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Abstract. To each gauge equivalence class of both local and global framed (in the
sense of Donaldson) self-dual solutions with the gauge group U(r) there is related
the unique canonical initial condition (in the sense of Takasaki) and in this way the
gauge freedom is eliminated. A geometric interpretation is given and consequently
the complete transcription of the ADHM construction into the inverse scattering
formalism is derived. As an application, an injection holomorphic mapping of the
instanton moduli space into a finite-dimensional complex vector space is described
and the loop group action on the transition functions is discussed. The results
suggest the possibility of a new description of the framed instanton moduli spaces
directly as algebraic sets.

1. Introduction

It is well known that the self-dual Yang-Mills equations admit two different
approaches: one initiated by Ward [1] and based on the Penrose twistor
transformation and the other, going back to Yang [2], Belavin and Zakharov [3],
based on the inverse scattering method. The former one, insisting on global
methods (cf. [4]), has succeeded in the ADHM construction [5], The inverse
scattering approach is essentially local. It insists on expressions in local
coordinates and consequently it enables one to apply some more general methods
such as the Backlund transformation [6, 7], the construction of an infinite algebra
of symmetries due to Dolan [8] and Chau, Ge, Sinha and Wu [9] and the solution
of the initial value problem due to Takasaki [10].

This paper addresses the initial condition in the sense of Takasaki and its
geometric interpretation in the global case. The starting point is a more detailed
discussion of the gauge transformations in the local formulation. The main point is
to eliminate completely the gauge freedom. The geometric interpretation suggests
a new way to describe the framed instanton moduli spaces (in the sense of
Donaldson [11]) directly as algebraic sets. We recall that in the ADHM
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construction a finite-dimensional Lie group still remains as a reminiscence of the
infinite-dimensional group of gauge transformations. However, this problem here
is only suggested and illustrated by an example but not completely solved.

More precisely, this paper aims to present the following results:
(1) In the inverse scattering formalism, there is stated explicitly a condition which
enables one to distinguish a special "canonical" solution in each gauge equivalence
class (Theorem 3.3). Particularly, one can introduce the notion of the canonical
initial condition. Since the initial value problem has the unique solution, the
gauge freedom is eliminated in this way. It follows that the space of gauge
equivalence classes of local solutions has an extremely simple structure; it can be
identified with R0 0 (relation (3.16)). A gauge transformation resulting in the
canonical solution is described explicitly (relations (3.14), (3.18)). As a corollary,
one gets an embedding of the framed instanton moduli space into 1R00 (Proposi-
tion 3.4 and the remark following it).
(2) In the twistor framework, we describe a geometric construction relating the
canonical initial condition to a distinguished and again called canonical transition
function (Chap. 4). This means that to each gauge equivalence class of global
framed instanton solutions there is related the unique matrix valued function on
Ψ3 with some special properties (Theorem 4.4; Proposition 4.3 and relations (4.3),
(4.4)). Almost all deliberations associated with the construction remain valid even
in the more general case of framed holomorphic vector bundles on IP*, n^.2.
(3) Using this construction, one is able to obtain explicit expressions for the
canonical initial condition of the ADHM instanton solutions [relations (5.10)]
and consequently to give the complete transcription of the ADHM construction
into the inverse scattering formalism (Theorem 5.3). To the author's knowledge,
despite the fact that the ADHM construction has become classical, such a
transcription was nowhere derived and published yet. Hopefully, it will enable one
to check and further develop some previous concepts such as the Backlund
transformation.
(4) In Chap. 6, we make use of the one-to-one correspondence between the moduli
space of framed instanton solutions on S 4 and the moduli space of framed
holomorphic bundles on P2((C) which has been proved by Donaldson in [11], The
latter space is a complex manifold and we describe two ways of its holomorphic
embedding into a finite-dimensional complex vector space (Propositions 6.2,6.3).
The latter embedding opens, in principle, the way to a new description of the
framed instanton moduli spaces. We are able to give some more concrete results
for the U(2) - gauge group (Proposition 6.4).
(5) Following Crane (cf. [12]), we consider in Chap. 7 the loop group action on the
instanton transition functions. Applying the results of Chap. 3, we discuss the
infinitesimal action on the one-instantons. The loop group action is gauge
dependent and well defined on the local transition functions provided the reality
condition (7.8) is satisfied. But the infinitesimal action is tangent to the embedded
one-instanton moduli space only under some special conditions and, if it is the
case, it coincides with an infinitesimal gauge transformation.

2. Preliminaries and Notation

Throughout the paper the gauge group is assumed to be U(ή, 4^2; and it is well
known that it can always be reduced to SU(*) in the global case. Further, *
designates the rank of the holomorphic or instanton bundle under consideration
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and c = c2 designates its topological charge (instanton number) equal to the second
Chern class.

Let <C4 be a 4-dimensional complex vector space with a fixed (standard) basis
{el9 e2, e& £4} and, consequently, with the coordinates *l9 #2, *3> *4> and also with
the real structure

This real structure is transferred to the projective space P 3 = P((C4) as an anti-
holomorphic involution denoted again by τ. In what follows, all τ-invariant
objects are referred to as real.

The manifold of real lines in P 3 is the sphere S4. Since each point in P 3 lies on
the unique real line, we have the projection π:P 3-»S 4, the so-called Penrose
transformation. Let <E2 = (E2(C4) be the Grassmann manifold points of which are
lines in P 3 , and F l t 2 = F l t 2(<C4) be the flag manifold points of which are the pairs
(β, if) G P 3 x <G2, Q e J£?. The real structure τ is again naturally transferred to G 2

and to F 1 > 2 . Relate to each point from P 3 the unique real line containing it to get
an embedding of P 3 into Wx 2. The sphere as the manifold of real lines in P 3 is
embedded into (G2; it is a real submanifold of <G2 consisting of the real (τ-invariant)
points. Summing up, we have the following standard commutative diagram, the
embedding are real analytic:

P 3

PΓi

(2.1)

I I4

Denote by P 2 the two-dimensional projective space embedded into <G2 and
consisting of those lines in P 3 which contain the point P 0 = span^4. Clearly,
S 4 n P 2 = {ίz0} is a one-point set. The manifold pr 2 " 1 (P 2 )CF l ϊ 2 is the blow-up of
P 3 at the point P o and it will be denoted by P3.

We distinguish the following objects in P 3 :
the points

P o =
the real lines

•S?0 =

the planes

The real lines JSf0, S£^ if considered as points in S4, will be denoted by a>09 a>^ (or 0,
00), respectively.

The restriction %\H^S£m^&\{oo\ is one-to-one and it induces a complex
structure on S4\{oo} which we shall regard as the standard one. We choose the
complex coordinates ^, x on S4\{oo}^C2 via the identification

H^ 3

and we introduce the coordinates

on P 3 Woo. Since for each point Q e P3\<^00 the plane Sejl intersects the line «5f0 i
the unique point, we have the real analytic diffeomorphism
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Choosing the coordinate Λ, = #3/#4 on J*?o, we have the transformations

y=(ίΓ+«/(i +ζζ), *=foΓ-Q/(i HI), λ=ζ,

and
ξ = λp — x9 η = χz + ̂ , (2.2)

So one can express the functions on <C3 in the coordinates ^, 4;, λ or ,̂ 77, £.
Provided the latter ones are used, the corresponding function will be underlined.

According to the fundamental theorem due to Atiyah, Hitchin and Singer [4],
one can relate to every self-dual gauge field defined on a neighborhood °U of the
origin ^ 0 e S 4 a holomorphic rank-4 vector bundle F on π~γψίί\ holomorphically
trivial on all real lines J^, a> e %, and with the additional structure - a holomorphic
isomorphism σ: τ*F-*F* inducing a positively definite Hermitian structure in the
space of holomorphic sections H°(J^, F | JSfJ, again for all a>e%. Moreover, this
correspondence is invertible and one-to-one, up to equivalence.

