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Abstract. We consider a class of long range Hamiltonians with diagonal disorder
on I2 (Z). For any ergodic potential V with non-empty essential range, we prove
the exponential decay of the Green's functions for energies in the essential range.
If V is independent identically distributed, we obtain the exponential decay of the
Green's functions for all coupling constant λ > 0. Moreover the Hamiltonian has
only pure point spectrum.

1. Introduction

We consider a long range Hamiltonian with diagonal disorder. Let (Ω,P) be a
probability space, Tj(jeZ) a one parameter group of ergodic measure preserving
transformations acting on Ω fa measurable real-valued function on Ω, such that
the distribution Pf of/has no point component: P{ω\f(ω) = E} = 0 for any E.
Let the corresponding ergodic potential Vω(j) =f(Tjω); we define Hω on /2(Z) by:

Hω = Δ + λVω, (1.1)

where Δ is a long-range finite difference Laplacian:

α-|m-n| + l

Λ{m,ή) (),
1 —or

(1/(1 - α2) is just a normalizing factor), and λ is the coupling constant. (We will
write V,H, instead of Vω, Hω for convenience.)

Clearly Δ is very different from the usual finite difference Laplacian Δ:
Δ(m,ή) = δ(\m - n\ - 1), and is perhaps physically more realistic.

We are interested in the asymptotic behavior of the Green's functions for H.
We show in the next section that H can be written as

H=Λ / _χ+λV. (1.1a)
4 ( *)
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Define Hε by

Hε = 1 _ 1 + A7. (1.2)

Z ί - ( α + α x + ιε)

Note that H — Hε(ε = 0). The Green's function for E in the spectrum is defined to be

G(m,n;E) = lim Gε(m,n;E) = lim <(5m|(//ε — E)~ί\δny. (1.3)
ε->0 ε-*0

It is easy to see that (Hε — E)~1 is bounded for ε > 0 . We prove below that the
above limit exists for Lebesgue almost all α (L — a.a. α), and is in most cases the
same as the more conventional definition: G(m, n; E) = lim < δm \ (H — E — iε) ~11 δn >.

ε-»0

Definition. E is in the essential range (ER) of f if and only if

P{ω\E-ε<f(ω)<E + ε}>0

for all ε > 0.

The main results of the paper are as follows:

Theorem 1.1. For all E,P — a.a. ω, L — a.a. α > 1, G(m, n; E) = lim Gε(m, n; E) exists.
ε->0

Suppose E is in the essential range of λf for some λ9 and E l o g + l/\λV — E\ < oo,
then for a.a. ω and fixed n,

v log |G(m,n;E)|
km • =-yE> (1.4a)

Imi^oo m\

where yE > 0,/or a.a. α. Furthermore

G(m,n;E) = lim < < 5 J ( i ϊ - E - i ε ) " 1 ! ^ ) a.a.α. (1.4b)
ε-^0

Remark. Assume the ER of/contains an interval containing 0, then any E is in
the ER of λf for sufficiently large λ.

Theorem 1.2. // V is independent identically distributed (i.i.d.) with absolutely
continuous distribution, and E l o g + l/\λV — E\ < oo, then for all λ>0, all
E,P — a.a. ω and fixed n, both (1.4a) and (1.4b) hold for a.a.α. The Hamiltonίan H
has only pure point spectrum.

Remark. The condition E l o g + l/\λV — E\ < oo in the above two theorems is a
regularity condition that enables one to use the multiplicative ergodic theorem [11]
to show the existence of the Lyapunov exponent (see the proof of Lemma 2.1).

The proofs of Theorems 1.1 and 1.2 are based on the identity (2.4) of the
following section together with results of Kotani [8] and the trace-class method
of Simon and Spencer [13]. The ergodicity of V plays a crucial role in establishing
the theorems. In fact it is essentially the only condition required of V. In parti-
cular, V need not be non-deterministic in the sense of Kotani [8,12]. The non-
deterministic condition excludes many interesting stochastic potentials that
are intuitively random [1]. In this sense Theorem 1.1 is a generalization of the
Kotani theorem, which proves the positivity of the Lyapunov exponent for
non-deterministic potentials only [8,12]. It also complements a new result of
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Kotani, which proves the positivity of the Lyapunov exponent for potentials that
take a finite set of values but are non-periodic [9]. Note that this theorem holds
for potentials with empty ER, while Theorem 1.1 holds for potentials with
non-empty ER.

