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Abstract. In the framework of the weakly-coupled P(φ)2-models we construct
perturbation approximations of vectors of a dense set of the state space, especially
vectors of the one-particle state subspace, by polynomials of zero-time fields acting
on the vacuum state, with rigorous control of the remainders.

Introduction

Motivation. The particle structure of a Quantum Field Theory model is generally
deduced from the analyticity properties of the Green distributions, obtained from
the study of the Bethe-Salpeter equation. This gives precise information about the
spectrum of M, the mass operator (see the references in [2], to which we must add
now [1]). Another method, not completely independent, is the υariational perturba-
tion method, intially proposed by Glimm, Jaffe and Spencer [8], and studied in
[2] for same P(φ)2-models. For all feL}c\L2(R2), / # 0 , a vector Ψ(f) is
constructed, which satisfies the following conditions:

1. it is a linear combination of zero-time fields acting on the vacuum, 2. it is
orthogonal to the vacuum and to the one-particle states, 3. it lies in the domain
of M, and 4. it verifies the following formula:

for λ, the coupling constant, sufficiently small. Here (•;*) is the state-space scalar
product, m is the one-particle physical mass, <•;*> is the L2(R2) scalar product
and H™ is the relative Hamiltonian of the Non-Relativistic limit, written for λ = m2.
A careful study of the remainder, which is O(λ5/2\ has been made. The above
formula has been established for all P(φ)2-models with even interaction polynomial
P having a non-zero fourth degree term. For a discussion on the conclusions that
can be drawn apropos of the spectrum of M and its eigenvectors, see [2].
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The generalization for all P(φ)2-models with weak coupling [3] and the
calculation of the higher perturbation terms [4] require the knowledge of
one-particle states given by polynomials of zero-time fields acting on the vacuum
state, and of some products of such states.

Contents. This work is concerned with the zero-time fields acting on the vacuum
state (we call them zero-time vectors) for all weakly-coupled P(φ)2-models. We
show in Sect. 1 that all vectors given by a product of fields acting on the vacuum
state can be approached perturbatively by a linear combination of zero-time vectors.
With Theorem 3 we see that the series are asymptotic. Thus for all perturbation
calculations, it is enough to consider only zero-time vectors. In Sect. 2, we expand
(M2 - z)~1ξ, for zeC and ξ a zero-time vector, as a perturbation combination of
zero-time vectors, and in Theorem 5 we show that the series is asymptotic. In
Sect. 3, we construct approximations of one-particle states at zero-time, and collect
their properties. Section 4 introduces vectors obtained by some tensorial products
of such states, which will give good ansatz to approach the n-particle states at low
energy.

Notation. The weakly-coupled P((p)2-models are defined by their Schwinger
distributions Sn, given by the moments of a probability space (Q,Σ,μ), where
Q = ̂ '(R 2 ) (real valued), Σ is the Borel σ-algebra of Q (given the weak topology),
and μ is a probability measure on Σ. For all feS/?{R2) we introduce φ(f), the
Euclidean fields, defined by φ(f)(q) = q(f) for all qeQ. Then the Schwinger
distributions are given by: Sn{f) = \φ{f1)--φ{fn)dμ for all /e(y(R2))n. The

Q
measure μ is constructed as a double limit: μ(B)= lim limμg,Λ(B) for all BeΣ,

where for all A compact set of R , geL2(JR.2) and geQ:

dμg,Λ(q) = (Zg,Λ)-1dμo(q)cxp(-λ jd2x:P(φ(x g)(q)):
\ Λ

where ZgtΛ is the normalization factor and μ0 is the probability measure on Σ
such that ]dμoexpiφ(f) = exp-$<f9(-Δ + mo

2)-1fy for all /e^(R 2). P, the
Q

interaction polynomial, is an R-^R polynomial bounded from below, λ ^ 0 is the
coupling constant, m0 > 0 is the one-particle mass of the so-called free theory, the
theory in which λ = 0. :.: denotes the Wick polynomial procedure. There exists
λ > 0, depending on m0 and P, such that the double limit exist if λe[0, A], which
will be assumed throughout this paper. The Schwinger distributions satisfy the
Osterwalder-Schrader axioms, thus they define a Wightman Quantum Field model,
with state space J f, Hamiltonian H, momentum P, vacuum Ω and field φ. We
denote by W the canonical map L2(Q, μ) -• Jf. For more details, references and
other notations (such as for the Fourier transformation), see [5].

