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Abstract. Spacelike hypersurfaces of prescribed mean curvature in cosmological
spacetimes are constructed as asymptotic limits of a geometric evolution equation.
In particular, an alternative, constructive proof is given for the existence of
maximal and constant mean curvature slices.

1. Introduction

In recent recent years spacelike hypersurfaces of prescribed mean curvature have
played an important role in the study of Lorentzian manifolds. Maximal surfaces,
i.e. surfaces of zero mean curvature were used in the first proof of the positive mass
theorem [SY 1, SY 2] and in the analysis of the Cauchy problem for asymptotically
flat spacetimes [CBY, LA], see also [MT] for further references. Spacelike
hypersurfaces of constant mean curvature were studied in [CE, CY, TA]. In [GC]
Gerhardt obtained general existence and regularity results for prescribed mean
curvature surfaces in cosmological spacetimes and in [B 1] Bartnik settled the
corresponding problem for asymptotically flat Lorentzian manifolds, see also
[BS] for related results. In these articles the existence proofs are non-constructive
as they rely on topological fixed point theorems.

In this paper we use parabolic equations to construct spacelike hypersurfaces of
prescribed mean curvature in cosmological spacetimes 7~ = 2" x I. In this setting a
spacelike hypersurface can be written as the graph of a real valued function u over
some fixed Cauchy surface 2" and the problem of finding a surface of prescribed
mean curvature ¢ reduces to a quasilinear elliptic equation for u. It was shown in
[GC] that this equation can be solved under weak assumptions for J# provided
the existence of suitable barriers in the timelike future and past is known. In
particular, it was proven that in cosmological spacetimes which satisfy the timelike
convergence condition and admit a big bang and a big crunch there exists a
foliation of ¥~ by hypersurfaces of constant mean curvature. For each # =140
there is a unique surface S, of constant mean curvature t and there exists at least
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one maximal hypersurface. If there are two different hypersurfaces of zero mean
curvature M, and M ,, then the spacetime ¥~ has a product structure and is static
between M, and M,.

Here we study the following three basic problems:

(a) Given a function # on ¥/, construct a spacelike hypersurface with prescribed
mean curvature J#; in particular, given 7 construct the constant mean curvature
surface S..

(b) Given a point p, e ¥/, construct the unique constant mean curvature surface
passing through p,,.

(c) Given an arbitrary spacelike surface M, construct the unique constant mean
curvature surface in ¥~ which bounds the same volume as M, (with respect to some
fixed reference slice X).

In all three cases the required prescribed mean curvature surface will be obtained
as the asymptotic limit of the solution to a suitable parabolic equation. We take an
arbitrary initial surface M and evolve it in the direction of its unit normal vector v
such that the speed at each point is determined by a difference H — #’, where H is
the mean curvature of the evolving surface and # is a forcing term depending on
the particular problem. To be precise, let M, be given by an immersion

Fo: M">9".

Then we solve the evolution equation

d
I F(p,s)=[(H—A#)v](p,s)
F(p,0)=F(p),

where v(p, s) is the future directed unit normal to M,=F(-, s)(M")at F(p,s) and H is
the mean curvature on M,

The evolution of hypersurfaces by mean curvature, i.e. evolution Eq. (1) with
# =0 has been extensively studied in Riemannian ambient spaces, see [H 1, H2,
H 3, BK]. In the Riemannian case compact initial surfaces quickly contract and
develop singularities as the flow decreases area. In the case of spacelike
hypersurfaces in a Lorentzian manifold the mean curvature flow increases rather
than decreases area which leads to a much more regular behaviour.

To solve problem (a) we choose #(p, s) = #(F(p, s)) to be the prescribed mean
curvature function on ¥". We prove in Theorem 4.1 that under certain monotonic-
ity conditions on # Eq. (1) has a smooth solution for all times provided M,
remains in a smooth region of ¥~ and ¥ satisfies the timelike convergence
condition. If we assume the existence of barriers as in [GC] or [B 1] the surfaces
M, will then asymptotically converge to a stationary solution of (1) as s— oo, see
Theorem 4.2. In a subsequent paper we prove a corresponding result in the case of
asymptotically flat spacetimes.

