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Abstract. A complete classification of simple currents of WZW theories is obtained.
The proof is based on an analysis of the quantum dimensions of the primary fields.
Simple currents are precisely the primaries with unit quantum dimension; for WZW
theories explicit formulae for the quantum dimensions can be derived so that an
identification of the fields with unit quantum dimension is possible.

1. Simple Currents

Simple currents are by definition primary fields Φ which upon taking fusion
products simply permute the set of primary fields {φ} of a conformal field theory.
They play a prominent role in the construction of modular invariant partition
functions [1]. An important step in the classification of conformal field theories is
therefore the enumeration of simple currents. For WZW theories [2,3], a large
class of simple currents is already known, namely the so-called cominimal fields
[4] as well as an exceptional isolated case [5]. In the present paper, we prove that
these known examples already exhaust the set of simple currents of WZW theories.

The distinctive property of simple currents which allows for their classification
is the special value of their quantum dimension. Recall [6] that to any primary field
φ of a two-dimensional conformal field theory, one can associate a quantum
dimension 3>{φ) which, loosely speaking, describes the relative size of the highest
weight module of the chiral algebra carried by φ as compared to the highest weight
module carried by the identity primary field 1. By a straightforward manipulation
of characters, one can express @(φ) through the matrix S that implements the

modular transformation τ -* — on the set of (characters of) primary fields as

^ . (1.1)

From elementary properties of the modular matrix S, it follows that quantum
dimensions are real numbers, that conjugate primary fields possess the same
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quantum dimension, 3>(φ + ) = @(φ), and that in unitary theories one has ^ ^ 1 .
Moreover, due to the relations between modular transformations and the fusion
rule algebra [6,7,8], the fusion rules

of a conformal field theory satisfy the quantum dimension sum rule

Applying these results to the fusion rule of a simple current Φ with its conjugate field,

Φ * Φ + = 1 , (1.4)

one learns that simple currents of a (unitary) conformal field theory possess unit
quantum dimension,

@(Φ)=L (1.5)

Conversely, application of the sum rule (1.3) to Σ(Φ*Φi) N ^ the sum extending

over all primaries) tells us that 2(φ) = 1 is already sufficient for φ to be a simple
current.

The classification of simple currents is thus a classification of primary fields
with unit quantum dimension. For an arbitrary conformal field theory, this
observation is of no great help because usually one doesn't know the modular
matrix S. In contrast, for WZW theories the chiral algebra is generated by an
untwisted affine Lie algebra g [2] so that the modular behavior of characters is
well known [9]. For the quantum dimension (1.1) of a primary field φΛ (labelled
by an integrable highest weight A of g at a fixed value k of the level), one then
obtains ([10], see also [11,12])

which can be viewed as a quantum analogue of the Weyl dimension formula. Here

α > 0 denote the positive roots of the horizontal subalgebra g of g and p = - ^ α

the Weyl vector of g. A is the horizontal part of Λ9 and

(^) ( L 7 )

with h the dual Coxeter number of g. Also, we have normalized_the inner product
(,) of g such that the highest root θ has length squared two, (0, θ) = 2.

Our theorem which classifies the simple WZW currents is presented in
Sect. 2. The key to the proof of the theorem is the formula (1.6) for the quantum
dimensions. As a first part of the proof we show in Sect. 3 that, as a function of
λ, absolute minima of S)(λ) on the fundamental affine Weyl chamber can only
appear at its corners. One then has to investigate the behavior of 2 at these corners
as a function of the level k. Explicit expressions for these quantities are obtained
in Sect. 4. In contrast to the considerations in Sect. 3 which use only very general
properties of the #-root system, the investigation of these formulae necessitates a
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case by case analysis and consequently is technical and rather lengthy (although
straightforward). Therefore we present the manipulations only to an extent which
we think will enable the reader to work out the full details if desired.