Background. For neN*, let θn(f,x) be the Wick-monomial of Euclidean fields with
fixed Euclidean times given by:

θ\f,x)= j (Πcfm:φ(Λ1,x1)...φ(*n,xH):
R"

for all i eR" and fe^(JR.n). Such objects can be defined as strong limits in L2{Q,μ);
here φ(x) stands for φ(x-δ). Let 0Hn and J ^ for all αelN be the spaces of generalized
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functions /ey'(R") with continuous Fourier transform /eC°(]Rn) and with
bounded semi-norm £n(f) and norm £a

n(f) respectively, given by:

= ί

Rωo(/c)

and for n > 1:

« l

= Σ ί
where ωo(p) = ̂ Jp2 + m0

2 for all peR and ^ is the set of all partitions of {1,..., i}.
fs is the function obtained from / by symmetrization. It is shown in [6] that
θn(fx) can be defined for fe&n and J>°, as strong limits in L2(Q,μ), and that the
vectors Wθn(f, x) and their scalar products satisfy the following theorem. We use
the notation R + = [0, oo) and Eo is the orthogonal projector of Jf7 on Ω.

Theorem 1. For all AG[0,A], n, meN*, ie(R+)", j;e(R+)w:
i) For allfe<%n, E0Wθn(f,x) is well defined, (Wθn(f,x); Ω) = $dμθn(f,x) which

is a C00 function ofλ, and for all veDSf, | dλ

v(Wθn(f x);Ω)\< Kάn{f)for some Ke(0, oo)
independent of λ, f and x.

ii) For allfe^, (1 - E0)Wθn(fx)e(l - £ opf.

iii) For all JSGN*, PβWθn(f x) = Wθn(βf x)eJf, where

for all feeR", provided that βfe@°n.
iv) For all / e J £ , (1 -E0)Wθn{f,x) is in the domain of H. If x( = s for all

l^i^nfor some seR+, then for allfeOi, (1 - E0)Wθn(f, x) is in the domain ofH2.
v) For all ° °

(Wθn(f,x);(1 - E0)Wθm(g,y)) = j dμθn(f, -x)\θm(g,y)-\dμθm(g,y)
Q I Q

which is a C00 function of λ, and for all veN,

ΪΛl - E0)WΘ" (g,y))\ < K

for some Ke(0, oo) independent of λ,f,g,x and y.
iv) For all j8e{l,2,3}, fsΛl ge&

m9

where y+ τ = (y1+τ,...9ym + τ), which is a C 0 0 function of λ, and for all v e N ,

\dΛWΘ»(f,x);HβWΘ'n(g,y))\ < Kίβ(f)ίβ

m(g)

for some Ke(0, oo) independent of λ,f,g,x and y.
vii) The statement vi) is also true for /? = 4 if xt = s for all l^i^n and fj = t

for all 1 ̂ 7 ^ m, for some 5, £eR+.

Remark. If the interaction polynomial P is even, the theorem is also true for other
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norms, still denoted by £n(f) and #£(/), in the definition of which enter only the
even partitions, that is those partitions p = {Il9...,Ik) where all \Ik\9 I^i^k, are
even numbers.

The proof of the theorem (in [6]) involves the details of the construction of
the weakly-coupled P((p)2-models, based on techniques such as space cut-off,
uniform bounds, convergence of the cluster expansion, etc.. . . No use of such
techniques will be found in this paper; all results presented here follow as
consequences of Theorem 1.

1. Decomposition in Zero-Time Vectors

Let 0 be the span of {Ω,(l - E0)Wθn(f,x)9 neINf*, / e # J , i e ( R + ) π } , the set of
vectors with precise Euclidean times. 3ι is clearly a dense subspace of if. The span
of {β, (1 - E0)Wθn(f, 0), nelN*, fe<%%}, noted as 2θ9 is the set of zero-time vectors.
The zero-time Euclidean and Minkovsky fields are connected by WΘ(fu0)-
θ(fn> 0) = φ(fι ® δ) φ(fn ® <5)β, and thus 3>Q is also the set of all polynomials of
zero-time fields acting on the vacuum state.

Let ΦeS> and suppose that there exists a perturbation expansion:

where each φiS2Q. Then for all ψe@0:

0 = (ψ;Φ-Σλiφi)= Σ λk\(ψ;Φ)k- t(ψ >Φι)k-i\
fc^O |_ i = 0 J

where we have expanded the scalar products, with the notation {A, B) = Σλι(A9 B\.
Note that for fixed kj takes only a finite number of values. Thus for all keJN we
must have:

i = 0

Now we take Φ = (l-E0)Wθn(f,x) and write φt as ( l - £ 0 ) Σ wθί w i t h

θ{ = θj(Aifi(f,x),O), for some functions AJ

Htί(f9Λ). If we take φ = (1 -%)Wθr{g,Q\
the left-hand side of the previous formula is easily calculated (estimation of the
free theory), and is (φ; Wθr

k)\λ=0. So the formula gives θr

k in term of the sets
{θ/,jeN} with i<k. The right-hand side involves the following Schwinger
functions:

si j(χl y)= jdμ\φ{x 1 )- φ(Xi):l 'Φ(yi)' 'Φ(yj)'— \dμ\φ(y1)" φ{yJ)\ )
Q \ Q )

(almost everywhere continuous functions on R 2 ( i + i ) ) . For z = 0, ii:φ(x1) "φ(xi)f
is replaced by 1. We give first the formal definition of AJ

ni, and verify after (Lemma
2) that it makes sense.