In Remark 4.10 we consider initial surfaces of strictly positive (say) mean
curvature H = H,>0 and prove an a priori estimate for the proper time of curves
y(s)=F(p, s), pe M", where F(p, s) is a solution of (1) with # =1 > max H. It turns

peM", s=0. (1)

M
out that in this case the proper time of y is uniformly bounded for all such by
n/H,. This result is analogous to the well known fact that focal points occur on any
past timelike geodesic emanating from M, of length exceeding n/H,,.
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To construct a constant mean curvature surface passing through a given point
Xo€V?, let Fy: M"—¥" be an arbitrary spacelike initial surface with Fy(p,)=x,
for some p, € M" and solve (1) with #(p, s)= H(p,, s). The evolution equation then
ensures that M passes through x, at all times and we can again prove longtime
existence of a smooth solution. Asymptotic convergence to a constant mean
curvature surface can then be derived if we have an a priori estimate for the height
of M, see Theorem 5.1. Such a height estimate is valid if barriers exist or if ¥~
satisfies a compactness condition which was first introduced by Geroch in [GR].
In [B2] Bartnik solved the corresponding elliptic problem using the same
compactness condition. Our approach to problem (b) only works in the
Lorentzian case and fails in the corresponding situation in a Riemannian ambient
space.

To obtain a constant mean curvature slice in ¥~ which encloses the same
volume with respect to some fixed reference slice as a given initial surface M, we
solve the initial value problem (1) with

H)= | H(P,S)dﬂs/hi dpu,

being the mean value of the mean curvature on M. This flow was first used in [H 4]
to deform convex hypersurfaces in Euclidean space into round spheres. The
solution surfaces M all bound the same volume as the initial surface M, and their
area is increasing in the Lorentzian case. As in the first two models we prove
longtime existence of a smooth solution and then obtain asymptotic convergence
to a constant mean curvature surface provided ¥~ admits barriers or satisfies some
compactness condition ensuring a height estimate for M, see Theorem 6.1.

To derive the existence and convergence results for Eq. (1) we have to establish
a priori estimates for the height, the slope and the curvature of M. After fixing
notation in Sect. 2 and calculating the relevant evolution equations in Sect. 3 we
obtain these estimates in Sect. 4. The main results are then proved in Sects. 4-6.

2. Preliminaries

We consider (n+ 1)-dimensional smooth spacetimes ¥~ with a Lorentzian metric
g={g,} of signature (—, +, +, ..., +). The metric pairing will be denoted by
¢+, - >, the canonical connection by ¥ and the curvature tensor by Rm={R,,s}.
Greek indices run from 0 to n. As in [B 1] we shall assume the existence of a global
time function te C*(¥") with nonzero, past-directed timelike vectorfield Vt. The
references slices ,={pe¥"|t(p)=t} have future-directed unit normal vector

T=—yVt,
where the lapse function pe C*(7") is defined by
Y 2=Vt V).

We denote an adapted orthonormal frame for ¥, byeg,e,...,e,suchthat e,=T.
Now let M" be a smooth spacelike hypersurface in ¥~ which is embedded by
some map
F:M'—>v".

Let v be the future directed timelike unit normal and choose locally an adapted
orthonormal frame t,, T4, ..., T, in ¥~ such that restricted to M we have t,=v. We
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will denote by g={g;;} and Rm={R,;,} the induced metric and the Riemann
curvature tensor on M respectively, where Latin indices range from 1 to n. The
second fundamental form 4= {h;;} on M is given by
hij=<Vv, 1= =<V, v).
As in [H 1] we write, summing over repeated indices
H=h‘i7 lA|2=hijhi

i

C= hikhklhli .

The curvature, Ricci curvature Ric= {R;;} and scalar curvature R on M are given
by Gauss’ equation

jo

Riju=Rijy—hyhj+hyhy
Ry =Ry —Hhy +hyhy + Ry, »
R=R—H?+]AP+2Ric(v,v).

The Codazzi equations state that

thij_ thik = Roijk >
where V denotes covariant differentiation on M. Moreover, we have the following
rule for the interchanging of derivatives:
ViVij_ VijYkz _Rijlel'
From these relations the following fundamental identities can be derived for the
Laplacian of the second fundamental form, see e¢.g. [SSY] and [NS].