The potentials V studied here include for example, quasi-periodic potentials
and potentials with a Gaussian distribution. In particular, for the quasi-periodic
cosine potential, Theorem 1.1 implies the positivity of the Lyapunov exponent for
all λ>0 and all Ee( — λ9λ). This is quite surprising in view of the strong λ
dependence of the Lyapunov exponent if we replace Δ with Δ [1]. Note that (1.4a)
does not hold for periodic potentials, since such a potential has empty ER and is
not ergodic.

Similar results can be obtained for

H = Δ + λV,
where

l f - iΊλ 0 < \i -j\<l(l any integer)

[θ, otherwise

when Kis non-deterministic, and will be written elsewhere.

2. Proof of the Theorems

The kinetic part of the Hamiltonian can be resummed exactly (as can be easily
seen in the Fourier space). We have

so that,

H = zτr + λv- ( 2 2 )

Note the denominator Δ — (α + α~*) is never zero, since || Δ || = 2 and α ̂  1. So
the operator is well defined. (We use fractions whenever the numerator and the
denominator commute.)

The Green's function G for H is related to the Green's function Gf for another
Hamiltonian H\

H' = Δ + V\ (2.3)
where

V' = — l — . (2.3a)
λV-E

(Note that V is also an ergodic potential.) This can be easily accomplished by
using (1.2):

( g . - g r = f , , .*_, ,.^+λv-E) '

•E)"1. (2.4)
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Let

G/(m,n;α + α- 1 + /ε) = <(5m|(if'-(α + α - 1 + ϊ ε ) ) - i | ^ > , (2.5)

then

G(m,n;E) = lim(δJ(Hε-EΓ1\δn>
ε-*0

= lim [G\m +l,n;α + α" 1 + ίε) + G\m- l,n;α + α" 1 + is)
ε->oλVn — E
- (α + oΓ x + ίε)G'(m, n; α + α~1 + iε)]. (2.6)

Remarks. For ε > 0, G' is well defined, since H' is self-adjoint. The Hamiltonian
H is self-adjoint, so G(m, n) = G(n9 m). Once we establish the exponential decay of
G(m,n;E) for fixed n and |m|-• oo, the result also holds for fixed m and \n\-• oo.
It is clear that in order to study G(m,n;£), it is equivalent to study
lim Gf(m, n; α 4- α "* + iε).
ε->0

The Lyapunov exponent yE{$) characterizes the asymptotic behavior of the
solutions to H'u = $u. If we denote the transfer matrices by {Λn}, then for each
#, the Lyapunov exponent for Hr is defined to be [1]:

l O g l l A - A ^ , a.a.ω. (2.7)
«-»oo n

The above limit exists and is independent of ω for P — a.a. ω [5],

Lemma 2.1. For a.a. α, lim Gr(m, n; α + α " 1 + zε) βxzsίs. I/furthermore yE(a -f α" *) > 0

/or a.a. α, men

lim — log lim | G\m, n\ α + α ~x + iε) | = - yE(oc + α " x ) , a.a. α. (2.8)
| | O

Proof. Since G ^ m α + α " 1 + zε) is a Herglotz function, for a.a.α, lim G'(m,m)
ε-*0

exists [7,8]; lim G'(m, ή)(m Φ ri) exists by polarization. Using the multiplicative
£-•0

ergodic theorem and an argument due to Delyon, Levy and Souillard [3] which
shows that the Green's function decays at the rate of the Lyapunov exponent, we
obtain (2.8). •

The positivity of the Lyapunov exponent is ensured by the following two lemmas:

Lemma 2.2. For E in the ER ofλf, define Ω' to be the set ofω, such that there exists
a subsequence j n , withjn-+ ± oo, such that lim λVjn(ω) = E, and λVj(ω) φ E9for allj.

Λ->00

Then the set Ω' has full measure: P(Ω') = 1.

The main lemma is:

Lemma 2.3. If E is in the ER ofλf, then for ωeΩr the Lyapunov exponent for H'
is positive: yE(a + α~x) > 0a.a.α.