Definition. For all rceN*, / e # J and xe(R+) π let Ar

Λtk(f9i) be the functions given,
for all feeN, r ε N * and ~p eR r , by:
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2r ~ r

) = -γF(Ί>) Π ωo(Pi\ w h e r e F i s 8 i v e n> for all j e r , by:
Π i l

= ^ \d"xf{x)SPr<n({-y, 0); x)

*- Σ
i O

f ^ 4U/, x)(x>pr,,((7, 0); (x, 0))

(for k = 0, the term containing the sum over i does not appear).

An example is given in Table 1. spUj denotes the partially connected Schwinger
functions (defined in Appendix 1). The connectibility property (not deduced from
the above algebraic considerations) is necessary to avoid δ functions in Ar

n^k(f x),
and to have the following results.

Lemma 2. For all n, relN* and fcelN, Kt&l x (R+)π->@°r. Moreover, d?(Ar

nfk(f x)) <
K#n(f)for some Ke(Q, oo) independent of fe@% and i e ( R + ) w .

This result is not trivial: it says that some Schwinger distributions can be evaluated
at the functions Ar

nk(fx)9 which are themselves combinations of Schwinger
functions partially evaluated at /.

Theorem 3. For all Φ = (1 - E0)Wθn{f,£)e@9 n^l fe@°n, the following sequence
of®0: {φt = (1 - Eo) X Wθj(AUfx\0\ Ϊ G N } satisfiesJor all N e K ,

Φ— Σ λlΦi <

for some Ke(0, oo) independent of >le[0,/ί], fe@°n and xe(R + )".

I Table 1. Decomposition in zero-time vectors of (1 — E0)WΘ(f,x)

Let Ae[0,A], and P(x)= / e ^ J and x ^ O we have:

(1

i =

-E0)WΘ(f,x) = ( l - WΘ(A[ ,o(/^).0) +
N+l

λ Σ WΘJ(A{Λ{f>*\Q)\ > + O(λ2

*S(f))

where, for all y' ̂  1 and

Γ j Ί Γ ίj

exp -xΣωo(Pi) -exp - * ω o ( Σ
. L ί=i J L V=i

with

f o r
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Remarks on Theorem 3

1. Nothing is said here about the growth of K when N increases. Thus nothing is
known about the eventual convergence or resummability of the series.
2. A similar theorem exists for the decomposition in zero-time vectors of HΦ for
some ΦED and of H2Φ some ΦeQ>0.
3. When λ varies we must suppose that n,/ and x do not depend on λ. Note that
JF itself depends on λ (via the construction of the measure μ); let us denote it by
Jfλ for a moment. In the theorem Φ, φιeJ^λ9 so that λ plays a double role: it
indicates in which Hubert space the vectors are, and it is a small parameter which
allows perturbation expansion. The fibre bundle formalism would be better here,
with base [0, λ], fibre JfΛ, with cross sections Φ and φi9 supposed to be sufficiently
smooth in an"appropriate topology.

Proof of Lemma 2. For k = 0, calculation of free theory gives immediately:

where i7 = Ar

nt0(f, i ) , for all reIN* and "p eR r . The announced result is obvious here.
Take k Φ 0. From its definition, Ar

Λιk(f, x) is a sum of functions like T of Lemma 10
(in the Appendix). Thus:

" *Σ Σ W/.
0 ^ l

for some K\ K"e{0, oo) independent of/ and x. But the sum over j is finite (because
dkλsPrj\λ=o = Q f° r 7 > r + /cdegP). The conclusion follows from these consider-
ations and from Lemma 10 by induction. •

Proof of Theorem 3. It is sufficient to show that the first N terms of the perturbation

expansion of φ- Σ vanish because of the definition of the Ar

nk. In fact,

by Theorem 1 and Lemma 2, all terms of the series do exist, and by the Taylor
formula the remainder is automatically bounded as mentioned. This will be carried
out in three steps.