It would certainly be interesting to extend the analysis of this paper to the case
of other conformal field theories. As already mentioned, the modular matrix S is
then generically not known so that one cannot use (1.1) to compute the quantum
dimensions of primary fields. However, the quantum dimensions also possess
another interpretation [13,14,15]: to the primary fields of any conformal field
theory, one can associate irreducible modules of the quantum group that underlies
[7,14] the theory; the quantum dimensions of the primaries are then equal to
appropriately defined quantum deformations of the dimensionalities of these
modules. (Even more generally, quantum dimensions possess an interpretation as
the statistical dimensions in the sense of algebraic quantum field theory [16].) In
the case of WZW theories, the underlying quantum group is [14] the quantum
universal enveloping algebra Uq(g% with the deformation parameter q related to
the level of g by

A natural way to proceed is to search for the simple currents of coset theories
since presumably any rational conformal field theory can be realized as a (possibly
orbifoldized) coset theory. The fusion rules of a coset theory G/H are approximately
the tensor products of the fusion rules of the G and H theories so that the quantum
dimensions of the coset theory should be expressible as

®GIH = @G@H (1.9)

This would lead to the conclusion that the simple currents of the G/H theory are
just tensor products of the simple currents of the G and H WZW theories. However,
in fact the G/H fusion rules are not precisely given as tensor products, due to the
subtleties arising in the coset construction that go under the name of field
identification [17,18]. For the simple currents this implies, first, that some of them
are projected out because they get identified with other simple currents. This does
not pose a serious problem because it is not too difficult to find the relevant
identifications [19], and anyway the number of simple currents can only become
smaller than naively expected. However, if the field identification procedure
possesses fixed points, a more severe problem arises, since a resolution of the fixed
points is necessary, and this resolution might produce new simple currents [18].
As a consequence, at least if fixed points are present, the enumeration of simple
currents of coset theories is still an open problem.

2. The Classification

Consider a WZW theory with underlying affine Lie algebra g. A primary field φΛ

corresponds1 to the highest weight A of an irreducible integrable highest weight

1 To be precise, the primary fields are labelled by a pair of highest weights (ΛhΛr) referring to
the left and right halves of the symmetry algebra g 0 g; for the subject of our interest, it is however
sufficient to consider one chiral half of the theory
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module of g, with the level of g fixed to some positive integral value k. Thus the
allowed highest weights A are the integral weights in the (closure of the) fundamental
affine Weyl chamber Pk of g at level k. In terms of the horizontal part A of A this
means

ΆeZrnPk (2.1)

with Pk the horizontal projection of P k ,

Pk = {λ = (λί,λ2

9...fλ
r)\λi^0Vi = l,...,r;(λ,θ)^k}. (2.2)

Here r is the rank of g9 and the Dynkin labels Λ/eR of I are the coefficients of the
_ _ — r —

expansion of λ in the basis {A(i)} of fundamental weights, i.e. λ = £ XA{i). We

also need to introduce the Coxeter labels ahi= l,...,r, of g9 defined via the

expansion of the highest g-τoot θ in the basis {ά(0} of simple roots, θ= £ 0t α
(O.

ί = l

Having established the necessary notation, we are now in a position to state
the classification theorem. In any conformal field theory, the identity field 1 is a
simple current; for notational simplicity, this trivial example of a simple current
will be neglected from now on. The (nontrivial) simple currents are then as
follows.
A primary field φΛ is a simple current of the WZW theory with underlying
affine Lie algebra g at level k if and only if the following conditions are fulfilled:

Either

Λ = kΛ{i) and α f = l (2.3)

for some ie{ί9 2,.!., r] (with g and k arbitrary), or else

g = ES9 k = 2 and A = ΆiΊy (2.4)
The fundamental weights Ά{i) such that at = 1 are known as cominimal fundamental
weights (they are precisely those fundamental weights for which the associated
node in the extended Dynkin diagram is related to the node of the zero weight by
a diagram automorphism; for an enumeration of the relevant values of i for given
<7, see Table 2 below). Consequently, the primary fields in the infinite series (2.3)
were termed cominimal fields in [4]. The fact that they are simple currents was
deduced in [4] by an analysis of four point functions. Namely, any four point
correlation function containing at least one simple current is just a product of
powers (which can be expressed through the conformal dimensions of the
fields involved) of the distances between the fields, and combining the null
vector equations of [2] and [3], one finds that - modulo a certain naturalness
assumption - any primary field with this property must be cominimal. The
naturalness property that was assumed in [4] was that two components of a four
point function cannot be proportional up to powers in the coordinate differences
unless this property is enforced by the symmetries of the theory, i.e. by the null
vector equations. The existence of the exceptional solution (2.4) which was found
in [5] implies that the naturalness condition can be violated, but the theorem
just stated shows that this counter-intuitive situation does not occur more
often.
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3. Quantum Dimensions and Their Minima

Of course, (1.6) possesses the interpretation as the quantum dimension of a primary
WZW field only if A is an integrable weight. However, nothing prevents us from
using (1.6) as the definition of a real function Q){K) defined for λeJSJ an arbitrary
point in the weight space. To enter the proof of our theorem, we consider <3(λ) for
fixed level k as a function on the weight space of g and look for its minima on Pk.
We will show that these minima can only occur at the corners of Pk9 i.e. for

for some i = l, . . . ,r , with α f

v =^(όc(i\όί(i))ai the dual Coxeter labels of g. To this
end, we first investigate the derivatives of Θ(λ) with respect to the Dynkin labels
λ\ ί = 1,..., r. One finds

with

St{λ) = Σ «£ cot (-?-(λ + p, α)\ (3.4)
α>o \K-\-n j

r

here αf are the components of α in the basis of simple coroots, ά = £ α fα
( ί ) v .