Proof of Lemma 2.2. Define Ωε to be set of ω, such that there exists a subsequence
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mi9mi-+ ± oo, such that f(Tmίω)e(E/λ-8,E/λ+ ε). Clearly Ωε is T invariant. Let
Fε = / ~ 1(£/λ - ε, E/λ + ε), and χFε be the characteristic function of Fε. lfωφΩε, then

χ 0; (2.9a)
n-+co Π m = o

but
\χ(ώ)dP(ώ)>0 (2.9b)

since E is in the ER of λf. So P(ί2ε) = 1. Define Ω° to be,

C ) / p
p=l

then P(ί2°) = 1. It is easy to see that the set

Ω°n{ω\f(Tnω)ΦE9 Vrc},

which is of full measure (since Pf has no point component) is contained in Ω'.
Therefore P(β / )=1 D

To prove the remaining two lemmas, we need the following two theorems:

Theorem 2.4 (Simon-Spencer) [13]. Let h be the operator,

on 12(Z). Suppose that

limsup|F(n)| = oo,
n-+ ±oo

then σac(/i) = 0 .

Define the essential closure for a set A, to be

l e s s = {K I \A π {K - ε, K + ε) | > 0, for all ε > 0},

where 11 denotes the Lesbesgue measure. We have

Theorem 2.5 (Ishii-Pastur-Kotani) [1,8].

Proof of Lemma 2.3. Since E is in the ER of λf, from Lemma 2.2, for ωeΩ' the
potential V as defined in (2.3a) is unbounded: lim sup | V'(n)\ = oo. Applying

«-»• ± oo

Theorem 2.4, we obtain σac(H') = 0. This in turn implies, by Theorem 2.5, for
ωeΩ', y£(α + α"1) > 0 for a.a.α. •

We need one more lemma before proceeding to the proofs of Theorems 1.1
and 1.2.

Lemma 2.4. For all ωeΩ', yE(a + α" 1 + ίε) ̂  γE(a + α~x) a.a. α. // E is in the ER
of λf, then

lim —log\G'(m,n;oc + a"1 + iε)\ = -y^α + oΓ1 + iε)^ -yE(α + α " 1 ) < 0 .
H-oo \m\

(2.10)
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Proof. From the Thouless formula [1,16], the Lyapunov exponent is related to the
density of states as follows,

(2.11)

where $ is a complex number and dpE(x) the density of states. Suppose
S = α + α " 1 + iε, then taking derivatives with respect to ε, we get [6],

= E[Im G'(0,0; α + α " x + ίε)]. (2.12)

n in the upper half p

α; (l/π)lim E(Im G') is the density of states, so we have
0

Since f—-— is a Herglotz function in the upper half plane, lim —- exists for a.a.
x — z ε-*o dε

lim^O
ε^o dε

for a.a α. Hence γE(a + α~* + iε) ̂  y£(α -f α~*), for a.a. α. Applying Lemma 2.3, we
obtain γE(oc + α " 1 + iε) > 0, for a.a. α. Therefore for P - a.a. ω there exist unique
solutions u+ to H r that decay exponentially at ± oo [8,12]. The Green's function
G' constructed from the solutions u+ decay exponentially at the rate of the
Lyapunov exponent. We thus obtain (2.10). Π

We are now ready to prove Theorems 1.1 and 1.2.

Proof of Theorem 1.1. Let ωεΩ'; using Lemmas 2.1 and 2.3, we see that in the limit
ε->0, the sum of the Green's functions G' in (2.6) exists and is of O(e~yElml). Since
for ωeΩf and fixed n, l/(λVn - E) is just a constant,

log IG(m,n;E)|
lim — = - 7 l , ( α + α x), (2.13)

H-oo |m|
where γE(oc + α~λ) > 0, a.a. α. Let

(δm\(H-E-iεΓί\δn>. (2.14)

Since we only have the bound | ^ J ^ 1/ε, we need to expand the resolvent identity
to second order:

<gε-Gε = GεΓGε + GεΓGεΓ<$ε, (2.15)

where

(2.16)
- (α + α " x + iε))(4 - (α + α

Clearly ^ is bounded, so || JΓ || = O(ε) as ε-^0. Since | ^ ε | ̂  1/ε and Gε(m,n) decays
exponentially with a rate that is uniformly bounded below from Lemmas 2.4 and
(2.6), the right-hand side of (2.15) converges uniformly in ε. We obtain (1.4b) by
taking the limit. •
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Proof of Theorem 1.2. Since Fi.i.d., V is also i.i.d.. By a standard integral equation
method, y£(α + α" 1) > 0 for a.a. α [2,15]. So (1.4a) holds by Lemmas 2.3 and 2.1,
(1.4b) holds by the same argument as in Theorem 1.1. By (1.4a) and Fubini's
theorem,

lim £ I G(m, n;E + ίε)\2 < oo (2.17)
ε->0 m

for a.a. ω, a.a. α and a.a. E. Hence there exists only pure point spectrum [4,14]. •
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