1st Step. We establish that for all ξ = Wθm(g,0)e@o and JVeN,

lim λ~Nl ξ; Φ— Σ ttφi I = 0. That is to say, we can pass over the connectibility
λ-0 \ * = 0 /

/ N . \

properties imposed in the definition of Ar

n k. Let us write I ξ; Φ— ]Γ λιφι as:

\ ί=0 J
in—*• r /—* \ / /—• /Λ\ \ V~* o ί X""1 I
7 v / I Y ι c 11 V 111* γ | > λ y

With Lemma 9 (in the Appendix), this becomes a sum of the following terms,
involving the partially connected functions:

μnχf(χ)sPa(J,o);χ)- Σ
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where0 ^ k ^ m,kJ = (Jl9.. .9Jk)9 m.kJ = (yk+l9.. .9Jm). Thesymmetrization over
7i> >7ιw must be done. We expand in λ the factor in brackets. The first N terms
vanish, because of the definition of the functions Ar

Λtk.

2nd Step. We establish that for all ξ=Wθm(gJ)e@ and ΛίeN the following
/ N m \

expression holds: lim λ N[ ξ; Φ— £ )ίφ{ I = 0. That is to say, we can replace ^ 0

λ-o \ i=o )

by Q) in the statement of the l s ί step. This is the crucial point of the proof.
To see how this works, we look at the first order term:

N

ξ Φ-^λ1,

Unjtf) Sym expj- Σ IflA-^Kft)}
|_ l ' ' n (̂  ι ~ 1 J

-F(ϊt) Sym exp< -

with iΓ = ^4JI

f0(/,x), where 0j?£ = —yt. Because of the signs of xt and θyp all the
dependence in y can be collected in a single factor giving:

N ( At \

= π ! | Π y-rrτ WW{%Λ) Sym exp -ξ Φ-Σ Hi

where #X )> not depending on j?, is the same as in the case y = 0, and thus vanishes

because of the property established in the first step. Thus I ξ Φ— £ )ίφi) = 0.

We will see that at each perturbation order, the Euclidean times % will appear
only in a factor exp — Σy^ω^^ multiplying an expression which vanishes because
of the first step. , ^

Let 1 ̂  v ̂  N and suppose (induction hypothesis) that λ~Hξ;Φ— £ λ^; ] ->0

as vl^O for all < v and all ξ = Wθm{gJ)e9. Let us write:

where

and for all 0 g / < v:

We have used the following notation: θy = (— y, J); " J d^z" = 1 when / = 0. sι

mj are

the functions such that d\sm^{y\x)\λ=0 = §d2lzsι

mj(y;x;z) (see the derivatives of the
Schwinger functions in [6]).
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With the Wick theorem the functions sι

mj can be written as follows:

sι

mj(θy;x;z1,...,zι)

= Σ Σ μ { £

with 0 ^ r ^ m i n { m , j } and some maps σ:{l,...,r}->{l,... J } , τ:{r + l,...,m}
{1,...,/}, where the functions / r > σ, t( ) do not depend on y.

Let us suppose that only the z ̂  0 contribute to /, that is:

t (A)

We call this curiosity (A). If (A) holds, because of the signs of θyt and xp all the
dependence in the variables yt occurs in a factor exp — Σ Aωo(^i)> multiplying an
expression which is the same as in the case y = 0 and thus vanishes because of the
first step. Then the statement of the 2nd step is clear.

We have now to prove (A). This will follow from the induction hypothesis.
Because the functions Ft are symmetric, we can write:

[d'zFι{z)=Σ[i\ ί dzx- j dzj\dzj+1...μzιFι(z1,...Jι).
JR1 7 = 0 \J/ -oo -oo 0 0

Thus / becomes:
v \ 0 0

/ = Σ ~} ί
 dz°i * ί dijJj(2l9...9Zj)9

j = 0j —oo — c»

where

" ^ . . . f d z ^ , . . . ^ ) forall O^j^^

(A) holds if / = J o, which is true if:

Jj(zu...Jj) = O forall zγ <0,. . . , i J <0, for all; with 1 g ^v. (B)

We call this statement (B). Let us introduce slightly different functions J'\
v \

J'j(zl9...Jj)=Σ-—- J dSj+1'"dzιFι(z9...Jι) forall O^ gv.
ι j ( i — j y i j

The following statement (C) is equivalent to (B):

J}(i1,...,zj) = 0 forall zx <0,...,z /<0, for all j with 1 g gv. (C)

That (B)=>(C) is proved by looking at the formula:

~7.N) ί diJ+1- J dir]dir+1-]diιF^1,...,iι)
— JJ -oo -oo 0 0
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That (C)=>(B) is proved by induction on j , because J v = J'v and with the following
expression (deduced from the preceding formula):

- J
J)

...,zj) jj(z1,...,zj)+ Σ J
r=j+l (ΐ — J) -o

for all 1 ^j<v.
We prove now that (C) actually holds. For l^j-^v:

