (,) over
h,(0 £i < N) by restricting the Cartan—Killing form of g. On the other hand, we
may define the normalized Cartan—Killings form (,);:h; x h;— C by requiring
(0,,0,); = 2 for the maximal root 6; of each simple part ;(1 <i < N). Then it is easy
to deduce the following relations between the two forms for 0 <i, j< N with a
convention (6,,0,) = 2;

»y)i= @ 0)(% 7) for y,y'et¥, (2.7)

(9,, 6))

(Jan']b,-)i (Vo Jb,) i for Jg,eb;, Jye€b; (2.8)
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Under this choice of the basis for g and (0 < i < N), the anti-C-linear, involutive
anti-automorphism ¢ such that o(J,) = J_ (x€A),o(H;) = H; defines the so-called
compact real form g, = {Xeg|o(X)= — X}. In the followmg, we always assume
this real structure when we discuss the hermitian structure on g and f;-modules
(0Z£i< N). In addition, we introduce a “metric” with respect to this basis by
gap = (J 4, J5)(4, Be /). This metric will be used to raise or lower the indices of
the basis {J 4} ,..,-

Here we should describe about the definitions of the affine Lie algebras § and
b (or  and §) and their integrable representations. However, since it is rather
tiresome, we will give the detailed definitions in the last paragraph of this section.
Sophisticated readers are expected to read the last paragraph before proceeding
to the next.

Now we can go into the description of the N =2 super-GKO construction.
The basic ingredients of the N =2 super-GKO construction are the §-integrable
module L(A) with highest weight /Tef’hk of a fixed level k and the fermion Fock
space Z,(e=0 or according to the Ramond or the Neveu—Schwartz fermion,
respectively). As for the §-module, recall that the integrable §-module L(/T) admits
the unique positive definite hermitian mnerproduct {,} defined by {|A),[A>} =1
for the highest vector | A Ye L(A) and Ji(n) = a(J 1) (— n) = J4(—n). In the following,
we fix this hermitian structure.

We define the Fock space &, in the usual way utilizing the complex fermion
oscillators Y*(r), Y,(r) = *(r) (xeA(m, ), aeA(m_),d = —a,reZ + &) which satisfy
the anti-commutation relations as

{l//a(r)’ l/jﬁ‘(s)} = 5775r+s,07
W) v (9)} = (). Yyls) } = 0. (2.9)

The Fock space &, is constructed from the vacuum vector |0) such that

v @)|0>=0 for r>0 and wacd(m,),
Y*(r)]0>=0 for r=0 and daeA(m_). (2.10)

Again we can introduce the unique hermitian innerproduct {,} on Z, by setting
W) = u(—r) and {05,105} =1.

Now we define the current operators J 4(z) and the fermion operators y*(z) by
the formal Laurent series on a variable z;

)= J )z "1, (2.11)
neZ

)=y YHrz YA (2.12)
rel+e

In order to tame the infinities associated with the infinite summations, we define
the following normal orderings;

. ) (r=s,0,feA(my))
vowor={” Do) (s <1 Bedm.))’ 213
J 4(m)J g(n) (m<n)
£ T3 = S0+ I ) =) (214)

J(n)J 4(m) (m>n).
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The form of the operators J 4(z) and y/*(z) are quite useful in determining operator
algebras through the technique of the operator product expansion (OPE) [BPZ]
[GO].

In the following, we first construct the h-current operators acting on %, ® L(A).
Then utilizing these operators, we write down the operators which close among
themselves as the N = 2 SCA. We claim finally that the N = 2 SCA thus constructed
does in fact commute with the h-current operators.

Definition 2.1. (h-current operators): Using the structure constants f,z € of g such
that[J 4, Jg] = Z S 485J ¢, we define the b -currents (0 < i < N), which act diagonally

Z,@ L(A), by
T =2 +J(2) (aest), (2.15)
with J(z) = —ﬁ ;m )faiﬂvsl//”(z)l//y(z):.
Definition 2.2. (;Zrm;on current operators)
Wo(2) =Y (2)Y,(2):  (xed(m,)), (2.16)
J(2)= ; )wa(z). (2.17)

Using the dual Coxter numbers g* and h¥ for g and b;(1 <i < N), respectively,
we can determine the following OPE relations (, with a convention h§ = 0);

Proposition 2.3.
1) Bi-current operators (0 <i < N) satisfy the following OPE;

~ “~ k Ja ’ J -~
S o0~ S S 18)
ciest;
with the central charge k(0 <i < N) given by
2 (0:,65)
; k+g*—hr——). 2.19
kl (9” 0 ) ( + 1 2 > ( )
2) Fermionic part of the b-current satisfies
e~ ¥ Ly, 2.20)
ped(m.,)
s~ eds o L5 o ems, @)
ciest;

where

2 (6:,6))
ki = 6.6 (g* — hf¥ 5 ) a;esl; and bjed;
As we can see above, the action of the current J/(z) on the fermion Fock space
Z, is essentially the adjoint action of § on my:[h,m,J=m,. The central
charge k{ is determined by the relation, which follows from
Y. fa%fPsc=—(0,0)g*(J 4, )

B,Ced
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and
Z fz‘zibwifdibwi = - (Bi’ ei)ih?:(']aia Jdi)i for bi,s (1 é l é N)a

bicied;
0., 6;
Z ﬁliﬂyfbjé’:_(g* ( i ))(Ja,Jb) (2.22)
Byed(m.)
Using the currents defined above we can now write down the operators which
realize the N = 2 supersymmetry in .7, ® L(A).

Definition 2.4. (T(z), G*(z), J(2)),

Y Ewl@w(2)}
aed(m 4

)

N —

T(z) = Y ¥ () J )k +

1
2(k+9%) sew

1 N PN
S — * ai *
2(k+g%) igo a,;w',» .22}, (2.23)

2 1
G'(2)= /W{ae%‘“&”«‘z"i % faﬂy:wa(z)l//ﬂ(z)‘py(z):}’ (2.24)

ed(my)
2 o

G (a)= { Y Y22~ Z PRAGI (Z)l//y‘(z):}a (2.25)

k + aeA(m_) a,p,7

EA(m_)

1

J(z) = ktg *H2p2(2)+Jf(z) (2.26)
p2= 3 ae%ﬁ) o. (2.27)

By expanding these operators T(z),G*(z),J(z) on the variable z as T(z)=
Y Tz ""2,G*(z)=). G*(r)z""* and J(z)=) J(n)z~ "', respectively, we

n r n

obtain a set of the operators T(n), G*(r) and J(n) with neZ,reZ +¢ (¢ =0 or 1/2).
Constructing these definitions of the operators, Kazama and Suzuki found that
these operators satisfy the algebra of the N =2 SCA. Now we can state their
findings for the most general situations: g2§ 2 t:

Theorem 2.5. (N =2 super-GKO construction)

(i) The Virasoro operator T(n) (neZ), the super-current G=(r) (reZ +¢) and the
u(1)-current J(n) (neZ) satisfy the following N = 2 superconformal algebra (SCA):

For ¢ = (NS-type);
[T(r), Tn)] = (n—m) T+ m)+35 (3 =), 01 (2.28)
[T(n),J(m)] = —mJ(n+ m), (2.29)

[T(n),G*(r)]= <——r>Gi(n+r), (2.30)



Lie Algebra Cohomology and Superconformal Field Theories 457

[, I(m)] = 13y o (231)
[J(n),G*(r)]= +G*(n+7), (2.32)

(G*(1,G6~(5)} = 2T(r+s)+(r—s)J(r+s)+E33(r2 16,1000 (2.33)

{G*(),G*(5)} ={G™(r),G™(s)} = 0. (234)
For ¢ =0 (R-type);
[T(n),G*(r)]= (g + % - r)G*(n +7), (2.35)

(G*(1),G™(5)} = 2T(r +5)+(r—s—1)J(r+5) + ;—”r(r —1)0,150,  (236)

and the other (anti-)commutation relations remain the same as in the NS-case.
For both cases, the central charge is given by

_ kdimg . N (6, 0,)k;dimb,

Cy k+g*+dlmm+_i;——, 2t g —dimb,
3 1
=——| kdi —= ). 2.37
k+g*< imm ., 2¢,,3,y§(m+)fwf y) 2.37)

(i) The above operators of N =2 SCA commute with the diagonal action of the ¥;
[T(), J.(m)] = [G*(r), Ju(m)] = [J(n), T ,(m)] =O. (2.38)

To prove the above theorem, we must perform somewhat tedious OPE calculations
for the operators (2.15), (2.23)—(2.27). For the reader’s convenience, we write down
a formula which becomes necessary for the calculations. Except for this formula
the OPE calculations are straightforward.

Lemma 2.6. The structure constant satisfies
. 1 ' o7
Zfamfmy =g*g;" — 5 Zﬂ faﬂzfaﬂy + Z_f % of > (2.39)
i,a a, oB

with o, fB,y,A€A(m,), B= —B. The index i is that for the orthonormal basis
introduced in t.

Proof. Firstlet us reserve the indices A4, B,a, o, ,y as A, Be o, ae o, L1 --- LI ofy and
o, f,yeA(m ). In our definition of the invariant, symmetric bilinear form (,) the
structure constant f,p- has a cyclic symmetry as f,gzc = fpca = fcap- Using this
property and the Jacobi identity, we can calculate the left-hand side of (2.39) as

Z [l = ZI; A oY
=- BZ,; [P S + BZ B +23 P S s
; a Ba

Noting that the first term of the second line is equal to the 2nd Casimir of the
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adjoint representation and the relation (2.6) for the other terms, we proceed further
as

(L0.9) = g*(0.0)95" + T 3 o +2 Y s
a, of

Combining this equality with the relation

(6,6) 1 . of
Tg*g}_igl;fagyf ﬁl_;ﬁfaﬁyf ﬁb

we obtain the desired result. []

Zﬁfaﬁyfaﬁl = -

The cohomological interpretation for the N =2 super-GKO construction intro-
duced above is the main subject in the next section. Before closing this section, we
remark on one point that seems to have been overlooked so far in the literature.