We shall restrict ourselves to the framed instanton bundles with a distin-
guished orthonormal frame on the line J5f0. The framed instanton moduli space will
be denoted by M(ι9c) and ΘM(t,c) designates the moduli space of framed
holomorphic bundles on IP2(<C). The restriction from IP3 to H0^Ψ2 induces a
natural one-to-one mapping M(t9/>)->ΘM(t,c) [11].

To any framed instanton bundle F there corresponds a gauge equivalence class
of germs of local transition functions. In more detail, let fyl be an open
neighborhood of the origin Oe(C2. Then the set π " 1 ^ ) can be identified with
f χj?o and the real structure takes the form τ:(a>9λ)\->(&, —ί/2). Choose a
holomorphic frame {ol9 ...,^} defined on <%x3tf+, with Jf+ being an open
neighborhood of the unit disc {λ; \λ\^ί} in if0, in such a way that it coincides with
the distinguished frame on i f o n(^x 3ίP+). Apply the isomorphisn^σ"1 to the
frame dual to {̂ l5..., dj to get a holomorphic frame of the bundle τ*F on % x «^+

and so a holomorphic frame {3ί9..., <JJ of the bundle F o n t x f̂_, Jf_ = τ(Jf+).
The desired transition function G = (Gjk) is defined on % x TT, with TT = j f + n Jf _
being a neighborhood of the unit circle in j£?0, by the relation ^k = Σ^^fijh a n d it
has the properties:

(i) G(0,λ) = l,
(ii) G(ξ, η, 0 is holomorphic,

(iii) G(a>9-ί/λy = G(a>9λ).
On the contrary, every matrix valued function G satisfying (i-iii) is a transition

function of a local framed instanton bundle F. The distinguished trivialization on
J£o is induced by the standard basis in <C*.

The space of germs of local transition functions fulfilling (i-iii) will be denoted
by ©M. The above described correspondence can be established even if all reality
conditions are omitted. This means that we do not insist on the existence of the
isomorphism σ as well as on the property (iii) of G, and, of course, the distinguished
frame is not required to be orthonormal. The larger space of germs of local
transition functions satisfying only the conditions (i), (ii) will be denoted by ©.

Let Γ(&,λ) be a matrix valued function on %xi^ such that Γ(ξ,η,ζ) is
holomorphic and Γ(0,λ) = l. Then the corresponding gauge transformation takes
the form

Gfo λ)^Γ{^ - 1/λf Gfo λ) Γ(π, λ). (2.3)
The objects we are dealing with are real analytic in some neighborhood of the

origin in C 2 and hence they can be locally extended from C 2 to <C4 as convergent
power series in the variables p9 x9 jj9 x. In what follows, the symbol a> stands for four
complex variables y9 x9 y9 x in this order.
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Let S designate the subspace of the vector space

§T(*,CW) x § T ( Λ C ^ , λ}) x gϊfeC[^, A"*})

consisting of those matrices (J, W, W) of formal power series which satisfy

WfaO)=frfa<x>) = l, (2.4)
J(0) = W(09λ)=fr(0,λ) = l, (2.5)

and solve the equations
1 1 (2.6)

i, O. (2.7)

We shall write

J = l J = l

where W^), tf^) e <jT(*, C[^]) and W;{0) = W,{0) = 0. An involution denoted again
by σ acts on S:

(JM, Ŵ fe λ\ W& λ))&(J(a>)\ {W& - ί/WΓ1, (Wfa - l/I)1)"')

We assume that the Hermitian conjugation includes the formal complex
conjugation of the variables ^, #, ^, ^, A, λ (c.c. y = ̂ , c.c. ^ = ̂ , etc.). The
σ-invariant subspace consisting of those (J, W, ίV) which fulfil

J{a$ = J(a>), W{cc,λ)-^ = W{cc, - 1/I)t (2.8)

will be denoted by 6 t t.
The gauge transformations

V " ^ ( ^ 0),

λ) ( ' ]

make sense on SM provided Γ e §T(̂ , C[^, A]) satisfies

Γ((U) = 1 (2.10)
and

(Aδ- - 3 J Γ = (λδ5 + d^)Γ = 0. (2.11)

The last condition means that

(2.12)
( ί L θ g [ [ / ] )

For G G ©, we choose the Birkhoff decomposition in the form

G(a>9 λ) = (J(π)W(π, λ)) ~x W[a>9 λ) 9 (2.13)

where the matrix valued functions W(a>9 λ) and W(a>9 λ) are holomorphic in λ on
neighborhoods of the discs {|Λ.|gl} and {|A~ 1 | ^ 1}, respectively, provided a> is
close enough to 0, and they are normed by W(a>9 0) = W{a>, oo) = l^It is well known
[13,14] that in this way we get the embeddings © c ® and (SMC SM. In fact, this is
the main link between the global approach and the local approach.
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3. The Canonical Initial Condition

One can exclude J from (2.6), Jd^J~ί = dxW1, Jd-J~1=-d^Wu to get

dxW~λ(δxWί)W-λd-W=d^W-λ(d^Wί)W+λd-xW==O. (3.1)

Takasaki's approach provides a method how to solve the equations (3.1) in the
realm of formal power series, provided an initial condition

A) (3.2)

is given. In accordance with (2.4), (2.5), the initial condition W{0) e gT(̂ , C[^, x, λj) is
required to fulfill

P0%O)J0°>(O(U) = 1. (3.3)

It is known [10] that the initial value problem has the unique solution
unambiguously determined by the condition

' ] ) . (3.4)

This means that the left-hand side does not contain positive powers of λ. We can
complete this result.

Proposition 3.1. It holds

Wλ), (3.5)

where W ίsnormed by \V(cc, oo) = l and (J, W, W) solve (2.6), (2.7), and (2.5), i.e.,
(J,W,W)e&.

Proof. In fact, we shall prove also Takasaki's result in an alternative way. Put

Then H(0, λ) = l and the mth homogeneous term Hm, in the variables cc does not
contain powers of λ lower than λ~m. Consequently, H{a>,λ) is well defined.
Moreover, the fojlowing assertion is valid:

For any R e gl(̂ , C[a?|) there exists the unique solution X e gl(̂ , C[a?, λj) to the
follow problem: ^

{) and

Actually, write X in the form

k=ι

with the terms Xκ being fc-homogeneous in the variables a>, to get the relations

Xk+ Σ HjXt-j.eflfaClscλ-1}), k^U

which enable one to compute recursively and together with the condition X(z>, 0)
= R(a>) unambiguously all terms Xkt.

Now we can finish the proof. The condition (3.4) together with W(0,λ)
= W(a>, 0) = 1 has the unique solution W and it can be easily seen that this W also
fulfills the initial condition (3.2). Now decompose

c, λ) = J{π)W{cc, λ),
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with the normalization W(a>, oo) = l. Clearly,

(dM-λdJH = (
and hence

At the same time, it holds

and

But {dxJ~\cc))W{a>,λ) fulfills the same relations as {dz-λd^){J-\cc)W{a>,λ)) and
so, according to the above assertion, we have the equality

Analogously we get

i.e., Eq. (2.6) are satisfied. Further,

(dx - λd-)W& λ) = (dj ~ \*>))W{^ λ)H(π, λ) = (dj - \π))J{*>)W{*>, λ),

and analogously,

(3 r + λd-jWfa λ) = (dyJ ~ \a>))J{a>)W{^ λ).

Hence Eq. (2.7) are satisfied as well. The rest of the proof is evident. •

As a rule, the gauge freedom in the inverse scattering approach is used to get the
self-dual equations in the form (2.6), (2.7). But there still remains an infinite-
dimensional group of gauge transformations preserving these equations. We shall
show that, owing to this fact, one can distinguish a special solution in each gauge
equivalence class. On the other hand, in this way the gauge freedom is eliminated
completely.

For ΓegT^Cf^Λ]) put Γ(O)(^,^,A): = Γ(^,^0,0,A), and suppose the con-
ditions (2.10), (2.11), (2.12) to be valid. Then

*, λ) = Γ(λy, λ*, λ) = 1 + £ J}«V *)λJ. (3.6)

The relation (3.6) has the following consequences: Γ}0)(^,z) is a polynomial of
degree equal at most to j and, since Γ(0)(0,0, λ) = Γ(0, λ) = 1, the absolute term is
zero. Moreover, (3.6) implies that, knowing Γ(0), we are able to reconstruct Γ and
hence Γ as well.