- _ - ί = 1

Because of at ̂  0 and_(p^α) ̂  (p, 0) = h — 1 for α > 0, and θt = a? > 0, it follows
immediately that, for λePk,

@(λ)>0 (3.5)
and

^y^W<0 (3.6)

for all i, = 1,..., r. As a consequence, one learns from (3.2) and (3.3) that, on P fc,

έ ^ 0 v' -1 ' (3 7)

for all i = 1,..., r. This means in particular that there are no local minima of
on Pk. Thus any minimum of <2)(λ) on Pk has to lie on its boundary dPk. This
boundary is the union of r + 1 hyperplanes,

dPk=\JPk

i\ (3.8)
i = 0

with

P<ρ = j p f c n μ i = 0} for i = l , . . . , r , (3.9)

fc}. (3.10)
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On P{ί\l= l,...,r, the formulae (3.2)_to (3.4), and hence also (3.7) are still valid
for U j restricted to {l,...,r}\{/}; on P(

k°\ an additional contribution to St in (3.4)
arises so that d$i/dλj may be nonnegative, but for j = ί it is still negative. As a
consequence, one can conclude that there are no local minima of 2(X) on any of
the P(

k\ ί — 0,1,.. ., r, so that the global minima of Q)(X) must lie on the boundaries

= U Pk'Jl> with t^Q hyperplanes Pk

iJ) (i Φ j) defined in an obvious manner.
7 = 0 _ . .

Analogously, one deduces that local minima are absent from the hyperplanes P(

k

iJ\
and so on. After iterating the argument r times, one is then left with the corners
(3.1) of Pk. It follows that, as claimed, any minimum of 2{X) on Pk must lie on
one of the corners of Pk.

4. Corner Quantum Dimensions

We now proceed to showthat the value of @(λ) at a corner (3.1) is larger or equal
to one, with equality iff I is of the special form (2.3) or (2.4). As a first step, we
derive an explicit expression for @(λ) if λ = μΛ(i) with μeΈ arbitrary. This simply
requires the implementation of the detailed structure of the positive root system
of g into the formula (1.6). To write the result in a readable form, let us introduce
the following abbreviations:

l±ψ Π l-±ψ, (4.1)
j j

mod Έ mod Z/s

where s is the relative length squared of the long and short roots of g. Then for g
one of the classical algebras, the resulting2 formulae read

Λr: ^(μΛφ) = JJ (r — i + 1 ; 7, j + μ — 1) for i = 1,...,r, (4.2)

/ 1 1\ [r/2]

Br: ®(μΛ{r))=(^;-,r--J JJ <K2/ ,2r-2/>, (4.3)

Π for i = l , . . . , r , (4.4)
7 = 1

[r/2]

Dr: SiμAr-i)) = ®(M(r)) = Π < « 2^' - ! ' 2 r " 2 ^ ' " ! >' (4 5)

2 For g = Ar, the result can also be obtained via the Young tableau for A with the help of the
g-deformed hook formula [15]
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Table 1. Quantum dimensions for λ — μλ{i), g exceptional

g ί ®(μΛm)

E6 1,5 <μ;l,liXμ;4,8>

2,4 Π
7 = 1

3 ft <A*;A7-j> Π <KJ>T-J> Π
7=1 7 = 2 7=5

6 Π <μ;Λll-7><2μ;ll,ll>
7=1,3,4

EΊ 1 Π <μ;j, 17-i><2μ; 17,17)
j= 1,4,6

2 Π<μ;;,ll-7> Π <2μ;;,22-j><3μ; 16,17>
J = l j = 7 , 9 , l l

3 Π <μ;A8-j> Π <μ;Λ8-j> Π <2μ;Λl6-7><2μ;7,9> fl <3μ;j,24-7><4μ; 15,17>
7=1 7=2 7=5 7=10