Remark. At first sight, it might be seem peculiar that the N =2 SCA changes its
form depending on whether we take the NS fermion or R fermion. In fact, in the
case of N = 1 SCA, the algebra (or the OPE) take the same form for both NS and R
fermion. We can attribute this peculiarity occurring in the N =2 case to the
difference of the normal ordering we adopted in (2.13). That is, (2.13) implies, for
example, that %O ,(0):= y*0),(0) for aeA(m,) whereas the conventional
normal ordering in the N = 1 SCFT says 3{y/*(0)/,(0) — ¥,(0)y*(0) }. Then the two
point functions for the R fermion are given by

z

Nw
for our case

f f o# for the conventional case.

This difference of the normal ordering is the origin of the changes such as (2.35)
and (2.36). However our choice of the normal ordering (2.13) admits a certain
isomorphism between the Fock spaces of the NS-fermion and that for the
R-fermion. Owing to this isomorphism we can obtain the (anti-)commutation
relations (2.35) and (2.36) for the R-type SCA by simply shifting the argument
r,seZ of G*(r), G~ (s)in (2.30) and (2.33) to G*(r + %), G (s + %) and then regarding
these shifted operators as G*(r), G (s) (r, seZ + %) for R-type SCA. It will turn out
in Proposition 3.2 that our choice of the definition for the normal ordering (2.13)
is crucial for our cohomological interpretations.

(2P W)y = (2.40)

- Description of the affine Kac—Moody algebras § and b:

Let us consider the affine Lie algebra § defined by g® C[,t"*]1® Cc. The
Cartan subalgebra of § is given by t= t® Cc together with its dual t*@® CA,.
Similarly we define the affine Lie algebra E) OZi<N)byh,®C[t,t 1 ]@Cc,. The
Cartan subalgebra and its dual are fixed by {, = t, ® Cc, and t} @ CA,),;, respectively.

The integrable highest weight modules of § and [) are parametrized by the
dominant integrable weights AeP, , and fc513([))+,k =PO, PV, ®--®PY,,
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respectlvely Where the sets of the dominant integrable weights are defined by
Py ={A+ kA(O)IA is dominant integral on g and (A,6) <k} for §, and PY, =
{&+ kAl & s dominant integral on b; and (&, 0,); < k;} for h(1 <i< N). As for
the abelian part bo, we can introduce the notion of the integral welght in the
following way: Consider a “root” lattice Q, = M Nnt§ with M representlng the long
root lattice of g. Then the set of the level k, 1ntegral weights for by, is defined by
P(fzko = {fo + koA (0)o|fo€Qo} with Q5 = {Aet§|(4, a)eZ for VaeQ,}.
The affine Kac—Moody algebra § is deﬁned by d=§®Cd as an extension of
§ by adding the scaling element d which is essentially the Sugawara energy
momentum tensor [Sug]. The Cartan subalgebra of § and its dual are given by
f=t@®Cc@®Cd and t* =t*@® CA, ® CJ, respectively. Over this extended algebra
g, we can introduce the invariant, symmetric, non-degenerate bilinear form (,) by
(J 4(n), Jp(m)) = 0,1 m.0Gum>(c;d) =1 and (c,c) = (d,d) = 0, where we have identified
the element J ,®t" with the current operator J 4(n). Similarly we define the affine
Kac Moody algebra h(0<i< N) by b, =h,®Cd, and its Cartan subalgebras by
L=t,@Cc,®Cd, t*= tF @ CA); @ Co;. As is the case for h =g, there are two
possible Killing forms, the induced form (,) and the normalized form (,);, When
we define the induced form through the inclusion map f; =, §(0 <i < N) defined
by (J,,(n), ¢, di)—(J ., (), —= @ 9 3 ¢, d), then the relations (2.7) and (2.8) extend to t¥
and §,, respectively.
The simple system for the roots A of § can be taken as [T= {ot0y> O1ys - > %y}
w1th d) =0 — 0. As for the simple systems of A(h,ys(1 i< N), we take them as
= {00yi> O1yis - - - » Ay} With o) = 6; — ;. Then we denote the root lattice of §
1 4

by 0= Y Zogand Q, = Y Z,,0. Similarly we denote for b; as 0;= ) Za,
i=0 i=0 s=0

1
and Q;, = ZOZzO“(s)i-
=

3. Lie Algebra Cohomology on #,® L(A)

In this section we define a chain complex on &, ® L(A) utilizing the super charges
G™*(0) (or G*(—1%)) as the cohomology operator. We will determine the elements
of the cohomology group completely in terms of the affine Weyl group. It will turn
out that this cohomology theory based on the N =2 SCA is the affine Lie algebra
analogue of the classical Lie algebra cohomology theory. In our formulation, a
parallelism to the classical Lie algebra cohomology theory by Kostant [Kos] and
its extension by Garland—Lepowski [GL] will be pursued.

(3-1) Chain Complex and Laplacian. We first note that the supercharges G*(0)
have a property
[J (0, G*(0)]= + G*(0), (3.1)

in addition to G*(0)>=G(0)>=0 and G~(0)= G*(0)". Similar properties also
hold for G*(—3%) and G~(})=G*(—3%)". It can be easily deduced that these
properties define a chain complex on %, ® L(A);

Definition 3.1. (C*(m, @ C[t,t~ 1], L(A))).
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We denote as C*(m, ® C[t,t '], L(A)) the (semi-infinite) co-chain complex on
Z,® L(A) whose coboundary operator is given by G*(0) for e=0 and G*(—1%)
for ¢ = 1/2. The degree * is determined by integer eigenvalues of the fermion number
operator J ;(0) for both cases.

It should be remarked that this co-chain complex is semi-infinite reflecting the
excitations with infinite fermion or anti-fermion numbers on the Fock space #,.
Our main subject is to determine the cohomology group H}(m, ® C[t,t~ 1, L(A))
for the co-chain complex C¥(m, ® C[t,t™ '], L(A)). Hereafter, we will restrict our
arguments to the co-chain complex C*(m ®C[t,t 717, L(A)) for R-type SCA with
omitting the subscript e. This restriction is allowed since we will see, in next section,
that there is an isomorphism between the co-chain complex for R-type SCA and
that for NS-type SCA.

For our purposes, we first note that the spaces H*(m, ® C[t,¢~ 1, L(A)) as
well as C*(m ®C[t t~17, L(A)) admit the diagonal b-action. This is because the
supercharge G*(0) commutes with the h-currents J, .(n) (0<i< N) as shown in
Theorem 2.5. Owing to this property and the complete reduc1b111ty for the integrable
modules, we may consider the decomposition C*(m, ® C[t,t” 1, L(A)) with
respect to the irreducible integrable modules of [) as

C*m, @ClL,t 'L LA)= Y C*m,®@ClLt 'LLA),  (32)
EeP(h) 1 k
where P(b) +x means the set of the dominant integrable weights for b with the fixed
central charges k = (ko, ..., ky) given in Proposition 2.3.

On the other hand, let us consider the branching coefficient module B; : = %, ®

L(A) defined by

B;:= {veZF,® L(A)| J(n)p = 0(J€b,n > 0),J,(0)v =0 (e A(H) ),
HOpw=(H,E>v(Het)}. (3.3)
The analysis given in a previous section tells us that the N =2 SCA (2.28)—(2.36)
acts on this branching coefficient modules Bj; in Fo® L(A). Then we see that

there is an isomorphism (see ref. [TK] or Eq. (4 24) in the next section for detailed
constructions)

-~

C*m, ®C[t,t '], L(A ))5— A.§®L( )s (34)

asan N=2 SCA®b-module.
Now let us evaluate the Laplacian, which we read from the N =2 SCA (2.37) as

{G7(0).G7(0)} =2T(0) - J(0), (3.5)

on each branching coefficient module Bj;. To this aim, we first decompose the
module B into the eigenspaces of the operator

(A, A+ 2p)
2(k+g%)

which acts on the module Bj;. The fact that this operator acts on the module Bj;
follows from the following commutation relation;

[N, J,m)]=[T,0),J,n)] = —nJ,(n). (3.6)

Above we have used the notations T,(0), T,(0) and Tb(O) for the Sugawara operators

N = T,(0) + T;(0) — 37 ;(0) —
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for g-curents, fermion currents and §-currents, respectively. Since [T,(0) —3J +(0),
Vi(—=r]=ry*(—r)(aed(m,)dA(m_), reZ), under the definition of the normal
ordering (2.14) for R-type fermion, the eigenvalues of the decomposition becomes
(non-negative) integers. Thus we have the desired decomposition as

B;e= Y Bjen- (3.7

NeZs o

Note that the above decomposition is compatible with our calculation of the
cohomology since the operator we have used commutes with the Laplacian.

Proposition 3.2. The Laplacian acts as scalar on Bj.y;

{G¥(0),G~ (0}, =k—+—g—*{|/i +pI12 =18+ pIPlid,, (3.8)

N - 1 - N
where &' =kAg+E&— N6, p=g*Ag+= Y, o and & means the classical part of .