Since Γ«%, *, 0) = Γ(0,0,0) = 1 and according to (2.9), the gauge transfor-
mation of the initial condition takes the form

Again we put

, 4),Σ
and according to (3.3), J^(0)(0,0) = 0. The best we can do is to transform off all
summands in Wj0) with degrees less than or equal toj. Moreover, the relation (3.7)
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implies that Γ ( 0 ) with this property is unique and, according to the above
discussion, Γ is unique as well. Summing up, we claim that

For each (J, W9 W) e £>M there exists the unique gauge transformation Γc such that
) having been transformed satisfies

(y, z)j+*), j e N , (3.8)

where (^, z)j+1 is the (1 +7*)th power of the ideal (^, x) C C [ ^ , χ\ generated by y9 x; in
other words, the formal power series WjO)(^,x) does not contain summands of
degrees less than or equal to j .

Moreover, due to the uniqueness, this condition eliminates the gauge freedom.
The unique gauge transformation Γc will be called canonical and we shall derive an
explicit formula for it. We shall need the following

Lemma 3.2. Assume that (J, W, W) e S and

J(y, *, 0,0) = W{^ x, 0,0, λ) = 1. (3.9)
Then

where (^, x) is now an ideal in C[a?] generated by ̂ , x9 and

Proof (i) We have to show di-d{Wk(^,z,0,0) = 0 for 0 ^ ϊ - b ; = fc. According to the
assumption, this assertion is valid for i=j = 0. The Eq. (2.7) are equivalent to

Put ^ = z = 0 in these relations to verify the assertion for fc = l. Further we can
proceed by induction in k. It suffices to differentiate these equations by
di£~1d{ or by δ ^ " 1 , respectively.

(ii) According to Proposition 3.1, the left-hand side in (3.10) equals to J'(a>)W\cε, λ)
with (J', W, W) e S. It is sufficient to show that the initial condition (3.9)
determines J, W unambiguously. But this is an immediate consequence of the
following two easily verifiable assertions:

Let (J, W) and (f, W) solve (2.6) and satisfy the corresponding boundary
conditions in (2.4), (2.5). Then J' = JX with

y,*}), X(0) = l.

Let (J, W), (J, W) solve (2.7) and satisfy the corresponding boundary conditions in
(2.4), (2.5). Then

with
Y{ξ,η,ζ)e-φXlξ,η,ζ-'}), 7(0,0,0 = 1. D

The following theorem contains the main information.
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Theorem 3.3. Let (J, W, W) e S u and J, W fulfill (3.9), i.e.,

Then Wm satisfies (3.8), i.e.,

and, moreover,

, - Iy, - I/I? = P 0 % , *, λ). (3.12)

On the contrary, let W(0) satisfy (3.8), (3.12). Then there exists the unique solution
(J, W, W) e S w with W(0) being the initial condition for W and, moreover, this solution
fulfills (3.9).

Remark. W(0)(λz, — λ^, — 1/X) makes sense owing to (3.8). The relation (3.12)
restores the reality condition which was abandoned in Takasaki's approach.

Proof (=>) The validity of (3.8) follows from Lemma 3.2.ad(i) and from the equality

,λyγ = w(o, o, y, *, - yxy.

By the assumption, the equality (3.10) holds. Set ^ = ̂  = 0 in it and make use of
(3.9), (2.8) to get

Now, to prove (3.12), it is sufficient to replace λ by — 1/Xand to perform Hermitian
conjugation and inversion of both sides in the last equality.
(<=) We relate to W{0) a solution (J, W,W)e<5> according to Proposition 3.1. From
(3.12) it follows that

The kth homogeneous term in the variables ^ in W{0)(^ — λ'^^^z + λ'1^^)
contains powers in λ not lower than ( —fe + 1) and not greater than (k — 1).
Consequently, we are allowed to multiply Eq. (3.5) from the right by this
expression. So we have

Replace λ by — 1/Xand conjugate and invert both sides in this equality to find that
(W(cε, — 1/X)1")"1 is another solution to the initial value problem with the initial
condition W{0\ By uniqueness, we have

and so

Hence (J,W,W)e&u. Validity of (3.9) follows immediately from (3.5) and the
uniqueness is guanranteed by Lemma 3.2.ad(ii). •

Definition. A solution (J, W, W) e SM will be called canonical provided it fulfills (3.9).
The subspace of canonical solutions will be denoted by S c. An initial condition
W(0) will be called canonical provided it fulfills (3.8), (3.12). The space of canonical
initial conditions will be denoted by ΪB.

Hence W(0) e © iff it holds

Σ Σ Σ $ y
fc=ln=k+l j=0

(3.13)
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where

Hence ΪB can be identified with R0 0 since each point from ΪB corresponds to a
sequence of complex matrices J Ί ^ , O^j^n, l^k<n, and the condition (3.13)
simply excludes the superfluous real variables.

Suppose (J, W,W)e <SM. We introduce a gauge transformation Γc(ce, λ)
— z9 λx + ̂ , A), where

U -ξ,O"^(O,O?f/, - £ ) . (3.14)

Having performed this gauge transformation, we get another solution
(Jc, W& {^)GSM. From (2.9) it follows that Jc, Wc satisfy (3.9) and, according to
Theorem 3.3, the initial condition Wc

(0) fulfills (3.8). Hence

The relation (3.14) represents the announced explicit form of the canonical gauge
transformation.

This means that we have just constructed the projection

prc: S U ^S C :(J, W9 W)^(JC, Wc, Wc), (3.15)

which, moreover, induces a one-to-one mapping of the quotient QJgauge
transformations onto Sc. According to (3.9), (2.8), Γ^(ζ,η,ζ) = l provided
(J, WJV) e S c and hence the projection prc reduces to the identity mapping on
<SC C SM. According to Theorem 3.3, the mapping SC->ΪB: (J, W, W)t-+ W{0) is one-
to-one and so we have

Stt/gαwge transformations ̂  S c ^ ΪB ̂  R 0 0 . (3.16)

In other words, the gauge equivalence classes of local self-dual solutions are
parameterized by the points from the space $B^R°°.

Denote by ©c C ©tt for the subspace of germs of those transition functions
G = (J,Wy1W for which

By restriction, we obtain the projection

Ϊ (3.17)p c i l c ( , O c ,
w h e r e

Gc(ξ, η, ζ) = W<°\ξ/ζ, η/ζ, ζ)W{η, - ξ, 0,0, - ίfflj(η, - ξ, 0,0)*. (3.18)

Again the projection prc induces a one-to-one mapping

(Sj'gauge transformations = ©c. (3.19)

Besides, one has a simple relation between the canonical transition function Gc

and the canonical initial condition Wc

{0):

Gc(ξ, η, ζ) = Wt°\ξ/ζ, η/ζ, 0 , i.e.,

λ-% + λ-ι^λ) (' ]

and vice versa

*,λ). (3.21)

The following proposition suggests that these results can have an interesting
application also in the global case.
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Proposition 3.4. The isomorphism class of a global framed instanton bundle F on P 3

is unambiguously determined by its local restriction toπ~ 1(^) with °ll being any open
neighborhood of the origin &0 e S4.

Proof The Gram matrix of the Hermitian form, if expressed in a holomorphic
frame, is real analytic. Owing to this fact, the distinguished orthonormal frame on
S£Q can be extended as an orthonormal real analytic trivialization {tu ...,/J of F
over 1P3\J ÔO in the following way. The sections /,- are defined on the plane H ^ ^
^ C 2 as horizontal lifts over the segments P^Q, QeH^&n, and they are
extended as global holomorphic sections over each real line. Using this triviali-
zation, we get a connection form si on <C2=R4 with the curvature being self-dual
and with the finite topological charge equal to c2{F). At the same time, si depends
only on the isomorphism class of F and is real analytic and hence unambiguously
determined by its germ at the origin. Using now Uhlenbeck Theorem [15] to
remove the singularity at oo and applying the Penrose twistor transformation, we
conclude that si determines F uniquely up to isomorphism. •

It follows that, having in mind (3.16), (3.19), we can relate to each isomorphism
class a unique point from the space ΪB. In this way we get an embedding of the
framed instanton moduli space M(ι9c) into ΪB^R 0 0 . The explicit expressions will
be given in Chap. 5.