4 Π <μ;Λ10-;><μ;3,7> Π <2μ;;)2O-; ><3ίί;13>17>

5 Π <KJ,tt-J> Π <2μ;j,26-j>
7=1,2,4,5 7 = 9,13

6 Π <M'J,l*-j>
7 = 1 , 5 , 9

7 Π
7=1,3,4,5,7

Es 1 Π <H
7=1,6,10

2 Π <KJ,W-D Π <2μ;Λ38-7><3μ;28,29>
7 = 1 , 2 , 5 , 6 , 9 j = l l , 1 5 , 1 9

3 Π<μ;;,14-;> fl <2μ;;,28-;> Π <3μ;;, 42-;><4μ; 27,29)
7=1 7 = 9,10,11,13 7=16,19

4 Π <μ;;,ll-;> ft <W,H-7> Π <2μ;Λ22-;><2μ;9,13> f] <3μ;7,33-;>
7=1 7=3 7=7 7=13

Π <4μ;j, 44-;><5μ; 26,29)
7=19,21

5 Π <W.9-j> Π <μ;λ9-j> f[ <2μ;j,18-j><2μ;7,ll> fl <3μ;;,27-;>
7=1 7=2 7=5 7=10

Π <4μ;7 ,36-;> fl <5μ;;,45-;><6μ;25,29)
7=15 7=21

6 Π<μ;j,13-7> Π <2μ;j,26-7> ft <3μ;j,39-j><4μ;23,29)
7=1 7 = 7,9,10,11,13 j=16

7 Π <μ;J,23-J> Π <2μ;j,46-j)
7=1,4,6,7,10 7=17,23

8 Π <μ J,Π-J> ΓΊ <2μ;;, 34-;><3μ; 22,29)
7=1,3,4,5,6,7 7=11,13,15,17

F4 1 <μ;l,7)«μ;f,^»<2μ;8,8>

2 <μ;l,4)«μ;f,J»«μ;2,3»<2μ;4,6>«2μ;f,^»<3μ;7,8>

3 «ίμ;i3»«μ;2,5»,<μ;3,4>«|μ;5,^»<2μ;6,8>

4 i i

1 «μ;l,2»<2μ;3,3>
2 <iμ;
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as well as

I γ\ γι \ min {i,π —2ί — 1}

Br9Dr: @(μΛ(i)) = ( μ ; - - i9-- 1 ) Π < W h n - ί - j - 1 }
\ 2 2 I f-A

(4.6)

where [x] stands for the integer part of x, and where in the last equation n = 2r + 1
or 2r depending on whether Br ^ so(2r + 1) or Dr ̂  so(2r) is considered. For #
exceptional, the analogous results are displayed in Table 1.

Next we have to put μ = k/a] in these formulae (of course only the case k/a}eZ
is relevant). Afterwards we can use the identity

|_xJ = Lfc + ft-x], (4.7)

which is an immediate consequence of the definition (1.7) of [x j . Then many of
the terms cancel between the numerator and denominator of βf9 and in order to
obtain the desired result, one simply has to take a close look at the remaining
factors. The situation is particularly simple in the case of the cominimal fields:
after the implementation of (4.7), no terms are left at all and so 3) — \. More
explicitly, for μ — k the relevant formulae above can be rewritten as displayed in
Table 2, where we use the notation

{a,b}= f [ i . 7 q, {{a>b}}= Π * ~J , (4.8)

modZ modZ/s

with

(4.9)

Table 2. Quantum dimensions of cominimal fields for q arbitrary

Ar l,...,r ΠU/+J-1}

Br 1 {l,2r-2}{.

C, r " ' E M U '
7 = 1

Dr 1 {l,2r-3}{r
[r/2]

r — l , r Y\ {2j— 1,1
7 = 1

1,5

6
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This notation has been adapted so as to apply also to the quantum dimensions
for Uq(g) with q arbitrary.3 Of course, in the case of our interest, q is fixed by (1.8)
to a root of unity, leading to (4.7) and hence to

{α,6} = l, {{a,b}} = l. (4.10)