2 acA +
o (A,A+2
Proof. Recall that the Laplacian is given by 2T(0) — J(0) = 2N +(_A;€/:_ ';* p)_
2T(0) —————g* ﬁ ,(0). Then it is an easy consequence of our definitions that the
Laplacian acts on the space B; ¢y as {G*(0), G~(0) }IB —2{N+ (A, A+ 2/7)_
€+ 2p) (Pz,i) }1‘1 with p; = ! z y. And we 1mmed1ately obtaizn(ltt:: !r]:s)ults
2Ak+9%) k+g 1= 2,50
(3.8). O

(3-2) Elements of the Cohomology Group. As noted previously, the cohomology
group H*(m, ® C[t,t '], L(A)) for the cochain complex C*(m, ® C[t,t™ 1], L(A))
becomes naturally a I) -module. So we obtain a decomposition with respect to the
integrable irreducible h-modules, corresponding to (3.2), as

H¥m, @C[t,t '], L(A)= Y H*m,®C[tt '], LA)):. (3.9)
EeP(h) 4 x
On the other hand, according to the Hodge theory, we can characterize the
cohomology elements as the zeros of the Laplacian:

H*(m, ® C[t,t '], L(A));
=~ H*(m, ® C[t,t™ 1], L(A));
= {veC*(m, @ C[t,t ™11, L(A));|G*(O)p = G~ (O)v = 0}. (3.10)

Because the cohomology operator G*(0) commutes with the b-currents, the
harmonic cocycles in (3.10), which constitutes the h-modules, can be represented
by the elements veBj ¢ satisfying {G (0), G ~(0) }v = 0. On the other hand we know
from Proposition 3. 2 that the Laplacian operator acts as a scalar when restricted
on the module B;,. Therefore we can completely characterize the harmonic
cocycles in C*m, ®C[t,t™1], L(A)) through the zeros of the right-hand side of
(3.8) in Proposition 3.2. This is our strategy for determining the cohomology
elements of H*(m, @ C[t,t~ '], L(A)).

To perform the above mentioned program, we must start with summarizing
some known properties of the affine Weyl group.
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The affine Weyl group W of § is the subgroup of GL(t*) generated by the simple
reflections {rq,ry,...,r;} with

r()=A—(hague (ofh=———0q, tet*, 0<i<). (3.11)

(a(i), a(i))
Introduce the translation t,e GL(T*)(axet*) by
t(A) = A+ (4, 0)a — [(4, @) + 3(2,2)(4,6)16, (Aet*). (3.12)

If we define the translation group T = {t,Jae M}, then the affine Weyl group w
can be expressed as W= TD( W. (The long root lattice M coincides with the coroot

lattice defined by Q¥ = Z Zoy, since (60,0) =2.)
i=1

Now let us consider a subset W' < W, which will play an important role in
the following arguments, by

~

W= {oeW|&A_)nA, cAm),}, (3.13)

whereA(m)+ ={B+tnd|feA(m,), neZs,} L B+ -nd|feA(m_),neZ, ,}. Foreach
deW,let O, =d(A_)nA, and <d> y= z €0, . We denote the order of the

subset @, as n(®) and the length of the element @ as I(@). Then the following
relations are known to hold [IM, GL];

) (@) =p—ap, (3.14)
) (P;>=(D;) < &=34, (3.15)
i) n(@) = (D), (3.16)

In addition to these properties, the following is also well-known and is an important
property;

iv) r@ N\ o)) =4, \{ag) (=0,1,...,1). (3.17)

We shall study in detail the set W' in the latter half of this section. In the following
we investigate the zeros of the Laplacian (3.8) following refs. [Kos, GL].

Lemma 3.3. Let TS A— Q. be the W-invariant subset of t* with AeP,. Then
for arbitrary fie T, there exists ®eW such that dfieP, .

Proof. For arbltrary fieT;, take an element @eW so that in the expression
oi=A— Z no(neZs,) the sum Z n; is minimum. Then @fieP,. This is
becaulse if (a)u, o) <l 0 for sczme j ther; roam Ofi — (Bf, j))%;, can be written as
A— iZO m; o, with i;) m; < i;) n;, which is a contradiction. []J
Lemma 3.4. l:et /TL,/TZGP +- ConAsiderle,ﬁzef* which belong to the W-invariant
subset Tz = Ay — Q4 and Tz, = Ay — Q. respectively. Then

A+ Ayl 21 + . (3.18)

The equality holds if and only if there exists de W such that DA, =i, and ®A, = fi,.
Such & is determined uniquely if A, or A, is regular.
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Proof. Due to Lemma 3.3, we can determine e W so that r(,u1 + uz)eﬁ . Because

the sets of weights T; (i=1,2) are W-invariant, we have y,= A, — #,e0, for
u=1,2. Then we can write the square of the left-hand side of (3.18) as

|Ay + Ay 12 =fiy + o+ 1Y + 0,12 + 200, + ¥, (4, + 1))

Since #(fi, + ji;)eP., the desired inequality immediately follows. In addition the
equality for (3.18) holds if and only if Y1+ W, =0. In this case we must have
A, =%, and A, = i, since ¢1,¢26Q+

As for the uniqueness when A, or A, is regular, assume 7, , 7, € Wsatlsfy A =1
and A; = rzu, for i=1,2. Then 7, must be eqal to 7, since 7, 5,A=A;(i=1,2)
1mp11es 1%, =1 for the regular element A, or A,. [

Lemma 3.5. The subset T, < t* which consists of the element of the form p — (@)
with @ being a finite Subset of A, is W-invariant.

Proof. Consider the action r; (i=0,...,I) on p—<{@)eT). If oy,¢® then r,
(p—<PY)=(rip—P)+p— 1P =p—r (D) — <P, >. Owing to the property iv)
in (3.17), we see that both r,{ @) and (@, ) = «; belongs to the set A, . Ifo,ed,
then r,(p — <D \{op)} > — ) =(rip— P)+P_r CD\{op} > +oy=p—r{P\{o} -
Again owing to the property iv)in (3.17), see that r;{ @\ {«;} Yed, Thus we obtain
r;(p — {@>)eT; and conclude that T is W-invariant. []

Lemma 3.6. Let @eW, @< A, such that |@| < oo, then
(D)=LD) < O=D, (DeW). (3.19)
In Particular @ = @ consists of real roots.

Proof. Let uy,..., ,u,,,eA be the distinct elements of @, and Viseoos Vy €A, be those
of @;. (Then v;’s are all real roots.) When n =0, the result it is clear SO wWe assume
n>0 Since @~ '@, < A_, there must exist some element p;(1 <i < m) such that
@~ 'pweA _. This means that y;=v; for some j(1 <j<n),and {®,\{v; }) D\ {p:})-
If n=1, we accomplish the proof When n> 1, we have w 1(@a,\{v })eA_ and
so there must exist some element ;. (i # i’) such that @~ 'y, €A _. This means that
py = v for some j'(#j) and <@, \{v;,v;}> = <@\{p;u}>. Repeated arguments
prove the result. [

Now let us consider the weight space decomposition of &, ® L(A) with respect
to the commuting operators (H,(0), ¢, — N)(1 < i < I), where the classical part H,0)
is that of the b-currents defined by (2.16). Then we deduce, from the definition of
the h-current operators, that the set of weights, which we denote as D, consist of

the elements such that {=—(®> +7 with ® < A(m), and 7eP(A). Where we
have denoted as P(A) the set of welghts contained in the integrable §-module L(A).

Needless to say, this subset P(A)et* is W-invariant.

Proposition 3.7. _
i) For arbitrary (€D, there is an inequality;

1p+Al=1p+0). (3.20)

ii) All the weights (eD 1 Which satisfy the equality for (3.20) are expressed uniquely
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with some element GeW' as

=a(p+ A)—p. (3.21)
i) The map & ¢ ; defines a bijection between the subset W' and the set of weights
which satisfy the equality for (3.20).
iv) The multiplicity of the weight ;€D is one.

v) The weight vector v(¢;)eF o ® L(A) (@eW?) is the highest weight vector with
respect to the diagonal action b

Proof.

i),1i) Since CeD can be written as { = (D) +V with @< A(m), and $eP(A),
we can write p+ (= [+ 7 by defining [ =p — (D>eT;. Then from Lemma 3. 4,
we obtain

p+ Az f+7=1p+C. (3.22)

When the equality holds, there exists a unique element @eW such that [= @p,
T=aA (ie. C: = ¢,) owing to Lemma 3.4 and the fact that p is regular. Then the
first equality f= @p, which means { @) = p —@p, implies @ = @, due to Lemma 3.6.
Since @< A(m),, the element @ belongs to the subset W' < W.

iil) We easily see by deflnmons that, for arbltrary deW?, ¢, belongs to the weight
set D;. If £, =&, (0,0’ eW?) then & =@ because p+ AeP, is regular. These
facts together with ii) tell us the bijectivity of the map.

iv) Assume that the weight ;€D is written as

ty=—(Dy+ [, fePA) dcAm),, (323)

then it follows that a(p + A=p—<®>+fand [p+ Al =|p— (D> + [i|. Since
p—<@5eT} and jie P(A), we can determine, according to Lemma 3.4, a unique
element 6e W such that

) — (D) =6p, fi=3GA. (3.24)

This implies £, = ¢, and, in turn, 6 =®. Noting (@) ={P,> =(P,> and Lemma
3.6, we finally obtain @ = @,. Thus we conclude that the multiplicity of the weight
vector ¢ is one.
) Consider the weights of the vectors J, (&, )(a eyi,, n>0, 0<i<N) and
J(0Ww(&,;) (eeA(h) ., ) with respect to the operators (H,(0), ¢, — N). Then from the pro-
perty (3.6), we deduce that such vectors have weight & . = ¢, + @ with ¢(# 0)e A(h), .
Now note the following relations for &, ;

1p+ &P =10(A+p)+ I
=10+ AP + 2@(A + ), §) + 51
Since w }A(h.))ed, for @eW!, the second term of the above equation is

non-negative. Therefore we have |p+ A| <|p+ £, |, which means that ¢, ¢D;
owing to the property i). This proves the assertion. []

From the above proposition (and Proposition 3.2), we can conclude that
the harmonic cocycle wveBj;; representing the irreducible bmodule
H*m, ®C[t,t 1], L(A)) are in one to one correspondence with the subset W!eW.
Explicitly, the correspondence of W* to the highest weights of the irreducible
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h-modules representing the harmonic cocycles is given by the following mapping
of 6eW! to £,eP(h),

58, =8, + kAo, (0SiSN), (3.29)

where &, means the classical part of £; and the subscript i means the projection
to each component P(h,). .