2.1. Lemma. We have the identities
(1) Ahij =VV;H -I—h,-j(|A|2 +Ric(v, v))— Hhyhy;
+2hy Ry + hlelkik + hZiRzkjk + HRoijo

+ VieRoije+ ViR i
(ii) $41A41*=|VA|> +h,V,V;H +|A]*(A]* + Ric(v,v))—HC
+ 2Ry phyhij+ Ry jihi+ Ry hyshy;
+HR 505+ ViR i jihij+ ViR o -
{)n our a priori estimates it will be important to consider the height function u given
’ u(p)=t(F(p))

and the gradient function v which measures the angle between M and the reference
slicing &,
v=—v,T).

From [B 1, 2.8] we quote the identity
Au=Hyp 'v+divlit, )
where 4 denotes the Laplace-Beltrami operator on M. Furthermore notice that

<Ta: eﬂ> é v
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for all 0=, f <n such that the restriction of any p-tensor Be T?(¥") to M can be
estimated by

I Blryl =07 IIB]. ©)
For the convenience of the reader let us recall the first variation formula for H (cf.

[CB, FM, B 1]) with respect to a deformation of the surrounding space generated
by an arbitrary transverse vector field X:

X(Hy)= —AX,v)+<{X,v)(|A]* +Ric(v,v))+<(X,VH). “4)

3. Evolution Equations

Starting from the evolution equation

d
—F=(H-4)v
we will derive evolution equations for the height, the gradient, the curvature and
other relevant quantities on M.

Proceeding exactly as in [H 1] we first compute the derivative w.r.t.s of the
metric g, volume element g and the unit normal v on M:

3.1. Proposition. We have the equations

. d
(1) %gij=2(H—'%)hija
(ii) %V=V(H—Jf),
d
(ii1) %,u=H(H—%’)u.
Now notice that
d -1
%u—(H—%”)w v &)

and

di’s.v=—<T, V(H — #)> —(H— #) T, TV,

such that from (2) and (4) we obtain
3.2. Proposition. The height function and the gradient function satisfy

(i) (Ed; —A> u=—Hyp v—divle,
(i) <% —A> o= —b(| A2+ Ric(v, V))— T(Hy) + ( TV HS —(H— #) T, TV -

Finally we derive the following evolution equations for the second fundamental
form.
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3.3. Proposition. We have the equations

(8] (;—S—A> h,-j=—l7il7j9f—3f(hikhkj+ﬁmj)
+2Hh by ;— hy;(|A]* + Ric(v, v))
- 2hklﬁlijk - hﬂR—lkik - hlilejk
d - ﬁleijk - |7jR0kik 5

(i) o H=A(H— )~ (H— ) (AP +Ric(v.v)),

and the estimates

(i) <% —A> AP = —2[VAP —AI* +co(1 + A + V217,

(iv) <% —A> (PmAR< 2|7 VAP 4 ¢ (1+ [P7AP + |77 22,

where m=0 and
m+1 m . m .
Cn="Cpm <m,n,u, S VIR, Y VI, Y |V"1A|>.
j=0 j=0 ji=1

Proof. Similarly as in [H 2] we derive

d _

s hij=V.V.(H— )+ (H— ) (hyhyj+ R;,)

which implies (i) in view of Lemma 2.1 (i). The second identity is an immediate
consequence of (4) and can also be derived by taking the trace of (i). Now observe
that

d
s hij_4(H_'yf)hijhjlhli
and the first inequality follows from (i), geometric-arithmetric mean inequalities

and (3). As the different sign arising from the Lorentzian setting is irrelevant for
proving the last inequality, we may proceed similarly as in [H 2], using again (3).

d 2
AP =2n

4. Prescribing Mean Curvature

In this and the following sections we assume that ¥~ is a cosmological spacetime,
i.e. it is connected, globally hyperbolic and admits a compact Cauchy surface. This
implies in particular the existence of a global time function t € C*(¢”) as in Sect. 2.
Moreover, we will always assume that the timelike convergence condition is
satisfied, 1.e.

Ric(X, X)=0
holds for all timelike vector fields X.