J άir3r{zγ,...χ)

- Σ Λ ^ J Σ id
The functions sj

mΛ can be written as integrals of sums of products of Schwinger
functions (see [6]), so that we find after some simple algebra:

Gκ(zl9...,zj)diμμ:φ(θy1)-φ(θym):

for some ξ ^ v —j, for a.e. continuous functions Gκ:R2j->IR for all K and with

the notation {{T}} = T-$dμT for all Tel}(Q,μ). (Recall that all Schwinger

functions are a.e. continuous functions; the integrability of the above formula
with respect to the zt variables is assured only after having performed the

sum Y

With the Wick decomposition [6, Lemma IΠ.1.2],

:φ(θyi)-φ(θymy.γi:P(φ(zk)):= Σ ^jJyU.Π
* L,α ieL It

with suitable sets L, maps α and a.e. continuous functions hLa. We have obtained:

λ=o

Let us suppose now that 2X g 0,..., zj ^ 0. Then the last integral over dμ can
be written as a kernel of a scalar product of Jf, and the last line of the above
formula becomes:

••UΦ(yi)
ieL keK
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Because ξ^v—j^v — 1, it follows from the induction hypothesis that this
expression vanishes.

3rd Step. We conclude with this step. From the 2nd step, for all N and all ξ ^ N:

Φ— y tiφi
i = 0

λ =

= 0.

It follows from this and from the 2nd step again, for all N + 1 ̂  ξ<^ 2N + 1:

Φ — /^ λιφi
i = 0 λ = 0

2

+

The conclusion follows from the Taylor theorem, from Theorem 1 and then from
Lemma 2. •

2. Decomposition of (M2 - z)~ ίξ for

For Φ = (1 - £ 0) W0w(/>O)e ô> Φ # 0, and suitable zeC, let us suppose that there
exists a perturbation expansion such that:

where all φiG^0. Then we have:

We write φt as (1 -Eo) Σ W0/ with θj = θj(BJ

nti(f,z\O) for some functions

££;(/, z). Let us introduce thelbllowing notation: d(A, z\ for a self-adjoint operator
A, is the smallest distance in C between z and the spectrum of A, and Mo is the
operator M for the free theory, that is for λ = 0. We will use the following derivative
of the Schwinger functions: spfj2~z(x; y) = (Δs - z) spi)7(x; yx + s,..., y5 + 5) | s = 0 (in
the distribution sense). The definition of Bίi9 similar to that of ^^(see Sect. 1),
uses the following functional spaces &°>m = {fj and 2m+2fe&°} for all melN*
(for the notation m/, (see Theorem 1, iii)).

Definition. For all fceN,tt,reN*, fe^k and zs<£ with d(Mg,z) > 0, let Br

n,k(f,z)
be the functions given, for all ~p eRr, by:

) ) - Σ - z
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where F is given, for all yeR r , by:

F(y) = 8k

λγτ § dn~xf(x)sprn((y,

k-l 1

th λ {k-ϊ)\ά

λ = 0

U ^

Table 2. Decomposition of (M

Let 2e[0,Λ], and

°M

where, for all j ^

Bί,i =

2-zΓ

P(x) = Σ α x". For

1
2 — z

1 and p^eR-7:

(; + 1)0,-+!

( 2 π ^ - 1 ) / 2

0 for ; ^ i \

m 0

2 -

/e^J ' 2 and zeί? we have:

F \ Y | ϊ y wβj(Rj (f -λ 0) i O\ I2 1'2^Z'*J' I
ί=o j?i \ d(M ,z) )

1

" Λ l m o

2 - z " / '

( m o

2 - z ) 2

for ° ^7 ̂  iV 1 1

(for fc = 0, the term containing the sum over i does not appear).
An example is given in Table 2. Lemma 4 will show that this definition makes

sense.
We introduce on &°'m the norms f^dn%m(z){f) given by:

R \ m + 1 \ ^ / 1 X m + 1

d(M2

0,z) d(M2

0,z)

where # is some fixed arbitrary number such that R»m0. We denote by Θ the
following open subset of <C:

0 = {zeC,\z\ < R,d{M2,z) > 0,d(Mg,z) > 0}.

Lemma 4. For α/Z n,reN* and fcelN:

ii) for all fe&n* the function (z9~p)\-+Br

nk(f,z)(p) is continuous on Θ x R r,
iii) for all fe@°n>

k and zeΘ, ^Br

nik(f,z))<KΛntk(z)(f) and o?(Br

n,k(f,z))<
K'dn,k{z){f)for some K,Kfe{0, oo) independent of fe@°n* and zeΘ.