Due to the multiplicity one property iv), we can express uniquely the harmonic
cocycle |4, ;> for each e W1 as an element of Bjes

1AE>=T] ¥voA-n0>®7, (3:26)

Ped;
P=¢@+rd

with ¥ ,€L,(A) = {ve L(A)| HO = (H,5(A)v}. The degree of the harmonic
cocycle is easily determined from (3.26) by evaluating the eigenvalue for the fermion
number operator J /0).

Summarizing our results above, we obtain;

Theorem 3.8.

i) The mapping 6+ H*(m, ® C[t,t~ '], L(A))C , is a bijection of Wl onto the set
of all irreducible components of H*(m, ® C[t, ‘=17, L(A)) as the §-module. And
the multiplicity of H¥(m, ® C[t,t™ 1], L(A))é is one.

ii) The highest weight vector (3.26) has a meaning as a representative harmonic
cocycle in H¥(m, ® C[t,t™ 1], L(A))5

iii) The degree of the cocycle |A, &, is given by the fermion number 1),

16)=#{peldP|ped,} —#{pedD|ped,}, (3.27)
with
AP ={yel,|y=+p+md, BeA,, mel).

Remark. The harmonic cocycle for NS-type SCA can be obtained from (3.26) by
simply shifting the argument of the fermion operator: y*(—r) to y¢(—r F1) for
@eA(m,), respectively. This fact follows from the isomorphisms (4.7) which we
will formulate in the next section. Thus there is no essential difference between the
two.

Theorem 3.8 is the analogue of the Theorem 5.14 in ref. [Kos] obtained for
the classical Lie algebra pairs g and }. The extensions of Kostant’s theory to the
case of § and a classical ) have been done in refs. [GL Kum]. In this context, our
arguments are for pairs of the affine Lie algebras § and b. Though our arguments
for the (affine) Lie algebra cohomology theory for the pair § and  is quite parallel
to Kostant’s theory, we realize, in the latter half of his section, that a characteristic
feature appears in determining the subset W' < W for our case of the affine Lie
algebras. 5 -

The modified length function /(&) for W, which we have naturally introduced
in iii) above as the fermion number, has been introduced by Feigin and Frenkel
[FF1, FF2] in their recent work on the BGG (Bernstein—Gelfand—Gelfand) resolu-
tion [BGG] for the affine Lie algebra. We present here the explicit expression of
the function T for the element & = ¢ weW

Tt,0) = l(w) — 2p,y). (3.28)
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This formula should be constructed to the usual length function I;

I(t,0) = AZA |(<m)|+ AZ T= (B (3.29)
The results by Kostant for the classical L1e algebras can be recovered by taking

the“classical limit”, i.e. G*(0)— Q, G~(0)— Q* and /() — l(o) with

1
Q = Z l//aJa - 5 Z faﬁylpalpﬁl//y’ (330)
aed(m ) o, fyed(m ;)
and Q* = Q'. The operators Q and Q* give the Fock space representation for the
cohomology operators defined, in the ref. [Kos], on Am* ® V* where V* is a
g-module with the highest weight 4. It is a simple exercise for readers to calculate
the Laplacian for the operator Q.

(3-3) The Subset W*. In the remaining part of this section, we give a characteriza-

tion of the subset W! of the affine Weyl group W. -
Let us first note that the following three conditions for the element @e W? are

equivalent;

1) &A_)nA, < Am),, (3.31)
2) & NAb).) 4., (3.32)
3) (A )nAb), =9 (3.33)
Now define a subgroup DeW by
D={6=1,0eW|5(A),) = Ab).,0ceW,}, (3.34)

where W, represents the Weyl group of f). Then we can easily see from (3.33) that
the subset W' admits the action of D, ie.,

~

DWW =W (3.35)
Here our main assertion may be stated as;

Proposition 3.9. The subset W' decomposes uniquely as
Wi =2D-w, (3.36)
where W' represents the classical counterpart of W'

To prove this assertion, we first note the conditions for & = tyweVV to belong
to the W' can be written as

a) (y,9)=0 or 1 for arbitrary peA(b),

b) w Yp)eA. for peA(h), such that (y,¢)=0,

c) o Yp)eA_ for peA(h), such that (y, )= 1.
Similarly for 6 = ty,aeV~V to belong to D we must have

a) (y,p)=0 or 1 for arbitrary peA(b),

b) 67 (p)eA(b), for peA(h), such that (y',¢) =0,

¢y o~ Yp)ed®)_ for peA(b), such that (y, @)= 1.
We can see the existence of the elements 6e? satisfying a)—c), by noting that;

Lemma 3.10. For any elements y'e M satisfying the condition a) above, there exists
a unique element e W, as a solution for b) and c)'.

Proof. Define A(H)% ={peAb).|(y,@)=0} and A®H)} ={peAD),|(y,@)=1}. Then



Lie Algebra Cohomology and Superconformal Field Theories 467

we see that both A(h)%. and A(h): are closed under the dot addition + defined in
A by addition in case the sum again lies in A and otherwise zero operation. Let
A(b), = AB)S LU(—A(H)L), then the conditions b) and c) can be summarized as

o~ '(A(b),) = A(H).. (3.37)

Since A(Y), is closed under + operation and A(h) = A(b), LI (— A(b), ), there exists
a unique element o€ W, satisfying (3.37), (see e.g. ref. [Kos], Proposition 5.10). [

Noting the equality of the conditions a) for W' and a) for D, we can conclude
that for arbitrary & = t,we W1 there exist a unique element 6 =1 aeb and then

G lo=0 lweW (3.38)
This completes our proof for Proposition 3.9.

Now we study the lattice elements ye M which satisfies the condition a). To
this aim, we define the coroot lattice of h by Q(h) Y =Q, D Q,y ®--- D0y = Q" (=M),
1

including the lattice Qo = Q" Nt¥ for by, with QY = )’ Zﬁa@i(l <i<N).
s=1 K> X(s)i
It is convenient to use the notation of Q¥ rather than M in the following arguments.

Proposition 3.11. There is a bijection between the set of the lattice elements yeQ"
mod Q,, satisfying the condition a) and the coset Q" /Q(h)".

To show this property we prepare the following lemma;

Lemma 3.12.

1) We can take a representative element y, of the class [y1eQ"/Q(b)" so that its
length |y, | is minimum and (y,, ) = 0 for YoeA(b), .

2) Such y,€[y] is determined uniquely mod Q, and satisfies (y,,9)=0 or 1 for

VoeA(D)..

Proof.

1) Among the elements y,’se[y] with minimum length |y,|, we are allowed to
consider the action of the Weyl group Wy, since [y,|=|r,(y,)| and r,(y;) =y, —
(1, 9V)9 =71 — (1, 0)9" €[] for Vr,eW,. Therefore we can make any element
y1€[y], which gives the minimum of |y, |, to satisfy (y,, ¢) = 0 for Ve A(h) , through
the action of W,.

2) Assume there exists peA(D), such that (y;, ¢) =2, then we have

Iy —@ P =177+ (@Y, 0¥ —2y;)
4
= 9P+ ——(1 = (@, 7).
V1 (@, (p)( (,71)

This implies |y; — Y| <|y,| for y; — @ e[y] and a contradiction. As for the
uniqueness, assume that we have obtained two representatives y,,y,€[y] through
the argument 1) above. Then we have y; —y,€Q(h)" and (y; —y,,0)=0 or +1
for YoeA(h). Taking an element w, e W, so that (w,(y; — 7,), @) = 0 for VpeA(b),,
we can express the above conditions as (w,(y; — 7,), ) =0 or 1 for VpeA(h) , with
o4(y; —7,)€Q(b)”. Now recall that the closure of the fundamental cell for each
b;(1 i< N)is defined by DY) = {xet};|0 < (x,x) < 1 for any aeA(h,), }. Then it is
known that Do) = {0} (see Corollary 1.20 in ref. [IM]). From this fact we
must have w,(y; —,)€Qq, i€, 71 =y, mod Qo. [
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In this way we can find a lattice element yeQ ¥ mod Q, satisfiying the condition
a)in each class [y]eQY/Q(h)". On the other hand, we realize that there exists only
one such element yeQ" mod Q, for each class of QV/Q(h)” applying the same
argument for the uniqueness of y; in 2) of the above lemma. Thus we complete
the proof of Proposition 3.11.

We define the quotient group D by

D=T,\D, (3.39)

with respect to the normal subgroup T, = {t,[(4, ¢) =0, pe A(h) ., Ae M }. In follow-
ing sections, it will become clear that the group D can be constructed via the
diagram automorphisms of the extended Dynkin diagrams for each h,’s (i=1--- N).

Remark. In practical calculations, the following characterization of yeM satis-
fying the condition a) is useful. To describe this, let us define the lattice

L 2A
0i=3 Zﬁ Z Ze,; with the fundamental weights A (1 < s <1[;) with
s=1 (s)is X(s)i s=1
respect to the simple system I1;. Then we can easily prove the following:

The set I'; = {yeQ; |(y,») =0 or 1 for YpeA(b,), }(1<i<N)
consists of 0 and the basis vector e; with m; =1 in the expression

1
0, = Zx M1)i X e)i-
=

N
Now note that the inclusion relation M c Q5 @ Y Q;. Then we convince
i=1

ourselves that we must find (mod Q,) the solutions yeM for the condition a) in
the set I' = {vy + v, + - + vy|0,€Qp,v;€ (1 i< N)}.

4. Algebra Automorphisms of the N=2 SCA

Owing to the orthogonal decomposition formulated in Sect. 2 and the complete
reducibility for the integrable modules, we have the following isomorphism;

Z.OLA)= ¥ BReL(). (4.1)
CeP(h) 4 i

The purpose of this section is to construct the algebra automorphisms for the
N =2 SCA and utilize them to reveal the structures of the multiplicities of N =2
SCA-module which occur in the branching coefficients, Bf{’g. This problem of
the multiplicities is known, by physicist [Gep], as the field identification problem.
We first approach this by formulating an automorphism known as the spectral
flow. Later we relate our results to the modular transformation property of the
GKO branching coefficients.