We are going to study the flow problem (1) with general 5# € C*(¢") satisfying
the monotonicity condition

VA, X>20
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for all future directed timelike vectors X and begin with the following long time
existence result.

4.1. Theorem. Let ¥~ and H# be as above and suppose that M ,=F(M") is a smooth
compact spacelike hypersurface in ¥". Then there exists a unique family
M =F(-, s)(M") of smooth compact spacelike hypersurfaces satisfying the initial
value problem (1) on an interval 0<s<s,. Moreover, if M, remains in a smooth,
compact region of ¥ as s— Sy, the solution can be extended beyond s,.

In order to obtain asymptotic convergence to a stationary limiting hypersur-
face we have to impose additional conditions on ¥". We say that two compact
spacelike C?-hypersurfaces M* are barrier surfaces for M, with respect to # if

M= CI*(M,)
and
Hy:(y)<H#(y) VyeM™,
Hy-(y)>#(y) VyeM~™.

Here I*(M,) denotes the future and past of M, respectively. Notice that for
functions s# which are globally bounded on ¥ the existence of such barrier
surfaces is guaranteed for arbitrary M, if we assume the occurrence of a “big bang”
and a “big crunch,” see [Ge] and [ES]. In this case one postulates the existence of
times T~, T+ with —oo<T~ <T* <o and of sequences of compact spacelike
slices M} satisfying
suptiy—T,
inf th,:—’ T t
such that Hy,. -H_ and Hy; —»H,, where —0o<H, <H_<0.

4.2. Theorem. Let ¥ and 5 be as in Theorem 4.1 and assume in addition that two
barrier surfaces M* exist for the initial hypersurface M, with respect to #. Then
the solution M, of (1) exists for all times s>0 and every sequence (s,)— o0 has a
subsequence (s,)— oo such that M, , converges uniformly in C* to a smooth spacelike
limiting hypersurface M, satisfying

H Mo = H |Mco .
We obtain asymptotic convergence to a unique limit in each of the following cases:

i) ¥ satisfies the “ubiquitous energy condition” Ric(X,X)>0 for all timelike
vectors X.

ii) Some limiting surface M has strictly positive or strictly negative mean
curvature.
iii) S =0.
4.3. Remark. () In cases 1) and ii) the convergence occurs at an exponential rate. In
case iii) there are two possibilities: Either ¥~ admits only one maximal slice in
which case we get the estimate

HL ()5 57, ©)

or there are at least two different maximal slices in #". In the latter case there will be
a whole layer of totally geodesic maximal slices, see [GC]. If the limiting slice is a



602 K. Ecker and G. Huisken

boundary slice of this layer, H(s) will decay as in (6). If the limiting slice is in the
interior of the layer, the convergence will occur at an exponential rate due to the
fact that the metric g of ¥~ is static inside the layer.

(ii) In a forthcoming paper we establish similar results under less restrictive
assumptions on # and Ric.

The crucial step in the proof of Theorem 4.1 is the gradient estimate.

4.4. Proposition. Let M be a smooth solution of (1) on the interval 0<s<s, such
that M is contained in a smooth compact subset KC¥" for all 0<s<s,. Then the
gradient function v satisfies the a priori estimate
v(p, )= (1 + sup v> sup exp(A[u(g,s)—u(p,s)]),
Mo ) (@,9eM"x[0,s0]
where

A=A (n,w, I#1l1, x IRmlo.x, sup IHI>.
Mn [0, so]

Proof. Following the argument in [B 1, Theorem 3.1] let A>0 be a constant to be
chosen later and define

0 Mn x[0,so]

C,= <1+ sup v) sup e™.
M

Suppose e**v reaches C, for the first time at (p,, s;) € M" x (0, s,]. Then at this point

d
< | . _ Au
0=<ds A)e v,
0="F(e*).

From Proposition 3.2 and [B 1, Proof of Theorem 3.1] we infer

d
- < 2
<ds A>u=Cov

as well as

(% —A) v — 0|42+ C(0* +v?|4)),
where
Co=Collwl1,x 1#10,x) and Ci=Cim |yl x I#]l1 & [Rmllo,x)-
Here we also used the fact that [{T, VY| <v?|VA#|. Hence we conclude
v|A? £ A%0|Vul? +(Cod+ C v + C,0? 4.