4. The Geometric Interpretation

Despite the local way of its definition, the canonical initial condition can be shown
to have a clear geometric interpretation in the twistor framework. The global
embedding of S 4 into <G2 and the pull-back of the instanton bundle prf F o n F 1 2

corresponds to the local analytic extension from C 2 to <C4. The initial condition,
i.e., the local restriction to the two-dimensional subspace C 2 C (C4 determined by
the equations y- = H = 0, has a counterpart on the global level in the restriction from
<G2 to P 2 and from ¥lt2to P3. Actually, in the local coordinates y, *, £, # on (E2 at
the point cc0 introduced via the mapping

't h Id ^ ' *' ̂ ' ^ t

S4 is locally determined by the equations

and Ψ2 is locally determined by the equations

The main goal of this chapter is to describe a geometric construction of the
canonical transition function. This construction and its consequences can be
formulated in a more general setting.

Notation. Let us consider the ̂ -dimensional projective space IP*, n ̂  2, with a fixed
line j£?0 and a framed holomorphic rank-4 vector bundle F on P*, * ̂  2, with a
distinguished holomorphic trivialization on J2?o. For such vector bundles, the first
Chern class cx(F) vanishes and, according to Grothendieck's Theorem, the vector
bundle decomposes on each line S£ cP* as a direct sum of line-bundles:
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Hence iγ ^ 0 and iγ = 0 iff F is holomorphically trivial on j£f. The set Sf¥ of jumping
lines in P*, i.e., consisting of those lines on which F is not holomorphically trivial, is
a proper closed analytic subset in the Grassmann manifold C 2 ( ^ + 1 ) (cf [16],
Chap. I). Fix two different points P o , P ^ e S£Q and denote by ^ 0 , 5 ^ the sets of
jumping lines passing through P o and P^, respectively. Let Sing(P0)clP* be the
union of all lines belonging to £f0, analogously define Sing(P00). The set consisting
of those lines in Ψ" which contain the point P o (respectively P J can be identified
with the {n— l)-dimensional projective space and its subset ^ 0 (respectively ί^) is
then proper closed and analytic. Consequently, Sing(P0) and SingίP^) are proper
closed analytic subsets in P*.

To get more information about jumping lines, we adapt the following theorem
due to Barth by generalizing it to higher ranks. Denote by & the locally free rank-*
sheaf of germs of holomorphic sections in F. Recall the standard diagram:

" 1,2

Theorem 4.1. The set ίfτ of jumping lines is an analytic subset in the Grassmann
manifold QJ2 of codimension one everywhere. The sheaf δ: = Rίq^p^(^r(—ί)) (the
first direct image of the pulled-back sheaf p*(tF{ — 1))) determines in G2 a divisor 3)¥

the degree of which is equal to c2(F) and the support of which coincides with ίfF,
supp Q)Έ = supp δ = 6fF.

Proof In [16], Chap. II and 2.3, there is given a proof for the case * = rankF = 2.
The main part of this proof can be reproduced almost verbatim also for higher
ranks. We shall not do this and notice only the last part in which the degree of the
divisor is computed. Hence we assume the following facts having been proved:

The sheaf S determines unambiguously a divisor 3)Έ in C 2 and supp^ F =

F

It is sufficient to verify the equality άegS>F = c2(F) only for the dimension n = 2
(and that will be assumed up to the end of the proof).

In this case, there exists a resolution

0 ^ φ Θ(kd-+ 0 &(mj)^άF(-1)^0, (4.1)

with kt, nij < 0.
The line bundle corresponding to the divisor <2>Ψ is

where [S>F] = det£ 2®det£ί,

Finally, e1{R1q^p*Φ{kd)= -k(k +1)/2.

Now we can apply the Whitney formula to the resolution (4.1):
c1(F)=0, and hence

= Σ nψij- Σ k,kj+*Σkt.
><j i<j
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Finally, we can compute

= - Σ ktk

D

Corollary 4.2. Lei P" C P 1 x F 1 ~ x fo ί/ιe blow-up of Ψ" at the point P o . Ψ" ~x is here
considered as a submanifold in <G2 consisting of those lines in P* which contain the
point P o . Then ί^0: = ^FnΨn~1 is an analytic subset in Ψn~1 of codimension one
everywhere and the sheaf S0\ = Rι pr 2^ prf (#"( — 1)) determines inΨ"'1 a divisor @)Q

of degree c2{F) and such that e9
9

0 ^

Proof Since ^F C (G2 ^
s °f codimension one everywhere, the codimension of 5 0̂

= ί ^ n P " " x is at most one. But £f0 is a proper closed analytic subset in P ~x, and
hence it is of codimension one everywhere, too. Since supp^F = ί^, ^ F cuts in
IP 2 " 1 a divisor ^ 0 such that

Now one can make use of the following diagram

(4.2)

©2
and apply the base-change theorem (cf. [17], Sect. 9) to get S0 = S\Ψn~ι and

1consequently supp(fo = (supp^)nIP~1 = e^
?

o. Hence the divisor @0 is unam-
biguously determined by the sheaf So. •

Corollary 4.2 takes into account also the multiplicity of the irreducible
components of the algebraic set Sf0. Let ^ 0 : = pr1(pr2"

 1(@0)) be the divisor in P*
(see (4.2)). Then deg^ 0 = ̂ 2(F) and supp^ 0 = Sing(P0). Define analogously Θ^.
Again, dQg§o0=^2(F) and supp^0 0 = Sing(P00).

Construction. Owing to the distinguished frame on J5f0, we have a fixed basis in the
fibre over the point P^. Extend this basis as a holomorphic trivialization on each
line containing P^ and not belonging to 5^. We get a holomorphic frame
{ou ...,^J defined on the open set ^ 0 = P>2\Sing(P00)9P0. Construct analogously
the holomorphic frame {3l9...934} on the open set ^ 0 0 = P'\Sing(P0)9PQ0. The
corresponding transition fucntion is defined on ^ 0n^ 0 0=Pw\(Sing(P 0)
uSing(PJ) and it will be denoted by GF = (Gjfc); ^ = Σ^GJk

According to Chow's Theorem, all the sets £f0' 5^, Sing(P0), SingίP^) are
algebraic varieties in the corresponding projective spaces, and owing to a
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generalization of the same theorem, F is an algebraic vector bundle on IP* (cf. [18],
Sect. 1.3). GF should be a matrix of meromorphic functions on IP* and hence,
according to the same principles, a matrix of rational functions on P* with the
poles on the algebraic set Sing(P0)uSing(P00). By the construction, GF is identically
equal to 1 on the line f̂0, and so it has the following form (in the homogeneous
coordinates 3 = (#i, ...,#J on P*):

* (4.3)

where / 0 , / ^ are homogeneous polynomials and ̂ (3) is a matrix of homogeneous
polynomials with the degrees equal to deg(/0) + deg(/00). Further, ̂ (3)Ξ=0 on the
line J£?o and the algebraic set ^0(δ) = 0 (respectively /oo(3) = 0) coincides with
Sing(P0) (respectively Sing^)), up to multiplicities. Respecting Corollary 4.2, we
conjecture:

The polynomials /0(3)> /oo(δ) l M (4-3) can be chosen in such a way that the
corresponding divisors (/0) and j ^ ) coincide with 3)0 and J ^ , respectively. Then
d d ( )

The explicit results derived in the next chapter for instanton bundles support
this conjecture.

GF can be shown to be unimodular.

Proposition 4.3. det GF = 1.