Other automorphisms we will formulate are the spectral flow which connect %,
to #,,, and the charge conjugation automorphism. The former automorphism
completes our calculations of the cohomology group which we have done only
for the R-type SCA in the previous section. The latter automorphism will prove
to be useful in revealing a certain duality property of the Poincaré polynomials
which we will define in Sect. 5.
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(4-1) Spectral Flow. To formulate the automorphism, we first supplement the
properties of the affine Weyl group to those given in Sect. 3.

Consider the affine Weyl group W< GL(f*) and W, = W(b1) X ove X I7V(bN) c
GL(t*(-D -@1%) for § and §, respectively. Precisely the affine Weyl group
W(h,)(1 <i< N) is defined by the simple reflections ¥ with respect to o, T,
defined with the normalized Cartan—Killing form (,); and is expressed as
T, x W(b,). Where T;(1 £i< N) represents the translation group associated with
the long root lattice M; of each b, and ) acts on Ael¥ as

t2(A) = A +(4,0.y: — L(4,y); + 3(4, 0,1, )19 (4.2)
When we regard 1¥ @ --- @1} as the subspace of T* under the inclusion t¥@---
@ty = t* and the identification v:(A);, d;) = (0”20 )A(o),5> we have a relation

1oe 00720y = 4,(v(4)) and, thus, the affine Weyl group W(b,) can be identified, as a
subgroup of W, with T; x W(b,), where T;= {t,eT|yeQ;’ = QV} It is convenient
to use this identification of W([),)(l < i< N)when we regard the W(bh;)asa subgroup
of W.

Next let us consider the action of the Weyl group Won an integrable §- -module
(I(A), 7). It is known (see ref. [Kac] Sect. 12.8) that the affine Weyl group 14
has a (pI‘OjCCthC) realization W™ on the module L(A) by the correspondence;
it eW:—»r -1} eW" with

1 =exp(J Ly, (0) exp(—J 5, (0)) exp (J X, (0)), 4.3)
rg =exp (Jo(— 1)) exp(—J_4(1)) exp (Jo(— 1)), (4.4)

where JY (n) = | (ozz_a) J(n). This means that,fori=1,...,I, we haverf J (n)(r7) " =

J@®) and, for t €T,

GIE) = Tln— (7)) @3)
GH)(E)™ = Hln) = cCn H) oo, (46)
ETENE) ™ = T) = Hyln) = 50:1n0- @)

Therefore if L(A) = ). L,(A)is the weight space decomposition, then w™e W acts
JeP(A)
as w"(L ,1(/\)) = Ly M(A) In this way, the affine Weyl group acts on the module L(A).
In the following arguments, we will use several lattice in t*. We define the dual
lattices Q* and P*(=M) for Q and P, respectively, by

0" = {Let*|(,0)eZ,xeQ},
Pt= {Aet*|(4, A)eZ, AeP}. 4.8)

Recall that the root lattices of h(1 <i < N) and Q, are defined as the sublattices
of Q. Then each root lattice Q,(0 <i < N) is naturally endowed with the induced
form previously defined in Sect. 2. With this inner product on Q;(0 <i < N), we
define the dual lattices Q;;

0'S0;®0 D DQy. (4.9)
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Now let us extend the affine Weyl group W of § to a slightly larger group
Wo=T"x W with T* = {tilxleQ } following Kac—Wakimoto [KW]. Then it is
known that this extended group W, splits into the semi-direct product as

Wo=WeW, (4.10)
where the subgroup W < W, is defined by
Wo ={oeW,|o(4,) ALl 4.11)

This property (4.10) can be deduced as follows: We easily verify that the extended
group acts on the set of all cells in t§. On the other hand, we know that the affine
Weyl group W acts simply and transitively on the set of all cells. Therefore we can
find for arbitrary @e Wo a unique element Ge W so that the product @G ' = j acts
trivially on the cells, i.e., pe W .

The following commutative diagram indicates that there is an isomorphism of
the groups between W3 and Q*/M (= center of G):

W=Ww

1
1-oWoW,—> Wi -1

R R P 4.12)
0->M— Q" —Q"/M—0.

[

0 0

In the following, we study the extension of the action W™ of the affine Weyl
group on g-module to that of the extended group W,. Then the sum of §-modules
= ) L(A) naturally arises.

AeP k

Proposition 4.1. (Spectral flow I). Define following automorphisms of the Clifford
algebra and the affine Lie algebra § for each yeQ™;
1) for the Clifford algebra, let

(W (r) =y (r + (3, 0), aeA(m,) L Am_). (4.13)
il) For § let
29T n) =J (n—(y,), (xed) (4.14)
229(H ,(n)) = H,(n) — ¢, H,)d,.,, (4.15)
124(d) = d + H,(0) + %(y, M 20 =c, (4.16)

with yeQ" and d = —T,(0).
Then the actions o, "and 2% are lmplementable on the modules %, and L,, that

is, there exists a linear zsomorphlsm 6/ F, > F,and 1,:L,— L, s.t.
FYr)(6]) "t = oY), (4.17)
LX(0) ' =6%X), Xed. (4.18)

These actions &{ and [, define the projective representations of ve Q™.



Lie Algebra Cohomology and Superconformal Field Theories 471

We do not go into the detailed proof but only explain how to construct the
linear isomorphisms &/ and 7,.

Table 1. Diagram automorphisms W

W
4, Lp,...,p 3P =t 0,00
Bl Lﬁ b= be, O, Opp
Cl 1 P 3P = LW, ®py
D, L g1, pi-1,P shi=t,ogopgegi=1,1-1,1)
Eg 1,5,p* 3P =1, 05,0
E, Lp 3P =1, 0,0y

E85F45 GZ 1

The elements of the diagram automorphisms I7V5r are listed. wrepresents the
longest element of the Weyl group W and wp, is defined by w,(IT\{o,}) =
—({H \{oy}). For example the p for A, generate the Z,,, symmetry,
PriP ' =Tit1moar+1, and in this case wpw; coincides with the cyclic
permutation.

The former isomorphism &/ is easily constructed on the Fock space as the
operation of changing the vacuum vector. As for the latter isomorphism £,, let us
study the group action of W, on the module L,.

meg to the property (4.10), we can find for arbitrary de W0 a unique element
GeW s.t. @6~ ! = peW{ . Then the element & = t,w(= p&)e W, defines the algebra
automorphism of § by &* = r3*w**(= p* ~ad) We know that the action 6% is
implementable on g-module L(A) since oeW As for the action p*%(pe W0 ) on the
other hand, we must formulate in a different way: First let us note that p* deAut§
acts on the Cartan subalgebra T and induces a map A, —A,. Thenit follows that
this map induces a permutation fj:a;— 0, on the set of simple roots IT. This
permutation, in turn, defines a linear map on P, by p: A(,)—+A(p(,,)(0 <iZl) with
A(,) representing the simple weight. Thus we reahze that we can 1mplement the
action p*¢ on the module L, by defining p":J 1(ny)--J [(ng)| A eL(A)—p*(J 1 (ny)) -

ad(Js(ns))l/7(/1)>€l&0(/1))

Since the action fj: %) = 0(p(iy> PTESEIVES the form of the extended Cartan matrix,
we deduce W0 < Aut IT. In fact, it is known (Proposition 1.3 in ref. [KW]) that
the group Wy is the only normal subgroup of Aut fT and Aut IT= W§ x Aut IT.
We listed in Table 1 the elements of W which have been obtained in refs. [IM,
Has].

From the above considerations, we see that the action t““(yeQ ) on § is
implemented prO_]CCthC]y on the module L,, by the successive action of the diagram
automorphlsm ™ and the Weyl group @", which are determined uniquely so that
t,= &p,, in the following way;

B(1AY)=a"p5|A). (4.19)
Now we can proceed to our relative case, (§ 2 b);

Proposition 4.2. (Spectral flow I1I). Consider the diagonal action o, = of + ¢ with
yeQ*, then
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i) o, acts trivially on the N = 2SCA;
a,(J() =J(n), o,(G*(r)=G*(r), a,(T(n)=T(n) (4.20)

ii) o, acts on the b-currents (1 <i< N, ueA(b;)) as

ay<fa<n))=fa(n— (%@ya»

o, (,(n)) = H (n) - c,~<“""0") " Ha> Suon (421)

Y

= S0 ¢ (0,0, 0;,0;
o=+ 8,0+ 5O 00 )5, o=,

L

o ,(H,(n) = Hy(n) — co(70, @)0,0, (a€tl),
(4.22)

~

“ “ c
Uy(do) =do+ Hyo(o) + ?O(Vm 70)0n,0 ay(CO) = Co»

A

where y,,...,y, means the projected components of y and d;= —T, 5(0), ¢;=
0,,0,
(c+g*—h?‘%>(l <iZN),co=c+g*

(His 01)

iii) The action ¢, on h,(0 < i< N) defines the algebra_automorphism for each b,

and implementable on the §-modules Ly= Y L&), (0<i<N) by a linear
isomorphism 6,(0 <i < N). EePlby) 4 x,

These automorphisms i), ii) follow from direct evaluations of the action p, on
each operator. The linear isomorphism &,, can be constructed on L, (1 i< N)in
the same way as (4.19) for §;

3, (16:5) = s, 60205, (1€0), (4.23)

where ) ,./2),, belongs to the extended group Ty, = {¢{|yeQy;} of T, with the
definition Q= {Aet}|(Z, «);,€Z for YaeQ,}. Thus the corresponding diagram
automorphism should be read from the action of t{{), 4.2),,- Hereafter we shall
denote this diagram automorphism simply as pJi(1 <i< N). As for the abelian
part, we can implement the action o,, on the infinite sum Y. L&) by
a shift of weight &, to t, (o). Eoc0t +koA0

Now we can utilize these results in order to investigate the relations among
the branching coefficients in (4.1). To do this, we first recall that the isomorphism

(4.1) is given by a linear map 'P:Bﬁ{%@Lh(E)—»fs@L(/i) defined [TK] by

V@ J,(—ny) - Jo ()T (=ny)- T, (= nu. (4.24)

From now on we fix this isomorphism ¥. Then we can construct the following
commuting diagram of isomorphisms;
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>

F,.9L(A) F,Q L(p3(A))

“z

ZB“’ ®Ly(%)

Qr
~

= , 4.25)

(6071:) 1= z Bpg(/\) pb(t) ® Lb(p?:(&))

where we deﬁned abbreviations as t" = t%’@f&l& 0027 ® ®f%’N oxy2)yy a0d
py(i) (tyo(éo) py 1)), .. ,py’j,(é,v)) The element @&f 1n the diagram 1s determined
from the element &,eW, which satisfies t" @, p). The commutativity of the
diagram entails the following isomorphism for the branching coefficient modules;

Proposition 4.3. (Field identification relation). For eachyeQ", there is an isomorphism
of N =2 SCA-module;

*N=2. (8)
£, ":Bj Bpgm)p"@’

(4.26)
where T =2 =(&7)"'6,.