Proceeding as in [B 1, Theorem 3.1] we obtain
1
v|AP 2 (1 + %) A20|Vul* —C(n)v® —H?.

Since [Vu|?> =y~ %(v*>—1) we finally arrive at
P70 = 1) S CH(A+1)0?

at(p,,s,) where C, depends on C,, C,, n, and H. Since by definition of C; we have
v(py,s,) =2, we derive a contradiction for large enough A. Repeating the argument
with u replaced by —u yields the result.
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To estimate the curvature on M, we need a technical lemma.

4.5. Lemma. Let f be a function on M" x [0, s,] satisfying

d
e < _g2¢2 2
<ds A>f= a’f*+b
for some constants a,beR. Then we have
b 1
< _ N
f=a+a s

everywhere on M" x [0, 5,].
Proof. Consider the function g=sf —bs/a. Then
d
(ZZE —A) g< —2abg+gs~'(1—a%g)
and we obtain a contradiction if g reaches for the first time a value larger than a2
This proves the result.
4.6. Proposition. The mean curvature of M satisfies
sup |H|SC(1+s71),

Mn %[0, so]

where C=C(n, | ||y, x)-

Proof. Since # does not explicitly depend on s here, we obtain from Proposi-
tion 3.3 (ii) and (1)

<;_s —A) (H—#)=—(H—#)(|A|* + Ric(v,v)) +<VH,v).

. 1 . .
Since |4|?= — H? we estimate in view of (3)
n

<1—A> (H—%)Zg—ZIV(H—%)IZ—E(H—%”)‘H-C,
ds n

where C=(n, |||y, k). Here we also need the timelike convergence condition and
the monotonicity of #. The estimate then follows from Lemma 4.5.
We can now prove estimates for the full second fundamental form and its

higher derivatives.
4.7. Proposition. We have the estimate
sup  |4]*<C,

Mn x[0,s0]

where C=C<n, [vllo.x IRM|ly k, sup |H]|, “flb,z()- Having bounded v and H
Mnx [0, 50]

we then obtain for general m=1,
sup |P"AP<C,,

M x [0, so]

Where Cm=cm <n,m, [|Rm|lm+l,Ks ”%”m+2,K: SUP |VmAI2>
Mo
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Proof. We use the formula
VVAH =<t e,) (v, ep) Vi +h VA, V)
to estimate
|V2H| <0*|V2H |+ 0| Al |VH).

Hence we infer from Proposition 3.3 (iii)

<j_s —A) A2 < —|A[*+C(1 +]4P)

1
S — A+ C
<ol +

with C=C(n, Iollo.x IRmM| 1 k| # 5.k,  sup |H|> and the conclusion follows
M"X[0, s0]

from Lemma 4.5. ;
In order to bound the higher derivatives of A we estimate similarly as above

1

2P <c <m, 0, (1 It 2,50 i IVjA\> (14 7mAP).
=

=0

Proposition 3.3 (iv) then yields

d
<£ —A> PmAP< 2|7t AP + C,(1+ V" AP),

m—1

where now C,,=C, (m m[10llo, ko | RM s 1, g 1 a2 k0 2 IV"AI>' From here

j=0
we can proceed by induction on m as in [H4].

Proof of Theorem 4.1. If the initial surface M, is smooth, shorttime existence of a
unique smooth solution of (1) follows from standard parabolic theory exactly as
for the mean curvature flow in Riemannian manifolds. Since by assumption M,
stays inside a compact smooth region of ¥, u is uniformly bounded. Hence we infer
from Propositions 4.4, 4.6, 4.7 that M converges to a smooth surface M, as s—s,,.
Thus the solution M, can be extended beyond s, by means of the local existence
result.

4.8. Remark. i) The parabolic system (1) is equivalent to a single quasilinear
parabolic equation for the height of M, over some fixed reference slice. This
equation is uniformly parabolic provided v is uniformly bounded. Hence it is
possible to apply general parabolic theory to obtain longtime existence once the
gradient estimate in Proposition 4.4 and the estimate for the mean curvature in
Proposition 4.6 have been established, see [FA]. The geometric estimates in
Proposition 4.7 however seem to be the more natural approach.

ii) As our curvature estimates in Proposition 4.7 are independent of the initial
data, it is possible to obtain local existence assuming only Lipschitz initial data.