Theorem 5. For all n, N e N , n ̂  1,
{φt = (1 - £ 0 )

fN and zeΘ, the following sequence

1
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where Φ = (l - Eo)Wθn(f,0), for some Ke(09 oo) independent of λe\09λ),
and zeθ.

Remarks on Theorem 5

1. The requirement on / increases with the order N; but this concerns only the
dependence of /(~x l9...,3cΛ) in the variable 3c 1 + —J- 3cΛ.
2. A similar theorem exists for the decomposition in zero-time vectors of the
resolvent of H.

Proof of Lemma 4. We write BJ

ni instead oϊ BJ

ni(f,z). For k = 0, calculation of free
theory gives easily:

/ r \2 / r \2

Σ ωθ(Pi) - Σ Pi ) ~
V=l / \i=l /

Z

for all r e N * and pe!Rr. Thus ii) is obvious and :^ r

0(^, 0) < ίJ
1 ^ ( ) ( / ) With the astute application of the following relation:

.Σωo(Pί)j ~

we easily find:

where we have used the notation α2? of the appendix. Take k> 1 and let us
suppose that the lemma is proved for all Br

n k, with k! < k; we also suppose that
^ΛiKAf'z)) < K"^nX(z)(f) for all k' < k, for some K"e(09 00) independent of /
and z. Then the definition of Br

nk gives a well defined function, satisfying ii). We
define a new function B' by:

B'(P) = { ( .Σ ωo(p ft
for all ~peW. From the definition of Br

nk it follows that B' is a sum of functions
like T of Lemma 10 (in the appendix). Thus:

t?(B')<CU°(f)+
I

< C < k . 1 ( z )

for some C, CG(0, 00), independent of / and z. Then:
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and with the help of the previous relation (*):

d(M2,z)

for some C"e(0, oo), independent of / and z. •

Proof of Theorem 5. It is enough to prove that:

φ-(M2-z)Yjλ
iφii = 0

N
N+l

for K as in the theorem. As for the proof of Theorem 3, it is sufficient to show
that the first N terms of the perturbation expansion of || Φ— (M2 — z) £ λιφt ||

vanish because of the definition of the Br

nk. By Theorem 1 and Lemma 4, all terms
of the series exist (all φt are in the domain of H2 which contains the domain of
M 2 ) and by the Taylor formula the remainder is automatically bounded as
mentioned. The end of the proof is exactly the same as for Theorem 3, and all
arguments can be repeated. •

3. Zero-Time One-Particle States

We use now a new piece of information. In [9] it is shown that the spectrum of
the mass operator M is contained in the following subset of R + :

0 m 2m-ε

where 0 and m are eigenvalues, and m and ε are continuous functions of
such that m-+m0 and ε-> + 0 as λ-+0. The subspace corresponding to 0 is the
vacuum E0J^ = {cΩ9ce<E}. The subspace corresponding to m, which carries an
irreducible representation of the Poincare group, is the set of one-particle states,
denoted as EmJf.

Thus for λ sufficiently small, there exists a circle ^ in C, with center m2, such
that d{Ml,z)>\ml and ά{M2,z)>\ml for all zeΉ (see the figure just below). Let
us call λ the maximal value in (0, λ~\ for which these conditions hold for all λe[0, λ~]
We fix now Λe[0,A]. We fix now Λ,e[0,A] for the rest of this paper. The projector
Em can now be written as:

~z

4m2-ε

Mm,

Definition. The ΛΓth approximations of zero-time one-particle states, with ΛΓeN,
are defined by:

ΨN(f) = (l-E0)WΘN(f%

Σ
i = 0
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Table 3. First approximation of zero-time one-particle states

Let Ae[0,A], and

where, for all j ^

P(x) =

1-0-

. and ]j

N

Σ aiX'. For

° 1

~ 1 ) / 2 ( έ Λ

all fe&\ we have:

jv + i

for 7 = 1 and for = A/"

^-(έf,)1-".

ϊΊ(/)

+ 2,

2

for all feόlΐ'", where for all ie{l,...,JV},jelN* and

See Table 3 for explicit calculations. From Theorem 5 and from the knowledge
of the spectrum of M pointed out above, we deduce the following properties of D\(f).

Lemma 6. For all r e N * and keJN, Dr

k:<%f(k+1)-+@ϊ. Moreover,
Kόt{k + 1\f) far some Ke(0, oo) independent offe@\{k + 1).

We collect now the properties of ΨN{f).