Since we know that G, and @] commute with the N =2 SCA, the isomorphism
(4.26) tells us the equality among the character formulas for N =2 SCA-modules;

ch(BY:) = ch (Bffg)( Asie)- This is the reason why we identify the primary fields [BPZ]

which represent the N =2 SCA-module B(”) and B® S8R A rather trivial,
but important, field identification follows from the action o,, with y,€Q,. This
action entails the following isomorphism;

FOLA= ¥ ¥ BTABR® L) (427)
EeP(b) 1 k/koQo 70€Q0
Note that in this expression we have succeeded in separating the infinite summation
in (4.1) into the infinite multiplicities of N =2 SCA-modules.

(4-2) Modular Transformation Properties. Let us give an interpretation for the field
identification relation (4.26) from a viewpoint of the modular transformation
properties of the characters. Here we define the character for the N =2 SCA as
the branching coefficients which arise when we evaluate the relation (4.1) in terms
of the affine characters defined over P, mod C6 [KW] and the product of the
theta functions for &# [Fr, Has].

Let us recall [KP, KW] that the characters for §-modules; ch’(L(A)) (AEP+ )
transform among themselves under the modular transformations, S and T, as

h(LA)ls= Y Sizch(LA)), (4.28)
A'EP+/§/(C)=k
ch' (L(A)) |7 = e™4ch’ (L(A)), (4.29)
where S; = A+pA+p) - .9) , and the unitary matrix Sz y(= Sy 4) is given by

2(k+g%) 2g*
Saiy=il4* | P/M|™V2(k + g*)~ 12 Z det e~ @milk+a ) A+poX +p) (4.30)

weW

To apply this property to b-modules we must deal with the infinite multiplicities
associated with the abelian part bo [TK]. Before going into this subject, let us
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first discuss about the fermionic part. As for the character of the #,, it is known
that there are four possible types; ch(# ), where the minus sign means the
insertion of the operator (—1)’/(%) into the trace for the characters while the plus
sign does not. These four possibilities are connected to the characters of the
level 1 representations of §0(2m)(m = dimm ) as ch(% &) = ch’(L(A,)) + ch'(L(A,)),
ch(# %) =ch'(L(A,)) + ch'(L(A,,_,)). Thus we see that ch(#}) close among
themselves under the modular transformation, which we denote as /(2% for the
S- transformatlon and as t® for the T-transformation with &,¢ =0 or 1/2 and
a,b=

We can now express the decomposition (4.1) in terms of the characters as

ch(FE)ch'(LA)= Y ch(BG:)ch'(L(&))-ch'(L(Ey))-+ch'(LEy)  (431)

EePh) .,

Ch'(i(éo)) = e( _ (ég;(io) 54 50>/ndim[)o,

where 7 is the Dedekind n-function and e(1)(h) = e*" (1et*, het). When we recall
the relation (4.27) and note that G,,J (0)(6,,) "' =J ;(0)—2(p,, 7o) and 2(p,, 70)€2Z,
we deduce that the infinite multiplicities of N =2 SCA-module are summarized
into the theta function;

with

ch(ZF)ch'(L(A)= Y  ch(BED) 0-ch'(L(E,)) - ch'(LEy)).
EePbh) 4 x/koQo
= Y bl (432)

EeP(h) 4 x/koQo

where

@g}oze< (fo’fo) ) Z e([m(go))/”ldimbo'

2ko yo€Qo

In this form we can apply the results (4.28-30).
Due to the considerations above, we can derive the modular transformation
properties of b7 as;

biels = Z CemSixStabs?,
AE
(¢"b)
(”)IT—exp {27t + S(g); — S(0)2) }bSE, (4.33)

where & &eP(b). /koQo.
Now we can verify;

Proposition 4.4. The transformation matrices satisfy the following relations;
e b)Spgm A Sp';(g =fee b)SA,/i'Sgg" Jor S transf.,
exp {2mi(t + S(q)pg(/‘ S(b)pgm)}
' =exp {2mi(t + S(g); — S(h)s)} for T transf. (4.34)
To prove this statement, we note that the S-matrix has a property (Eq. (2.2.13)
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in ref. [KW] also see ref. [Gep]);
Soiy it =m0 4 (4.35)

for a diagram automorphism ¢ = t,6,,€W¢ , 0,y W. Then the equalities immediately
follow from the following relations;

Soa i S e = AN NS L LSk, (4.36)
A —EeQ, p3p)=p, pp1)=P1, (4.37)
where
R 1
P1=5 ) o""Z_h?‘/‘w)i-

aeA(b) 4 t

Proposition 4.4 ensures the compatibility of the field identification relation
(4.26) with the modular transformation properties (4.33).

(4-3) R NS Spectral Flow. Here we will formulate an isomorphism among the
branching coefficient modules with different fermionic boundary conditions. This
isomorphism is the origin of the space-time supersymmetry in the compactified
string theory and plays an important role in physics [BDFM].

Now let us define an automorphism of the Clifford algebra ¢/ (seZ/2) by

ol () =y r+s), oLV )=y r—s) (4.38)

for all aeA(m,),aeA(m_). o/ act trivially on the §-currents. Then the following
action of ¢/ on the N =2 SCA and b-currents follows from simple calculations;

Proposition 4.5. (R<NS spectral flow). The actions of ¢l(seZ/2) defines the
following automorphisms,

i) N=2 SCA;

of (T(1)e) = Tl + {$}I ), + = {5000, (4.39)
o(G* ) = G2 £, olU)) = I+ {5}6,0
oL (Ts) = Ty 1172 + (1O 112 + - [T, (440)

O'sf(Gi(r)Ns) = Gi(r + 8+ 1/25 U{(J(”)Ns) =J(n)s+ 12+ 63—0 [s] 5n,0a

ii) B-currents;

ol (T mr) =T, (),  0L(T,(MWns) = To(M)ss 125 (4.41)
ol (H,()) = H,(n)s— (2p2,7){s} 6.0, (4.42)
ol (H,(n)ns) = H,(n)s+ 12 — (202, 7)[518,,05 (4.43)

where the subscripts s and s+ 1/2 indicates the types of the operators, R or NS,



476 S. Hosono and A. Tsuchiya

according to their value Z or Z +%, respectively, and [s] and {s} are integers
determined from the relation s — 1 <[s] <s<{s} <s+ 1.

Here we note that the actions i) are different from the conventional one (e.g.
(1.16) in ref. [LVW]) in that the parameter of the flow appears as an integer in
the right-hand side of i). This is, again, the reflection of the different choice of the
normal ordering prescription as noted in the final remark in Sect. 2.

We can easily implement these automorphisms on %, ® %, as follows;

Proposition 4.6. There exist isomorphisms 6{(s€Z/2) on F,® F,,, which implement
the action of. They are defined by

H ‘//a(S‘F1)“"//1(5_{5})5{—(s)|0>k for s=<—1

6110 = < 4! (4.44)
_1(_[)w‘i(—s)mt//"?(—s+{s}—l)&sf_{s,|o>R for s>0,
and

H Y s+3) - Yi(s—[s]— %)&sf—[s]IO>NS for s<—1
6710)ns = < 4 (4.45)
n Y (—s+3) ¥ (—s+[s] _%)&.{—[S]IO>NS Jor s>0,

ged(m_)
where 67 12100k =|0)ys and & /2|0>NS =|0)k-

Since the action on h-currents coincides with that of the translation, which acts
only on the abelian part by, we deduce the isomorphism;

5/:BY) Q) & (1/2) @)

:Bie <) —Bj 201tk + g & 1B~ B St/ +gis© (4.46)
withe=0or 1/2 (¢ = 1/2 or 0) according to seZ or Z + 1, respectively. In particular,
if we substitute s = — 1/2, then we obtain

LB BGY. (4.47)
Since G/, ,, defines the co-chain map; 62 ,,,G*(0)g — G*(F 2)ns6L 1,2 =0, between

C*m, ®C[11 ~17, L(A)), and C*(m,, ®C[t ¢t~ '], L(A)), 5, we obtain the follow-
ing isomorphism of the harmonic forms:

GL 1 H¥(my @ CLt '] LAk > H¥(m, @ C[1,t 7], LA)ys.  (448)
This isomorphism is the one which we have promised to show in previous section.

(4-4) Charge Conjugation. In this subsection, we formulate, for later use, a
somewhat different symmetry: the charge conjugation automorphism.

Definition 4.7. (Charge conjugation). We define the charge conjugation auto-
morphisms, %, for the Clifford algebra and the affine Lie algebra § by

CW ) =—y %) (xed(m )L A(m_)) (4.49)

and
C(J(n)=—J " *n), C(Hn)=H_,(n) (xel), (4.50)

respectively.
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Then the following results follow from simple calculations;

Proposition 4.8. The charge conjugation automorphisms (4.49) and (4.50) are
implementable on the Fock space &, and §-modules L, by

[T v%0)I0y for e=0
"(|0)) = < xeAms) 4.51
(10y) s for 53 4.51)
and
G (|AY) = of | A, AP, (4.52)

with A= — wlong(ﬁ), respectively. Where g in (4.52) is the longest element of the
classical Weyl group of g.