Thus indeed the quantum dimension of a cominimal field is equal to one.
For non-cominimal fields, inspection of the previous formulae for Q) shows

that after the implementation of (4.7) always some nontrivial terms are left over.
Moreover, the minimal remaining factor in the numerator is ^J_(^ + l)/flIJ while
the maximal remaining factor in the denominator is ul(p,O)] = Lh — l], and
hence for k g; (h — \)dl the quantum dimension is manifestly larger than one.
Further inspection shows that one can easily do better than that: writing
2(λ) = YldUjj/lnij]) with Πj,mj^j{k + h) (this can be achieved with the help of

j

(4.7)) as well as rij ̂  H/_ i and nij ^ m,-. x for all , one readily checks that for k ^ h
one also has nij < Πj for all j , and hence the identity

j | l for 0 < 3 ; < x ^ / ^ (4.11)

implies 2 > 1. For definiteness, let us present two examples: for g = E8 and ί = 5
(corresponding to the maximal possible value of a]) one has

{HlHlHiHiHlH
L2j 2L3J 4L4J 5L5j 6L6J 7L7J 7L8J 6L9J 6L10J 6LUJ 6L12j 5

L13J5L14J4L15J4L16J4L17J4 |_18J3L19J3L20J2L21J2

L22 J2 L23 j 2 L24 j L25JL26J 1.27 J |_28 j |_29 J, (4.12)

and for E8 and i = 7 the formula reads

[HlHlMlHίHίH
3 For arbitrary value of the deformation parameter q, the ̂ -deformed dimension of an irreducible
highest weight module of the quantum group U^(^) is still expressible [13, 14, 15] as in (1.6),
but with [xj replaced by [x\q
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L4JL5JL6j2L7J2L8j3L9J3L10J4LHJ4L12J4L13J4L14J4

L15J4L16J4LΠJ4L18J3L19J3L20J2L21J2L22J2L23J2L24J

L25JL26JL27JL28JL29J. (4.13)

It remains to investigate the quantum dimensions at the corners in the range
k < h. For such values of fc, it is generically not possible to write 3> as a product of
fractions Lw/J/Lw/J e a c h of which is individually larger than one; however, it is
possible to employ instead identities such as

(Ψ-Ή for xύ—^- ( 4 1 4 )
|_ Z J L 2

and

k-\-h
0<y<x^-~ (4.15)

to analyze the formulae further. For exceptional g, the analysis can be shortcut
by implementing the formula (1.6) on a computer. The result is as claimed: there
are no non-cominimal simple currents except for the isolated case (2.4). That the
quantum dimension of the latter field is unity can be read off (4.13): for k = 2, the
formula reduces upon use of lx] = [32 — xj to

= 1. (4.16)

For classical g, the computer analysis can not provide a proof of the statement.4

A close inspection of the formulae for 2 reveals, however, that upon use of identities
like (4.15), one can always derive the desired result. This analysis is lengthy (and
not at all illuminating), and for brevity we just present the simplest examples which
already involve all manipulations that are needed in the general case. First, for
the "spinor" corner i = r of Br, one obtains

k . _ 1 I

where the factors |_xj are written in a form ensuring 0 < Xj rg (k + 2r — l)/2. By
rewriting this as

( 4 1 8 )

one sees that 2{kΛ{r)) > 1 due to (4.11) and (4.15).

4 It does, however, serve as a useful check of the assertion. We have performed this numerical
check for all algebras up to rank 200 (this calculation required roughly 300 h of CPU time)
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Next, consider the "adjoint" corner i = 2 of so(ή). In this case after cancellation
of numbers appearing both in the numerator and in the denominator one is left with

L/J
(4.19)

which is (except for n = 5, but in this case the result is easily checked numerically)
manifestly a product of factors that are larger than one.

As a last example, take ί = 1 for g = Cr. After some trivial cancellations, one
obtains

( 4 2 0 )

One deduces that this is larger than one, e.g. by substituting \_^(k + r)\ L Ĵ = %\_1 J
in the denominator and taking into account that \_r/2] = sin(π/5) > | .

This concludes our proof of the classification of simple WZW currents. Note
that the proof clarifies to some extent the presence of the exceptional simple current
(2.4). Namely, in order to have 2 = 1, the numerator and denominator of (1.6)
have to be equal. This happens generically iff each factor in the numerator cancels
a factor of the denominator; exceptions from this rule require a rather nontrivial
numerical coincidence, and precisely in the case of (2.4) this requirement is satisfied,
as made explicit in (4.16).

Let us finally add a few further observations.

1. The quantum dimensions are invariant under the automorphisms ω of the
extended Dynkin diagram [15, 11], so that in particular

( 4 2 1 )

(recall that aω^ = a]). From this symmetry it follows immediately that the
cominimal fields (which are precisely the fields that are related to the identity
primary field by such an automorphism) have 2 = 1, but also e.g. that 2(kΛ(i)) =
2(kΛ{r_i)), i = 1,...,r - 1, for Cr, and @&kΛ{ϊ)) = ^(|/cΛ ( r_0), ί = 2,...,r - 2, for
Dr. The latter relations are not manifest in formulae such as (4.4) with μ = k, but
by suitable rearrangement of the various factors one can verify that they are indeed
fulfilled.