Theorem 7. For all NeN and f,ge@ΐ{N+ί):
i) ΨN(f)e(l - EO)JV and ΨN(f) belongs to the domain ofH2,

ii) || (1 - Em) ΨN(f) \\, = N+^t{N+ί)

nϊ)PΨN(f)=ΨNCf)

dk
iv) ( ^ ( / ) ; ^ N ^ ) ) = C J y~j>r7(T)g(k) + O(λN+1όiiN+1)(f)#tiN+1){g)) far

some Ce(0, oo), R 2 ^ ^ )

v) Lei ws suppose that f φ 0. T/zere ex/5ί X, ^ ^ ( 0 , oo), depending only on m0

and P, sMc/z that, if λ< 1/K\ then:

(ΨN(f);M2ΨN(f))

where \^N(XJ)\<^^-Kf

Notation. We have used the function ω(k) = y/~k2 + m2 and the following notation:

J is the function deduced from / by J(k) = ω(k)α/(7c), and 0{F(λ,f,g)) is an
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expression with absolute value bounded by F(λ, /, g) times a constant independent
of λ,f and g, where F is a positive function and λe[O,λ\ f and *iN+1)

Remark on the Theorem

1. In the theorem, m is the mass of one particle with interaction, depending on λ.
2. To understand the sense of ii), we note that, by iv), the || ΨN(f) \# do not vanish
in general, as λ -• 0.
3. v) states that the Rayleigh quotient is advantageous: it gives the eigenvalue up to
O(λ2N + 2) when the eigenvector is known only up to O(λN + 1\ but this requires a
limitation of the values of λ.

Proof of Lemma 6. Because λ < λ (thus # cz Θ) and by Lemma 4, ii) the function
~D\{f() is continuous. From the Cauchy-Schwartz inequality, we find:

— \dzB{Λ{f,z){-p) <K'$dz\BUf,z)(p)f

for K' = (length of 1f)/2π. From Lemma 4 we obtain:

St{Jyk(f)f < K' J dzti(B\jtJ, z))2

for some K, K", K"'E(0, OO) independent of /. •

Proof of Theorem 7. i) Follows from Theorem 1 and Lemma 6.
ii) We recall that from Theorem 5:

where Φ = (l-Eo)Wθ1(f90) and φi = (l-E0) £ Wθj(B{ £(/5z),0) for all ΛίeN,

ze{0,...,iV}, fe&nfN and Z G ^ . Jf N + 1 (/,z) is a vector of J f bounded as given in
Theorem 5. We integrate over ze<€ and divide by 2πi to find:

EmΦ= ΨN(f) + λN+1^$dzJfN+1(f,z). (**).
z π ι

We obtain the result by applying (1 - Em) to both sides (the term with X can be
controlled using the same methods as in the proof of Lemma 6).

iii) The first formula holds for all zero-time vectors with suitable /. For the
second we apply M2 = H2 — P 2 to both sides of (**), which gives:

H2 ΨN(f) = (m2 + P2)ΨN(f) + λN+ \m2 - M 2 ) ^ τ J dzJTN+ ΛL4

Note that the methods of the proof of Lemma 6 can show that the term with j f
exists, i.e. J Jf is in the domain of M2 a H2.

iv) Let us denote by Φ(f) the left-hand side of relation (**). Because EmJ^ carries
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an irreductible representation of the Poincare group, we must have:

î-7(1)0(1),
)where C is some constant (which can depend on λ). The announced relation follows

from the formula (**).
v) We use (**) and that EmΦ is an eigenvector of M2 to obtain:

(ΨN(f); M2 ΨN{f)) = (EmΦ- λN+1K; M\EmΦ- λN+1K))

= m2\\EmΦ\\2-2rn2λN+1@4ΨN(f);K) + λ2iN+1\K;M2K)

= m21| ΨN(f) | |2 + λ2iN + X\K; (M2 - m2)K\

where K = (2πi)"1JdzJfN+1(/,z). Putting this into the Rayleigh quotient gives
a?

the announced formula, with ^ ( 2 , / ) = — ' 2 — . The numerator is
II ΨNU ) II

bounded by a constant time όf{N+1)(f)2. For the denominator we use the Taylor

formula: || ¥ y / ) | | 2 = || ΨN(f)\\2\x=o + λ(jj} Ψ»V)\A for some 0<ξ<λ.

Thus || ΨN(f) | |2 > | ^ ( / ) - λK"ft(f) for some K"e(0, oo) by Theorem 1. •

4. Some Interesting Vectors

For all N and neN, n ̂  2, let us consider the following vectors:

ϊoτfe(@ΐN+y. With the above methods these can be written as:

Ξn

N(f)=(l - E0) Σo x .Σ

where the functions ElΛ(f) can be written explicitly. We now define new vectors
Ψn

N(f) by taking only the first part of the right-hand side of the previous formula:

Such vectors will be used in [3] to construct ansatz approaching the n particles
states at low energy. It follows from the previous results that they immediately
satisfy:

Proposition 8. For all n, NGΊN and f
0 ψnΛf)Φ ~ EQW and belongs to the domain ofH2,

in) pψn

N(f)=ψn

Ncn
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To understand the sense of ii), we note that the || Ψn

N(f) || ̂  do not vanish in general,
as λ -» 0.