The following results are also consequences of the straightforward calculations
using the formula (2.39);

Proposition 4.7. The charge conjugation operations (4.49), (4.50) act on the h-current
algebra and the N =2 SCA as an algebra automorphism in following way:

i) for h-currents

CTyn)=—T_gn), CHpym)=H_,n) (BeA®D)), (4.53)
ii) for N=2 SCA (¢ =0)
%(G*() = G* (1), (4.54)
(T(n) = T(n) — J(n) + %5"’0’ (4.55)
GI(n) = — J(n) + ‘;—”(sn,o, (4.56)

ili) for N=2 SCA (¢=1/2)
€(G*(r)=G*(r), €(T(n)=T(n),
€(J(n)=—J(n). (4.57)
We easily see that the algebra automorphism (4.53) is implemented as (4.52)
on the extended h-module Ly= z L,,. In this case we must use the longest element
wii,, of each W(h,)(1 <i<N). ThlS fact implies that there exists an isomorphism
=[] ) B B, E=(-E0 B @Y

which implements the automorphisms (4.54)—(4.56), (4.57).

5. Poincaré Polynomial for N =2 SCFT

In previous sections, we have studied in detail the N = 2 super-GKO construction
and its cohomological interpretations. In this section the results obtained there
will be unified from a viewpoint of the N = 2 SCFTs and the Poincaré polynomials
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associated with them. The meaning of the Poincaré polynomial, especially its
geometrical meaning, still remains to be clarified in future investigations.

(5-1) Poincaré Polynomial and Its Physical Background. The N = 2SCFT may be
stated, as one definition, as the modular invariant partition functions constructed
from the characters b‘8 “’(r) for the branching coefficient modules BAE It is
known that there are many types of the modular invariants [CIZ, Kat]. Though
such a variety may always exist for the N =2 SCFT, we restrict our arguments,
for simplicity, to the diagonal modular invariant only;

1
Z(t)= VG Y [b& “’(r)| (5.1

(a a); /\EP+ &
csP (h) 4+ k/kOQO

with A" representing a constant which we read from the multiplicity of the vacuum
(the module with both the conformal dimension and the charge being equal to
zero) among the branching coefficient modules. As formulated in Proposition 4.3
in previous section, the multiplicity of the branching coefficients as N =2 SCA-
module follows from the action of yeQ™* on L,. When the action yeQ* has a fixed
point, the definition of the N =2 SCFT by (5.1) becomes troublesome because the
fractional coefficient appears in the partition function. For the time being, we
restrict ourselves to the case that there does not appear such fixed points. We will
return to this problem later in this subsection.

The characteristic feature of the N =2 SCFT is that some class of the theory
defined by (5.1) admits a description by Landau—Ginzburg (L-G) effective
Lagrangian [ VW] [Mar]. This observation is based on the fact that the set of the
relevant operators contained in the L-G theory and the primary fields that are
labeled by the weights representing the cohomology elements in (5.1) coincides
with each other in their charges and conformal dimensions (in fact the charge is
two times the conformal dimension for the cohomology elements). The primary
fields in this correspondence are named as the chiral primary fields in ref. [LVW].
One of our interests here is to investigate, from the physical point of view, how
large classes of the N =2SCFT admit such a L-G description [LVWT].

To this aim we define a certain Poincaré polynomial associated with each N =2
SCFT. This Poincaré polynomial might have also mathematical importance since
it will turn out that it is defined in deep relation with the Poincaré polynomial of
the semi-infinite flag manifolds.

Let us recall that the L-G theory with N = 2 supersymmetry has the following
features which follows from the non-renormalization theorem: i) The theory at
critical point is described cssentially by the super-potential W(®,,..., @,), where
@,(1 <i=<n)represents the chiral superfield. ii) The super-potential must have the
quasihomogeneous property such that W(A*'@,...,i"®,) = J*W(®,,..., D,) in
order to realize the theory at critical point. iii) The set ofthe relevant operators in the
L-G theory is expected as the ring J,

B Clo,,...,D,]
C[oW/od,,...,0W/0d,]

(5.2)

If the order of the ring J is finite dimensional, we can define the Poincaré polynomial
for a given L-G theory by
Py(t) = Tr, 19, (5.3)
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with the charge operator Q:J — J defined by Q(®,) = w,®,(1 i< n).

Generally, a formal power series fet = C[x;,..., x,] is called as non-degenerate
near 0 if there exists a natural number m such that 9 > U > IN™, where I represents
the maximal ideal of a local ring C[x4,...,x,] and U= (0f/0x,,...,0f/0x,). Just
the same way as J in (5.2), the local algebra of f is defined by R, = C[x4,...,x,]/
(0f/0x1,...,0f/0x,). Then the following property is known:

Theorem 5.1. (V. I. Arnold [AGV], Theorem on p. 199, I). Let f be a nondegenerate
quasihomogeneous  polynomial such that f(A°'xy,...,A°"x,) = A%f(x,,...,X,)
(AeC*;w;,deZ., ). Then we have

(1 =4

10 =Tue =110 (54

where p; is the number of basis monomials in R, with quasidegree i/d.

In this theorem, the non-degenerate property of f ensures that the number of
the basis monomials in R/ in finite.

From the above theorem, we see that every Poincaré polynomial P,(t) can be
cast into the product form as (5.4) for the N =2 L—G theory with non-degenerate
quasihomogeneous superpotential W(@®,,..., @,).

Keeping this background for the L-G theory in mind, we proceed to

Definition 5.2. (Poincaré polynomial). We define for each N =2 SCFT a Poincaré
polynomial by

P(t)= Y 120, (5.5)
1ES
where .# is a quotient
FI=P,  xW~, (5.6)

with the equivalence relation, ~, defined by the field identification (4.26), that
is, (A, ®) ~ (A, @) if there exist yeQ such that tY=%:B;; & = Bj g . The charge
Q(x) is determined as an eigenvalue of the charge operator J(0) for |A, E>e
H¥(m, ®C[t,t" 1, L(A));

2(p2’é )

i3 +1(6), (5.7)

0(A,6)=

and does not depend on the e.

Owing to the correspondence between the chiral primary fields and the
cohomology elements, the Poincaré polynomial defined above should be identified
with (5.3) in the L-G theory. Then from Theorem 5.1, the Poincaré polynomial
(5.5) must be written in the product form as (5.4). This is a very non-trivial property
and should be tested for each choice of (g, ). This will be done for specific models
in the latter half of this section. In the following, we study the general structure
of the Poincaré polynomials utilizing the results obtained in the previous sections.

Before closing this subsection, we must mention about the invalidity of the
definition (5.1) when the action yeQ* on L, has fixed points as remarked at the
beginning. There are some conjectures that in this case the N = 2 SCA extends to
some larger algebra with higher symmetry [MS2, SY]. However, how we should
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understand this phenomenon is still unsolved and is an important problem to
reveal the coset conformal field theories. So we define the Poincaré polynomial
(5.5) also for the case with fixed points. Though physical meanings of our definition
(5.5) might depend on the resolution of the fixed point problem, it would still be
meaningful to reveal the general structures of the Poincaré polynomial (5.5).

(5-2) General Structure of the Poincaré Polynomial. According to the results
(Theorem 3.8) on H*(m_, ® C[t,t 1], L(A A)), we can write the cohomology elements
bijectively in terms of the subset W' of the affine Weyl group for §. This subset
W is revealed, in previous section, to have the structure (3.36),

=D W, (5.8)

Now we show that

1

Proposition 5.3. For each p(=w"'t )e@ there exists an isomorphism

iY=*:BY. »BY. (5.9)

Als A
That is, we have (A, ®) ~ (A, p@) for Ve W,

To see this property, compare the definition of D in (3.34) with the definition
W¢ in (4.10). Then we easily deduce that the group D is the Dynkin diagram
automorphisms for §,(1 <i < N) which are contained in the affine Weyl group W.
Then we can verify that “the | following relations, mod Co, hold;

_{ h'(ff(,(,)) (1<i<N), (5.10)

for each element g =w™'t, €®. On the other hand we know that pe® < W acts
on the g(g )module L(A). Thus we see that there is the field identification isomorphism
IN=2.pl £)

ty " B, Bixg o
Combining the above result to the structure of the subset ! in (5.8), we obtain

the following equivalence relation for ce W1.
(A.é')~(A,0), €T (5.11)

This property tells us that the Poincaré polynomial (5.5) is determined, in
fact, from the finite set P, , x W' rather than the infinite set P, ,x W'=
P, x Ty D W' (see (3.39)). We shall see later, using some examples, that a further
reduction of the set P, , x W' follows from the isomorphisms 7 ~2(yeQ™*,y¢M).
These isomorphisms are related to the diagram automorphisms of g as we have
shown below (4.9) that Q*/M =~ W .

Next we show

\f\&)

pa,i

Proposition 5.4. The Poincaré polynomial (5.5) has a certain duality property;

P(t) = t(%/”PG). (5.12)

To formulate this property, we first note that the Poincaré polynomial can be
written as

P(t) = Tr "%, (5.13)



Lie Algebra Cohomology and Superconformal Field Theories 481

where 2= ) C|A,¢ 52 ©Z ® L,. Then we can verify that the charge conjugation
~Ad)es . ~
operator €™ acts on the space of the harmonic cocycles and that the operators €™
and 7Y =* commute with each other on the space of the harmonic cocycles. From
these facts, we realize that €™ acts on the vector space £. Utilizing this property

we have
P(t) = Tr, @™t O(@™) ! = Trt ¥ ~I0), (5.14)

for the R-type SCA. The same property also holds for the NS-type SCA since there
exists the R«>NS isomorphism &/ ,,,: B} ~ /1‘/52

The equality (5.12) can be read as a duality relation when we note the following
inequality for the charges (5.7):

0<0() <7, 7€, (5.15)
where c, is the central charge in (2.39). The above inequality follows from noting
the positive definite operators T(0) = 0, {G*(—1),G™(1)} =2T(0) — 3J(0) + Co =0

and the relation {G *(0), G (0)} = 2T(0) — J(0) = 0 on the space £. (These properties
do not depend on the types of the SCA, i.e., R or NS))

(5-3) Grassmannian Model and etc. Here we present some calculations of the
Poincaré polynomial using specific models. Then the & in (3.39) will become explicit
and the quotient # will become clear.