2. The quantum dimensions at the non-cominimal corners are actually larger than

two except for some cases at level one and two, namely: Q) = y/ϊ for Λ(r) of Br at

level 1, for Λa) of EΊ at level 2, and for Λ(1) of E8 at level 2; 2 = 2 for Λ(ί),

ί = 1,..., L of so(n) at level 2, and for 2Λir) oϊBr at level 2: 2 = 2 cos ί I

for Λ(1) and A(r^t) of Cr at level 1.; 2 = 2cos(π/5) = i ( l + s/S) for Λ(1) and Λ(5)

of Eη at level 2, for /i ( 4 ) of F4 at level 1, and for Λ ( 2 ) of G2 at level
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1 : 2 = 2 cos (π/7)for Λ(ip ί = 2,4,6 of £ 6 at level 2; 0 = 2 cos (π/9) for Λ ( 1 ) of G2 at

level 2; ® = 2cos(π/ll) for Λ(8) of £ 8 at level 3, and for Λ(ί) of F4 at level 2.

(Consider e.g., the formula (4.19): for /c = 2, one has ®(Λ(2)) = L4J/|_2J ^ - 2

which is equal to two due to (4.14).) L -I

3. For g — Cr, one can show that S)(kΛ{i)) is monotonically increasing with i for

ΐ = l , . . . , - . Together with the symmetry property ^(/c/l(ί)) = ^(/cΛ(r_0), this

may be used to reduce the proof of the inequality Q) > 1 for i = 2,..., r — 1 to that

for i = 1.

4. For fixed algebra and fixed value of ie {1,..., r} corresponding to non-cominimal

fields, ®(fc/l(i)/αΠ is monotonically increasing with the level k. We have not been

able to find a general proof of this fact, but the numerical evidence is convincing.

Acknowledgements. It is a pleasure to thank A. N. Schellekens and P. van Driel for interesting
discussions.

References

1. Schellekens, A. N., Yankielowicz, S.: Nucl. Phys. B327,673 (1989); Nucl. Phys. B334, 67 (1990)
2. Knizhnik, V., Zamolodchikov, A.: Nucl. Phys. B247, 83 (1984)
3. Gepner, D., Witten, E.: Nucl. Phys. B278, 493 (1986)
4. Fuchs, J., Gepner, D.: Nucl. Phys. B294, 30 (1987)
5. Forgacs, P., Horvath, Z., Palla, L., Vecsernyes, P.: Nucl. Phys. B308, 477 (1988)
6. Verlinde, E.: Nucl. Phys. B300, 360 (1988)
7. Moore, G., Seiberg, N.: Phys. Lett. B212, 451 (1988)
8. Dijkgraaf, R., Verlinde, E.: Nucl. Phys. B (Proc. Suppl.) 5, 87 (1988)
9. Kac, V. G., Peterson, D. H.: Adv. Math. 53, 125 (1984)

10. Kac, V. G., M. Wakimoto: Adv. Math. 70, 156 (1988)
11. Furlan, P., Ganchev, A. Ch., Petkova. V. P.: Nucl. Phys. B343, 205 (1990)
12. Fuchs, J., van Driel, P.: Nucl. Phys. B346, 632 (1990)
13. Pasquier, V., Saleur, H.: Nucl. Phys. B330, 523 (1990)
14. Alvarez-Gaume, L., Gomez, C, Sierra, G.: Nucl. Phys. B330, 347 (1990)
15. Fuchs, J., van Driel, P.: J. Math. Phys. 31, 1770 (1990)
16. Fredenhagen, K., Rehren, K. H., Schroer, B.: Commun. Math. Phys. 125, 201 (1989)
17. Gepner, D.: Phys. Lett. B222, 207 (1989); Moore, G., Seiberg, N.: Phys. Lett. B220, 422

(1989); Lerche, W., Vafa, C, Warner, N.: Nucl. Phys. B324, 427 (1989)
18. Schellekens, A. N., Yankielowicz, S.: Int. J. Mod. Phys. A5, 2903 (1990)
19. Ahn, C, Walton, M.: Phys. Rev. D41, 2558 (1990)

Communicated b>\K. Gawedzki