Proof. The line bundle detF on Ψ" is holomorphically trivial. The choice of a frame
in F on the line J£?o induces a holomorphic frame in detF on =Sf0 which extends to a
holomorphic trivialization over P* in the unique way. From the construction of GF

as a transition function it follows immediately that det GF is a transition function of
the bundlet detF and it is identically equal to 1 on ̂ on^α> a n d hence everywhere
onP. •

By the construction, the matrix function GF depends only on the isomorphism
class of the original framed vector bundle F. But the crucial property of GF is that it
characterizes F completely.

Theorem 4.4. The isomorphism class of a framed holomorphic vector bundle F onΨ"
is unambiguously determined by the matrix valued function GF.

Proof GF, if considered as a transition function, determines the framed vector
bundle F up to isomorphism over the open set ^ u ^ = IP^SingίP^nSingίP^)).
The analytic sets Sing(P0), S i n g ^ ) have dimensions equal to (n — \) and their
intersection has dimension equal at most to (n — 2).

Actually, provided the dimension of the intersection equals {n—\\ the analytic
sets Sing(P0), Sing(P^ Sing(P0)nSing(P00) have the same dimensions and so they
have at least one common irreducible component SΓ, again with dimension equal
to (^ — 1) (cf. [19], Sect. 1.3). The irreducible components of the analytic set
Sing(P0) are in one-to-one correspondence with the irreducible components of the
analytic set £f0 and each of them contains the point Po. Consequently, P0eJ7~
C SingίPoJ and we get a contradiction.

Now, let 2 ΦouΦfooCfrP be the embedding. Owing to a consequence of
Hartog's Theorem which guarantees the removability of singularities of a complex
analytic function provided the singular points are contained in an analytic set of
codimension at least two, we have a natural isomorphism ι*z*#' = #". Hence F is
determined by its restriction F | (^O

u*oo) i n the unique way. •
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Let us now specify this construction for the framed instanton bundles on P 3 .
This means that the real structure must be taken into account. Now, J5f0 is a real
line, τ(P0) = Po0 and the distinguished frame on J>?0 is orthonormal. Moreover,
τ(Sing(P0)) = SingίP^) and the frame {3ί9..., <JJ is related to the dual of the frame
{ou . . .,dj by the isomorphism σ. It follows that

GF(τ(Q)) = GF(QY on ^ n * . . (4.4)

The goal now is to show that GF can be identified with the locally defined
canonical transition function Gc. First, using the blow-up we resolve the
singularity at the point P o and then choose a special coordinate system at this
point.

Denote by P o = (Po, JS?0) the point from the exceptional divisor in the blow-up
P3. The pull-back of the matrix-valued function pτfGF is holomorphic at the point
P o . Identify P 2 with the plane if ^ = P(^ 1 ? ̂ 2^3) C P 3 and introduce local coordi-
nates on P 3 c P 3 x P 2 via the mapping

the values in P o are ^ = z = λ = 0. Denote prf GF, if expressed in these local
coordinates, by Wc

i0\^9 &, λ). Clearly,

From (4.4) it follows that the equality

ϊ, - Xy, -

holds on an open set °ll x TΓ, where % and if are neighborhoods of the origin in <C2

and of the unit circle in (C, respectively. Looking at the Lorain A-expansion in this
equality, we find that the condition (3.8) is valid and, consequently, the reality
condition (3.12) is valid as well. Hence Wc

i0) is indeed the canonical initial condition
corresponding to the framed instanton bundle F.

The projection

p Γ l : P3^P3: (j/, *', λf)^(ξ, η, ζ) = {λ'y'9 λ'«', λ')

is one-to-one provided λf + 0. For the real analytic coordinates (&, λ) = (^, x9 p, x9 λ)
on P 3 , the relation (2.2) implies:

ζ=λ^f—%=λy, γ\=λ%+jj=x %, ζ=λ=x,

and hence:

^ / = = ^ — λ %, x' =• z-\- λ %f, λ' = λ.

Since Wc

i0) = pr? GF, we have

Comparing this relation with (3.20), we conclude:

The matrix-valued function GF, if expressed in the local coordinates (a>, λ) on
C 3 = P 3 \ i ϊ 0 0 , coincides with the canonical transition function Gc.

Note that this construction of the canonical transition function is applicable
also to the local framed instanton bundles.
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5. Explicit Expressions

The global instanton solutions are described by the famous ADHM construction.
So we stand before a natural question: How do the canonical initial condition and
the canonical transition function for the ADHM solutions look like? The
corresponding formula in the simplest one-instanton example was derived by
Crane in [12], though in this paper the transition function is not recognized as
canonical. Here we present the general result. But knowing the canonical initial
condition, we are even able to solve the initial value problem explicitly and in this
way to derive the transcription of the ADHM construction into the /, W,
^formalism of the inverse scattering method.

First, let us introduce some notation related to the ADHM construction. For a
quadrupole ( β a

and 3 = (^)eC 4 set

i* 2* 1-αl

The moduli space M(t, c) of framed instanton bundles on P 3 is the quotient of the
set of matrices (α1,α2,^,^) satisfying
(i) the rank of R(%) is equal to c for all 3ΦO,

(ii) R(τ$fR(ϊ) = 0 for all 3, or equivalently,

. , ^ (5) (a) for all 3, (5.2)
by the action of U(c):

g, l)#(3)g-x, g e V{c),

(cf. [11]). Let Z e P 3 be a point with homogeneous coordinates 3 = (&ί9..., #4). Then
the fibre Fz of the instanton bundle in the ADHM construction is given by

(cf. [20]). The Hermitian product in Fz is given by

The following lemma characterizes the jumping lines.

Lemma5.1. Let if be a line in P 3 and Yo, Zoe£? be two different points with
homogeneous coordinates rj0, 30, respectively. Then the restriction of the bundle
F| 2 is holomorphically trivial if and only if the matrix i^τίjo^βo) *5 invertible.

Proof (=>) Fix a basis in the fibre over Z o via the choice of a {2c 4- ̂ ) x * matrix N
satisfying

= 0, rank(iV,

Then the matrix-valued function

S(Y) = [1 -R(
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modulo Ran ̂ (tj), 7=span tj e Jέf, is in fact a holomorphic trivialization of F on if.
(<=) Suppose R(τϊ)oyR(lo) is singular. We shall show that F | ££ has a nontrivial

section with at least one zero. Put

Let Λ be a projector onto #(30)i£ C <E2c+* according to any direct summand. Since
the restriction R($0):K-+R($0)K is an isomorphism, we can define the linear
operator

Choose an eigenvalue-^ of the endomorphism A and a vector / e X\Ran(^ + κ\).
Hence

+ ^(3o))g for all geK.
The section

d(Y) = R(ιo)f modulo RanK(tj), Y=spanη e Jδf,

is holomorphic and <?(Zo) = 0. Now it suffices to verify that o( Y) 4= 0, where 7 e if is
the point with homogeneous coordinates tj =

Actually, provided there exists g such that

we

0 = J

Hence g e K and we get a contradiction. •

Now it is enough to follow the construction of Chap. 4. Set

I1] l°\
Roo= 0 , No= 0 ,

W W
where the dimensions of these matrices are

respectively. The matrices R0 = R(Q, 0,0,1), 1 ^ = (0,0, -1,0) are related to the
points Po, Pm9 respectively, and the columns of No determine the distinguished
frame on J5f0. Note that it holds

The frames {d1? ...,dj and {3l9...93^} are determined by the matrix-valued
functions S(Z), §(Z) modulo Ran Rfy, respectively, where (Z = span3)

y1R(τmN0, (5.4)

S(Z) = [1 - R0(R(<®iR0) ~ 'RinyWo. (5.5)

Actually, S(Z) is well defined and holomorphic on % = P3\Sing(P00) and S(Z)
= ΛΓ0 identically on the punctured line ^0\{P^}. The relations (5.3) imply (as it
should be)

S{Zγ(Z) l, (5.6)

and hence S(Z) is regular on % . Besides, R(τ$)*S(Z) = 0. An analogous discussion
can be done for §{Z).
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According to the construction, the canonical transition function is given by

Y (5.7)
(5.8)

Now it is enough to substitute (5.4) into (5.7):

GC(Z) = 1 - NlR® (R(τϊ>yR0Γ '(RlR®)" ιR(ήYN0. (5.9)

Taking (3.20) into account, we get the canonical initial condition

^ ' }

According to (3.20),

GC(Z) = Gc(ξ, η, 0 =

and we can rewrite (5.9)

x (#4 + α 2 # ! — α{ # 2 ) " 1 ( ^ 1 + Λ 2 ) (5.11)

Using the Cramer rule, we find that the canonical transition function Gc for
ADHM instantons has the form (4.3), where

-α^)

These expressions agree with the conjecture following the formula (4.3).
To find the solution with the initial condition (5.10) in the J, W, t^-formalism of

the inverse scattering method one has to solve the Riemann-Hilbert problem, i.e.,
to find the Birkhoff decomposition (2.13):

Gla>, λ) = W{a>, λ) ~ ιJ{cc) ~1 Wfa λ).