Let us, first, restrict our argument to the model of Grassmannian, the simplest
representative of the hermitian symmetric spaces;

SU(n+ m)
SU(n) x SU@m) x U(1)’

For this model, the subset W* of the classical Weyl group W (the symmetric group
S,+m) is well-known [Kos]. So we have only to reveal the structure of the
quotient .#.

Let ¢y,...,8,., be the orthonormal bases for the fundamental representation
of SU(n + m). We take the set of the positiverootsas A4 . = {&; —¢;| 1 S i <j<n+m}
and the simple roots as ay =& — & 41, (1 Si<n+m—1)and oy =6 — (6} — &y m)-
As for the subgroups SU(n) and SU(m), we take AY = {¢;, —¢;[1 i< j<n}, AP =
{e,—&ln+1=<a<b=<n+m} and the simple roots [T™ = {0, ; =, — (¢; — &),
%y, =&— &+ (1 Sisn— 1} and IT™ = {0, 5 =0, — (6411 — &yt mh %2 = € —
gor1(n+1=<a<m+n—1)}, respectively. The root for m, is A(m,) = {g; —¢,[1 <
i<nn+1=<a=<n+m}. Thesubset W' consists of the elements 6€S, , , such that

Gr(n,m)= (5.16)

cT i) <7< <o), o m+) <o i n+2)<--<o Y (n+m).
(5.17)

The order |W1| is given by (n +m)!/n!m!.

According to the general theory, the diagram automorphisms are generated by
p(n+m) = telwcch p(n) = tslwg;')c.a p(m) = t£n+ 1w(c';’lz: fOI' SU(n + m)s SU(n) and SU(m)a
respectively, where @, =(1,2,...,n+m), 0. =(1,2,...,n) and o) =(n+1,

n+2,...,n+m). The diagram automorphisms p, and p,,, satisfy p,,(4%) =A%
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and p,(A9") = A since they simply induce the permutations for the simple roots.
Though each p,, and p,, is not the element of the Weyl group W individually,
we can make a combination o, = p, Py Which belongs to the Weyl group.
Then taking the conditions (3.34) and a)-c) below (3.36) for D into account, we
convince ourselves that, in this model, the clements of the group D can be
taken as

D={l0p,...,0% '}, (5.18)

where d means the least common multiplier for n and m.
Now let us define
P(Gr(n,m), A= Y 4l (5.19)

wlew!?

with Q(A, ') = g(A, w"). Using this polynomial, the Poincaré polynomial

k+g*
may be expressed as

P'(Gr(n,m),t),= Y P(Gr(n,m), A; ), (5.20)
/\GP* k

if there is no other field identification relation other than the one appearing in
Proposition 5.3. However we casily notice that there is another identification
relation which follows from the isomorphisms of the action yeQ*(y¢M). These
isomorphisms are generated by the diagram automorphism p,, which is determined
from the spectral flow ¢,,, and has order n + m. Thus we expect the correct Poincaré
polynomial is given by

P(Gr(n,m),t), = ;ﬁP’(Gr (n, m), t)y. (5.21)

We will soon find the cases that the denominator n + m does not divide P'(Gr(n, m),t),.
This phenomenon is the fixed points [LVW, Gep] remarked previously.
When we consider the case k=1, such a troublesome case does not occur.
In this case the weight A of g-module can be written as A =(AgsAtreeesntm1)
with only one of the As being equal to 1 and others zero. The diagram
automorphism p, induces the cyclic permutation of the Dynkin labels ;. Therefore,
making 4, =1, the Poincaré polynomial can be written as
P(Gr(n,m),t) =y = Y '@, (5.22)

wleWw!

and further, as is known,
1 . [dj(q)-# 1)

!
U l—ldf(h )+1

where d;(g) and d;(b) are the exponents for g and b, respectively. This relation
holds also for other models with k=1 based on the simply laced hermitian
symmetric spaces [LVW].

The phenomenon of the fixed point occurs when we consider the model k = 2.
To make the argument simple, but without loss of essential generality, let us restrict
our attention to the model; Gr(2,2) at level k = 2. In this case the naively expected

(5.23)

~,
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Poincaré polynomial (5.20) is given by
P'(Gr(2,2), )=, = 2(2t% + 7t + 12t* + 7t% + 2). (5.24)

We see that this polynomials is not divided by the order of the diagram
automorphism; n + m = 4. This can be understood as follows; the k =2 §-module
consists of the three orbit of the diagram automorphism of §: (2,0,0,0)-orbit,
(1, 1,0,0)-orbit and (1,0, 1, 0)-orbit. Both the (2,0, 0,0)-orbit and the (1, 1,0, 0)-orbit
have order 4, however the (1,0, 1,0)-orbit has only order 2. Therefore we must find
the orbit with the fixed point, i.e. the orbit with length less than 4 among the orbit
of the modules Bz =B, (weW?). In fact, we can find that the modules Bj ¢
with (A; &0, 015 E02) = (A1 + A3;640,248 + 240,24 + 2?) and (A, + 4;;
640 — 25, 2A0 + 241, 243 + 2AP) both represent the fixed point with order 2
with respect to the action ¢, ,,,, where obvious notations for the fundamental
weights are used. Taking this fact into account, we calculate the correct Poincaré
polynomial as

P(Gr(2,2), t)y—, =8+ 4t® + 6¢* + 41> + 1. (5.25)

As a next example for the model based on a non-simply laced Lie algebra, we
briefly present the case of Sp(n)/SU(n) x U(1). According to the convention in ref.
[Bo], we adopt a normalization (@, 6) =4. Then the system of the simple roots
IT, I for Sp(n) and SU(n) are IT = {6 — 2¢,,6; — &3,...,€,— 1 — &,,2¢,} and ITg =
{0 —(e; — &), & —&2,...,86,—1 — &,}, respectively. The coroot lattice for Sp(n) is
Q¥ =Ze @ - ®Zeg, The classical Weyl group for Sp(n) is known as the semi-
direct product of the symmetric group S, and the actions ¢ —(+);¢;, and its
order is 2?n!. The element weW?! can be constructed as follows; let ce@,
such that

cl)<ao@)<---<oa(s)=n, als+1)>a(s+2)>->0(n), (5.26)
with fixed s(1 <s <n). Then we can take following elements as o~ ! for weW?;
) SR s s+1 n
5.2
(a(l) e Fo(s) —o(s+1) - —6(71))’ (5.27)

where the signs, +o(s), means the action &— +¢,. In this case the group D is
generated by p, = talw‘c';,’c € W which generates the diagram automorphism of order
n for the sub-algebra su(1i). The same arguments proceed as before and we obtain,
for example,

P(SpB)/SUB) x U(L), t)emy =0+ 265 +3t* + 463 + 322 + 2t + 1. (5.28)

In this case we cannot write (5.28) in the form as (5.23) even for k=1 case.
Returning to our initial problem in relation with the L-G description for the
N =2 Kazama-Suzuki models, we must mention that almost all models with level
k = 2 do not have the Poincaré polynomial which can be reduced to the form (5.4).
It is most probable that the global (non-perturbative) property of the theory makes
it impossible to describe the theory in terms of a simple perturbative L—G theory.
Admitting that such a global effect of the theory can appear, it is quite obscure to
what extent the global property appears in the description, what role the level k
plays, and ---. To reveal the geometrical meaning of the Poincaré polynomial will
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shed light on these problems; more precisely, to investigate the relation to the
semi-infinite flag manifold from a mathematical viewpoint and to interpret our
cohomology theory via topological field theories [W] from a physical viewpoint.

6. Summary and Discussions

We have studied in detail a cohomological structure behind the N =2SCFT
constructed by means of the affine Lie algebra pairs (§,h). We have formulated
our cohomology theory as the affinization of the Lie algebra cohomology theory
by Kostant. Kostant’s classical Lie algebra cohomology theory can be recovered
through a certain classical limit of our theory. The characteristic features that we
have recognized in our affine Lie algebra case are the essential roles played by the
Dynkin diagram automorphisms for the affine Lie algebras. Motivated by the
Landau-Ginzburg description for the N = 2 SCFT, we have formulated the algebra
automorphisms for N =2SCA, spectral flow, and then defined a Poincaré
polynomial associated with each N =2SCFT. This Poincaré polynomial might
have some mathematical importance, e.g., this polynomial might represent a certain
deformation of the Poincaré¢ polynomial of the semi-infinite flag manifold LG/LH
[FF] for loop groups LG and LH through the introduction of a certain periodicity
associated with the group T,. The geometrical meaning of the Poincaré polynomial
should be clarified in future investigations.

As for the L-G description for the N =2SCFTs constructed by GKO
construction, we must check as a first step for that purpose whether the Poincarée
polynomial we have defined can be written in the form of P,(¢) in (5.4). We have
found, contrary to our expectation, that there are many models whose Poincaré
polynomial cannot be written in the form (5.4). On this respect, there are arguments
[LVW, Mar] that such theories are described by the orbifold L-G theory. We
must leave the detailed analysis to future investigations.

In any way, there seems not to exist a simple description in terms of the L-G
Lagrangian for the general N =2SCFTs based on the GKO construction. And
so, generally, we cannot expect a beautiful correspondence between the L—G theory
with N =2 supersymmetry and the singularity theory as have been observed for
the minimal theories with ¢, < 3. However it seems interesting and important to
identify the N = 2 SCFTs which are described by the known singularity types other
than the simple singularity, A-D—-E.
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