Appendix. The Partially Connected Schwinger Functions

The Schwinger functions sitj defined in Sect. 1 can be written as a sum of products
over the partitions of {1, , i H-j} (see [6]); the partially connected Schwinger
functions sptJ are those obtained when the sum runs only over the partitions
connected with respect to {l,...,i} (defined in [6, Appendix B]). That is:

sPi,j(χ;y)= Σ Π frA*i>yA
pe&jiluJ) ΓvJ'ep,Γ<=I,J'<=J

where / = {l,...,i}, J = {/+ 1,...,/+;}, xΓ = {xi9ieΓ} and yr = {yj9jeJ'}. The
symmetric functions fKtL are given by:

fκAu> v) = swίw(u, υ) - δlt]κ]δlt]L]c(u - v)

for all K,L c= flsΓ,m = \K\ -f- \L\. The functions swtm and c are given in [6].

Lemma 9. For all ίJeN, j ^ 1, and all xeΊR21, yeΈi2j:

Sij(χ;y)= Σ sw\r\(χr)sP\i-nj(χi-r'>y)>
Γczl

where I = {l,...,ί}.

Proof. This follows from the decomposition of 0>{1KJ J) into connected partitions
(see [6, Appendix B, Lemma BIO]), and from the definition of the Schwinger
functions swh swti9si9spitj. •

For all n,reN*, / e J £ , i e ( R + ) n and ye(lR+)r, let us define the functions:

THy) = d*s\dnxf{x)sprM%x + s))\s= + 0

for all α e N and JsW (where x + s = (x1 + s,...,xn + s)). We denote by Ta

r(p) the
Fourier transform of ~y\->T^(y) (all other variables being fixed). We will use the

ί n Y~
notation J(p) = I Π ωoCp )̂ I f(p) for all αeN, ~peW and suitable function

\ί=l J
/ : R " - » C (do not confuse with the notation of Sect. 3, which uses ω instead of ω0).
Lemma 10. Fix H,reίsΓ*, xe(R+) n and ye(R + ) r . For all v9aeJN with α ^ 2 and

n, the function

satisfies: Te^, andό°r{T) < Kt°n{J)for some Ke{0, oo) independent ofλ,/,x andy.

Proof of Lemma 10. To see that T is continuous it is enough to show that j ? ι f
is in V fR*) (the other variables being fixed). This is true because the truncated
functions like fKL admit bounds which contain an exponential and products of
logarithms [6,1st Part, Lemma, Sect. IV]. Because of the summation on connected
partitions only, the functions sptj and then Tf(y) admit such an exponential bound.
They are in L1. From the WTI Programme [6], T{ku...Jlr) is a sum of the
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following terms:

\i=l2θ)o(pi) J IvJep \iel jeJ j

where

11 ,°i

•δl Π δίΣ
IuJep \ie

Σ
jeJ

with

(
i = l . 7 = 1 .7 = 1 + 1

where 0 ̂  Z ̂  min {r j }, Cι is a combinatorial factor, p is a partition of I'KJJ' with
JΓ « {/ + 1,..., r} and J 7 « {1,..., n — /}, which is connected with respect to /' (that
is to say, all δ distributions have at least one ~pt or one pj variable; thus all δ can
disappear after some trivial integrations, to give_an ordinary Lebesgue integral).
An overall summation for symmetrization on X1 ?...,XΠ, on xί,...,xn and on
yl9...,yr has to be done. The functions Σ\ are given and discussed in [6]. It is
proved in [6, 2nd Part] that h satisfies:

for some constant C'ze(0, oo), independent of x9y and λ. Then T(k) is bounded by
a sum of following terms:

S k ) - ι ) \ π Σ ^ Σ
o(pi)J Iujep \ieI jeJ

for some K'e(0, oo). Thus by the Cauchy-Schwartz inequality:

ΣΣs(nSk)-)\2 π
p sym \i=lO)0(Pi)J IuJep

for some K"e(0, oo). We put this inequality in the definition of ^ ( T ) , which become
bounded by a sum of the following terms:

• Σ ( Σ I Σ
/uJep \iel jeJ

where p' is a partition of {1,..., r}. Note that because of the imposed connectibility
properties, all δ distributions have different arguments. The integration over the
variables ~kι+1,...,kr (not appearing in /(• •)) is easily controlled. The result follows
from some change of variables. •
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