But in the general case, the Riemann-Hilbert problem is highly nontriviail.
Fortunately, we can avoid it using the following

Lemma 5.2. Let Fbea local instanton bundle defined on a neighborhood of the line
if0 C P 3 and let {01?..., 0 J be a holomorphic frame in a neighborhood of the point Po.
Then the Gram matrix H = [ό-p <ίk) has the form (in the coordinates {cε, λ), we now
distinguish between λ and I)

H(π, λ, I) = W(a>, XpJ(a>) - X W{cc, λ).

where J(cc) = J(cc)\ W{π,0) = l and J, W solve (2.6). Hence

J(a>)' * = H{ccy 0,0), J(a>) ~ιW(a,λ) = H{cc, λ, 0).

Proof The assertion follows immediately from the form of the Birkhoff decompo-
sition (2.13) of the transition function and from the form of the gauge transfor-
mation of the Gram matrix:

H(cc, λ, X)h->Γ(^, λy H{^ λ, J)Γ(a>, λ). •
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Now we apply this lemma to the frame S(Z) and £(τZ)f. In the coordinates (a?, λ)
we have 3=(Λy—#, i # + ^ , i , 1), and so

(3)1/?(τ3)t)%3)lΛ=ί=o> '

R(^(r 1 «(τ5) f )^) l j=o

To get the explicit formulae we set

and hereinafter Φ = « y « I * Φ ^ α + αJ*

id=(l - Φl) (l - Φ σ ) + Φ + Φ +

=(i-φ,)(i-Φί)+φΦt+yσyί. (5.15)

In this notation, (5.2) is equivalent to

J / C ) m u . ΨβΨ=lΦ,Φa-\
and (5.10) can be rewritten

W^K^^λ^l + λΨil-ΦX'il + λΦΓ'Ψ,. (5.16)

After some straightforward computations we arrive at

Theorem 5.3. The following formulae together with (5.14), (5.15) provide the
complete transcription of the ADHM construction into the J, W-formalism of the
inverse scattering method:

w(cc, λ) -1=l - λ{ψ+Ψ Ki - ΦD ~x Φ)

Φlr'ΦΓ'Δ-'iΨ^Φil-ΦlΓ'Ψ^, (5.17)

'iΨr-Φil-Φl)-1^). (5.18)

// we put fy(a>,λ)={W(a:,-l/tyy\ then (J,W,W)eξ>c is the distinguished
canonical solution defined in Chap 3.

Let us conclude this chapter with some examples. The most familiar self-dual
solutions are 't Hooft's instantons with the gauge group SU(2). In this case
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where the constants ρ, are positive and the points ( ^ ^ J e C 2 , l^j^c, are
mutually different. The canonical initial condition and the canonical transition
function take the form

2 /ε p

The modified 't Hooft's solutions (cf. [4]) are known to exhaust all two-
instantons (cf. [21]). Let (^j9 vj) e <C2,0 ̂ j S c9 be mutually different points and χp

O^J^Ό, be real parameters such that χo + ...+χΛ = l, 0<χ 7.<l. Let

Vj=spanl^! + 1 ^ 2 + *3> ~ ^f\ + ΰf2 + eA}, 0 ̂ j ^ ^, (5.20)

be the corresponding two-dimensional τ-invariant subspace in (C4. We furnish it
with the Hermitian product

where < o, o > is the restriction of the standard Hermitian product in (C4, and let
(°, o)v designate the induced Hermitian product in the direct sum V = Vo φ . . . 0 Vc.
Then the instanton bundle is the quotient

F = F/K,

where for Z = span3, 3e(C4, the fibre Fz is the (c + 2)-dimensional subspace in V
determined by the equations

(* 0 , . . . ,*Jeί ί

z CF r iff <τ3,^0> = <τ3,^1> = ... = <τ3,^>,

and Kz = span(ip1?..., ψ J, where the vectors ψjSV,l^j^c, are linearly independ-
ent and unambiguously determined by the equations

(ψβ ψ)v = <3> «j- ^o> for all <P = (^o5..., ̂ J e F.

The Hermitian product in Fz is given by

where Λz is the orthogonal projector onto the subspace in V spanned by the
vectors ψl9τψl9...,ψc,τψc.

Now, the same procedure as before should follow but there is no need to give all
the details. We only note that the following trivialization {dl9o2} appears to be
convenient in the computations

Λ

02
 V I £ + » Ϊ ' ""'ίcζ+sι' ) '
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The entries here are the coordinates with respect to the bases (5.20) in the vector
spaces Vo, ...,VC. After some algebra we get

x (-(Φk-φj)(φa,k-φaj -(φa,k-φaj
2

v (Φk-Φj)2 (Φk-ΦjUΦa,k-Φ«j.
λ2Θ XjXjXk

0 0\
0 l j 'x l - -K (5.21)

where we have put

Φj = "iff - «f> > Φσ,j

6. Conjecture: The Moduli Spaces as Algebraic Sets

Owing to the Donaldson's result, we can consider the moduli space 0M(*, c) of
framed holomorphic vector bundles on P 2 instead of the moduli space M(*, c). The
description of ΘM(*,c) is similar to that of M(*,-c) (cf. [11]). Theorem 4.4 asserts
that the points from OM(*, c) are in one-to-one correspondence with the restricted
canonical initial conditions Wrfs

): = Wc

i0)\x=0. We introduce a new coordinate
co — λy' and define

From (5.10) it follows

The Taylor expansion at the origin shows that a point from ΘM(t9 c) correspond-
ing to the equivalence class [(α 1 ? α 2 ,^,^)] is unambiguously determined by the
infinite doubly indexed sequence of matrices a<x{ak

2o, j , /c = 0,1, . . . . But this
sequence can be replaced by a finite one.

Lemma 6.1. Let f(t) e 0O-f be a rational function in one variable over any field "f of
characteristic zero and assume f(t) to be regular at the origin. If f can be expressed
as a quotient f = p/q with p, q being polynomials with degrees less than or equal to n

1 dj

then f is unambiguously determined by In numbers fj= — -77/(0), O^j^ln — 1.

If.

f2k-l ••• fk,
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and for two polynomials

denote

where the blocks A, B are defined

Po 0\

A=\

) = l+q1t+...+qkt\

Pk '"P2

\Pk-i Pk-2 Po/ °
and the blocks C, D are defined analogously but now with the polynomial q. Then
detR(p,g) as a polynomial in the coefficients pj9 q$ is the resultant of the
polynomials p, q and it vanishes if and only ifpk = qk = 0 or p, q have a common
nontrivial divisor (cf. [22], Sect. 34). It holds

If f=P/q> then detR(p,tf) = (-l)kdetM(fc).

Actually, the recurrence relations

0=Po-/o>

t = qi = O for i>k)9
(6.3)

imply

detR(p,ί) =

A C O\
B Z) C =det

0 0 1/

= (-l)kdetM(fe).

o
0

Write now / as the quotient /=p/q with both the numerator and the denominator
being uniquely characterized by the condition: p, q have no common nontrivial
divisor and #(0) = 1. Put ^ = max(degp, degg). Then m is the lowest non-negative
integer with the property: detM(fc) = 0 for all k>m. From (6.3) it follows that the
coefficients (Po? 5 p w J #i>« ••>&*) solve the system of linear equations with the
matrix

-E

-M{m)
where E=

0

/o
\

/o

fτn-2 " fo/

(6.4)

and with the right-hand side (/0,..., f2m_ t). For m = 0 the blocks 0, — £, — M{m) in
(6.4) are empty, for ** > 0 the matrix (6.4) is regular. Hence the coefficients pp q} can
be reconstructed in the unique way. •

Now we can construct two holomorphic embeddings of the moduli space
, c) into a finite-dimensional vector space.
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Proposition 6.2. The holomorphic mapping

; O ĵ, k£2c-l) (6.5)

is injective.

Proof. Use the Cramer rule and apply twice Lemma 6.1. First, putting f = <C we
reconstruct ^ ( 1 - α ^ ) " 1 ^ , 0gfcg2*-l. Then putting f = C(^) - the field of
complex rational functions in the variable ^ - we reconstruct

H 1 -̂ •
Let us now consider another and maybe more fruitful mapping. The Cramer

rule implies

x Σ 0tiW^\ (6.6)
j,k=l

where s7 , ί, G C, ^ f c e §T(*, <C) and

Proposition 6.3. The mapping

[(αl5 α2, ̂ , **)]H^(S, , ί,, Λ^; 1 ̂ j, k^c) (6.7)

is holomorphic and injective. Moreover, it is a homeomorphism onto its image. This
image is an irreducible locally analytic set in (E,2c+*2*2 and its dimension is equal to

Remark. Recall that the moduli spaces are known to be connected (cf. [16],
Chap. II).

Proof. The interpretation of W^ as a transition function shows that this mapping
is a homeomorphism onto its image. All the properties of this image are then
characterized by Remmert's Theorem (cf. [19], Sect. IV.7). •

Up to the end of this chapter, we identify GM{t, c) with its image in the mapping
(6.7). The canonical transition function on Ψ2 corresponding to the initial
condition Wf^ has the form

G r e s(δ) = 1 + j ί-

where

»(a)=*4+ Σ tj4<~J, (6.8)

This is in agreement with the conjecture following the expression (4.3). This
transition function defines a holomorphic vector bundle F on the set Ψ2\Jt, with
Ji being the discrete set

^:*>(a)=/Uδ)=o. (6.9)
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Now we state two problems:
(1) The first problem naturally arising is to determine for which parameters
(sp tp $jk) the singular points from the set Jί are removable in the sense that i^2F is
a locally free rank-4 sheaf on P 2 . Here i: Ψ2\Jt c+ P 2 is the embedding and #" is the
sheaf of germs of holomorphic sections in F. Owing to Hartog's Theorem on
removability of singularities (cf. [19], Sect. IV.2), we can simplify this discussion.
The singularity in the point Q e Jt is removable if and only if the bundle F is
holomorphically trivial on some punctured neighborhood W\{Q} of the point Q.
(2) For such parameters it is further necessary to compute the second Chern
number c2{F). Let P 2 c P 2 x P 1 be the blow-up of Ψ2 at the point ^ = * 3 = 0. Here
we can identify P 1 with the line P(^ l 5 ̂ 3) C P 2 . Then R1 pr2ίfί pτ*^( — 1) is a sheaf on
P(^1? £3) with the support being contained in the discrete set >0(*i> ̂ 3) = 0 and the
sum of dimensions of the stalks over the points from this discrete set equals to c2{F)
(this assertion is proven in [16], Chap. II).

Conjecture. The equality c2(F) = c should lead to a system of algebraic equations
specifying &M(Ί, c) as an algebraic set.

We solve the problem (1) for the lowest rank 4 = 2. Up to the end of this chapter,
all matrices are supposed to belong to §T(2, (C) and the same is true for the values of
matrix-valued functions. First, note that the equality detGres = 1 (Proposition 4.3)
leads to the equations

6, (6.10)

1 + .Σ v ) (* + .Σ tjuή j Σ trΛji^ V- V " 2

=0. (6.11)

Equation (6.11) means that all coefficients of the polynomial in the variables ^, u>
on the left-hand side are equal to zero. So Eqs. (6.10), (6.11) represent together
2c(2c — 1) algebraic conditions on the 2 (̂2^ +1) independent variables (sp tp &jk). If
we subtract these numbers we get exactly the dimension of the complex space
GM(ι, c) which is known to be Ac [11]. This fact conjectures that the moduli space
&M(Ϊ, c) might be identified with a set s4\0&, where si is an irreducible component
of the algebraic set (6.10), (6.11) and 0$ is an algebraic set. The one- and two-
instanton examples which are mentioned in Chap. 8 support this conjecture.

Now we shall show that the condition detGres = l is sufficient for the
removability of the singular points. The problem is local. We choose coordinates
^ v on a neighborhood ^ of the singular point QeJi'm such a way that the
algebraic set ^0(3) = 0 (respectively /oo(3) = 0) coincides on % with ^ = 0 (respec-
tively v = 0) and hence Q has the coordinates ^ = ̂  = 0. The vector bundle F is
holomorphically trivial on %\{Q} if and only if the transition function Gres has a
special decomposition as the following proposition asserts.

Proposition6.4. Let G(^,v) be a 2 x 2 matrix-valued function defined on a
neighborhood of the origin in <C2, with the properties:
(i) G is meromorphic with the poles on the set uv- = 0,

(ii) detG = l.
Then there exists a decomposition G = XY, where X, Y are again unimodular
meromorphic matrix-valued functions and X (respectively Y) has the pole on the line
M = 0 (respectively v = 0).
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Proof. The function G(^, v) can be written in the form

We can suppose that k>0 (the case fe = 0 is trivial) and proceed by induction. So it
is sufficient to prove the inductive step:

There exists a matrix-valued function H(^,v) which is unimodular and
meromorphic with the pole on the line v = 0 and such that the product GH has the
poles again on the set *(v = 0 but the order of the pole on the line v = 0is equal at most
to(k-l).

Denote J= I I. The unimodularity of G implies:

deU = 0, tr(A J B* J) = 0. (6.10)

From the former equality it follows that there exists a holomorphic unimodular
matrix-valued function Ύ(u) such that the second column oίA(a)T(u) vanishes. So
we can suppose that

) o
and, again without loss of generality, that α(«)φθ. Let us denote the entries of B

(the first column is unessential) and put f(u) = — c{u)ja{u). Note that the latter
equality in (6.10) means that ad — bc = 0 and hence α/ + c = 0, bf + d = O. Now we
distinguish two possibilities. First, provided f(u) is holomorphic, we can put

0

Second, provided f(u) has a pole in the origin, i.e., f{u) = u~ig(u\ g(0) + 0, j>0, we
can put

7. On the Action of the Loop Group

This chapter serves as an illustration of another possible application of the results
from Chap. 3. Here we try to prolong the discussion initiated by Crane in [12]
about the loop group action on instanton solutions.

Notation. The embedding of the space S into the vector space

§T(*, C M ) x §Ifc € [* , A]) x §T(*, C[^, λ~!])

enables to treat formally the Lie algebra ϊ (β) of vector fields on S. Denote by
jjTfoCtAjA""1]) the Lie algebra of Lorain polynomials in the variable λ with
coefficients from the Lie algebra §T(̂ , (C). Dolan [8] and Chau et al. [9] discovered
the following infinitesimal action, i.e., a Lie algebra homomorphism

δ: §T(*, C [ A , λ ~ ^ H ^ S ) : Tλ-k^(δk(T)j9δk(T)w,δk{T)w), (7.1)
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where keZ, Te§%(C). Introduce the gT(*, C[^])-valued functions_dfc(T), ctk(T\
feeN0, defined on ® and linearly depending on the parameter TegI(^,C), by the
relations:

W(λ)TW(λ)~ι= £

fc = O

for (J, W, W) 6 β. To simplify notation, we stress explicitly the dependence only on
the variable λ and not on the variables &. The vector fields δk(T) have the form

, for /c>0,

δk(T)w=~ Σ dk+J{T)λW(λ), for /c^O,
7 = 1

- fe+1

' , fc<0, (7.3)
7 = C "

, for

It was also recognized by Chau et al. that to get a well defined action on the
subspace SUC® one must restrict δK^C^/l" 1 ]) to the subalgebra consisting of
those elements £7i>l~fe which satisfy

Γ_k = (- l )* + 1 T;. (7.4)

Let Ω designate the loop group consisting of holomorphic mappings from (C to
GL(4, C) defined on a neighborhood of the unit circle.

Crane discovered that one is able to exponentiate the infinitesimal action if we
replace 2> by its subspace of convergent power series ©. Let

]),
', W\ W') = (J, W, W) + ε<5(T(Λ)), β-infinitesimal. ( ' j

Then using (7.3) we get after some algebra

Gf\ = {JfWryιWf = {\ + εT{λ))G{\-ET{λ)) (modε2).

Hence the global action of Ω on © should be defined as:

\ (7.6)

where # e Ω, G e (5. This definition is easily seen to be correct. Crane defined the
action of Ω on ©M as follows:

(̂  G) (a>9 λ) = ?(λ)G(cε, % ( - \/iy . (7.7)

But the relation (7.6) suggests that this result requires an additional specification.
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The global action (7.6) will be correctly defined on the sub space ©MC(δ // we
restrict the group Ω to its subgroup Ωu consisting of those elements p(λ) which satisfy

d-ίffl^λ)-1. (7.8)

This condition is the global counterpart to (7.4).
The main disadvantage is that the loop group action is gauge dependent and

the moduli spaces being embedded into ©„ are not invariant with respect to this
action. Let us notice more closely the infinitesimal action on the one-instanton
moduli space M(2, l)cScC<5M. The action of Ωu includes as a special case the
ad U(2)-transformations corresponding to the unitary transformations of the
distinguished frame and there is no necessity to pursue them further. Because dk(ί)
= <?fc(l) = 0 for fc>0, it is enough to consider only vector fields δ(T(λ)), where

Άλ)= Σ (T,r f c + (-l)*+1TfeU*), Tfcesϊ(2,C).
Denote **i

The projection prc: SM-^SC is defined in Chap. 3 (cf. (3.15)). Since SC = ΪB? we can
regard the vector field δ[0)(T) as being defined on 2B.

We shall try to answer the following question: Which vector fields

${T{λ)): = Σ %k(τk) having been restricted to M(2,1) are tangent to prc" \M(291))

CSM, i.e., which vector fields δ{0\T(λ)) are tangent to M(2,1)CΪB? Roughly
speaking, we ask when the loop group action preserves infinitesimally the
topological charge finite and equal to one.

To this end we derive some necessary formulae. Let (J, W, V\) e S c and W}0) be
the corresponding canonical initial condition. Then it holds:

dk(π;Ti) = dk(cε;Ty and ίfc(^,*,0,0; T) = 0, for fe^l. (7.10)

Use these relations to get

δi°\T)=- Σ dF>jfr,x;T)λJW(O>b,x,λ)
j=i

- I y ; T)H-λY, (7.11)

where df\,x\ T): = dk(^,z,0,0; T). It is easy to show that

Here again (^,#) is the ideal generated by the terms p, %,. The infinitesimal
canonical gauge transformation

(J, W,W) + ε£fc(T)h->(J, W, W) + sδk°\T), ε-infinitesimal,

takes the form

, η, 0 = 1 + ε ϊ 4°i/ί, ~ f Γ) f(-ζy (mode2). (7.12)
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The one-instanton canonical initial conditions depend on four complex
parameters e,f, u, *>, (̂ ,

where " ' " " ' d + * . > < 1 - * Γ '

<p = ̂ ^ — ^ # , φσ = ̂ ^ + v-x- .

We obtain (fe>l)

(7.14)

^ w ~ λ φ ) ίΞ> τ ^ - λ k Ξ T ' Ξ ) •

Since δ^(T) e sT(2, U, xf+2), the infinite series £ WKΆ) = δ^°\T(λ)) makes sense
fc=l

in the realm of formal power series. The four-dimensional tangent space at the
point Wc

{0)eM(2, l)c2B can be obtained by variation of the parameters *,/, «, v.
Comparing homogeneous terms of the forma power series, after rather

straightforward considerations we arrive at the following conclusion.

Provided T(λ) is nonzero, the vector field δ{0)(T(λ)) is tangent to the manifold
M(2,1) only in the points corresponding to the parameters ^ = ̂  = 0, e, /-arbitrary,
and only in the case Tγ = 0. The vector fields δ^\T\ k^.2, vanish in these points and
hence the vector fields 5k(T), k §; 2, are tangent to the fibres of the projection prc. The
corresponding infinitesimal canonical transformation is

0 * " 2 (modε2), (7.16)

where Y—Ξ\^ = ^x=η.

8. Concluding Remark

The basic notions this paper was dealing with are the canonical initial condition
and the canonical transition function. And perhaps the most interesting conclu-
sion we can derive from this discussion is to stress once more the conjecture we
have proposed in Chap. 6. Namely, the following one- and two-instanton
examples aim to support the idea that it should be possible to describe the moduli
spaces ΘM(t,c) directly as algebraic sets. The one-instanton example is rather
trivial. In the case of the two-instanton example, we present only the final formulae
without other details but with the hope that in a forthcoming paper the complete
results will appear.

Let 4 = 2 and c = \. Then ΘM(2,1) being embedded into the vector space C 6

with the coordinates sutίe(D,0ίίίe <C2'2, is biholomorphically equivalent to the
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set si\Λ9 where si is the four-dimensional algebraic set determined by the
equation

= O, or equivalently, ^ = 0 , (8.1)

and the algebraic set 38 is determined by the equation ^ n =0.
Let 4 = 2 and c = 2. Then ΘM(2,2) being embedded into the vector space <C20

with the coordinates sl9 tl9 s2, t2s(t, Λ n , St129 St2l9 3t22e<E2'2, *s biholomorphi-
cally equivalent to the set s/\0t9 where the algebraic sets si and & are specified
below.

First, denote

Then Eqs. (6.10), (6.11) can be rewritten

tr^ = tr5 = trC =

s± trD - tτAB = tιtvD- tr AC = 0,

O, (8.2)

The algebraic set si is the eight-dimensional irreducible component of the
algebraic set (8.2) which is determined on the open set trD + O by the additional
equations:

s1AC-AD-BC = s2DB-BD = O. (8.3)

In other words let si1 be the algebraic subset in the open set {trZ) + 0} C <C20 which
is determined by Eqs. (8.2), (8.3). Then the closure of si1 in <C20 is exactly si. The
algebraic set 38 is contained in the hyperplane trD=0.

It remains to specify $ and the intersection of si with this hyperplane. The
Eq. (8.2) together with the condition trZ) = O imply:

XY=0 for arbitrary two matrices X, Ye{A9B9C9D}.

This means that the matrices A, B, C, D are multiples of the same nilpotent matrix.
Let {El9E29E39E4} be a basis in §T(2,C). For an element E from this basis we
denote

a = tτAE, b = tτBE, c = trCE, d = trDE.

Then the intersection of si with the hyperplane trD = 0 is determined by the
equations

(c2 — act1+ a2t2)s1 - led + (ad + bc)tί - 2abt2 = 0,

(c 2-αcί 1 + fl2ί2)s2-d2 + &Λ1-62ί2 = 0, ( ' a )

(b2 - abS)^ + a2s2)t1 - 2bd + (ad + bc)s1 - 2acs2 = 0,

(b2 — absί + a2s2)t2 — d2Λ- edsγ — c2s2 — 0.

The algebraic set 38 is determined by the equations

b2 - abs1 + a2s2 = c2-actί+ a2t2 = 0. (8.4)
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