To establish Theorem 4.2 we begin with an a priori estimate for the height
function.

4.9. Proposition. If M * are two barrier surfaces for M, with respect to #, then the
surfaces M, lie entirely in the interior of the compact region K=K(M*,M~)C¥
bounded by M™ and M~ for all s> 0.
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Proof. By [B 1, Proposition 3.2] we may assume w.l.0.g. that the time function ¢ has
been chosen such that M= {xe 77| #(x)=0} and M* = {xe¥"| t(x)=t*). We then
want to prove

t”<u(p,s)<t™ VYs=0VpeM".

Let us only prove the estimate from above. Suppose to the contrary that there
exists a point (py, So) € M" x [0, 00) (so > 0), where M touches M * for the first time.
At this point we have

d

—uz=0.

ds —
From Proposition 3.2 (i) we conclude since v and y are non-negative by definition
that

H(po, 30)Z # (F(po, o)) »

and hence in view of the barrier assumption

H(po, 50)> H g+ (F(po, $0)) -

Since the normal vectors of M, and M* agree at this point we arrive at a
contradiction to the strong elliptic maximum principle, [PW].

Having established the uniform height estimate we know from Theorem 4.1
that our solution M| exists for all times s> 0 and it remains to prove asymptotic
convergence to a stationary limit surface as in Theorem 4.2. We will show that
(H — ) (s) converges to zero as s— c0. To this end let ¥/, be the volume enclosed by
M, and some reference surface, e.g. M ~. Then we obtain from (1), Proposition 3.1
(iii) and the divergence theorem that

d
—(IM HAV\= [ (H—H)dy,.
3 (Wl [ V) = | (=7 dy,

Since (M| and [¥| are uniformly bounded in view of our height estimate in
Proposition 4.9 we conclude that

(H— #) duds < o .

o= 8

{
M
Moreover, from our uniform estimates for all curvature quantities and their
derivatives in Proposition 4.7 we infer as in [H 4] that both

[ (H—#)*du, and 4 | (H=#)du,
M, ds M,

are uniformly bounded in s. Thus | (H—#)*dy, tends to zero as s—oo. The

M,
uniform estimate for the derivative of (H— ) in conjunction with a standard
interpolation argument then shows that

sup IH— %I WO .

M
Thus every sequence M, has a subsequence converging to some stationary
asymptotic limit, proving the first convergence result in Theorem 4.2.

We now turn to studying additional assumptions which guarantee the
convergence of M, to a unique stationary limit:
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(i) If Ric(X, X)> 0 for all timelike vector fields X then in view of the estimates in
Proposition 4.4 and Proposition 4.9 there is 6 =6(M *)>0 such that

Ric(v,v)=4.
Furthermore, from the monotonicity assumption on # we have
VA, vy=0

and hence obtain in view of Proposition 3.3 (ii)
<;—S —A) (H—H#) < —20(H—H#)*,

which immediately implies
sup (H—#)*=e "2 sup (H—#)>.
Mg Mo

This clearly yields exponential convergence to a smooth stationary limit surface
M in view of Proposition 3.2 (i).

(ii) Suppose H,,_> 0 for some limiting surface M, =F ,(M"),F,= lim F__.Since

Sk 0

lim sup |H—#|=0

s—o Mg
and # oF >0 we have for s> s, sufficiently large
: H(s)>d(s0)>0.
This yields |4]*> = . 62 and we can use the timelike convergence condition and the

monotonicity condition on 4 in conjunction with Proposition 3.3 (ii) to obtain
similarly as in (i),

2
<i ——A> (H—#)< — = 6%H - #)?,
ds n
again implying the desired exponential convergence to M.

(iii) Suppose that # =0. Then Proposition 3.3 (ii) implies in view of |A|*> ” H?

that
<i—A) H*< —EH“,
ds = n

which by Lemma 4.5 yields inequality (6).

In order to prove uniqueness of the asymptotic limit we have to distinguish two
cases. If ¥~ admits only one maximal slice we are done. If ¥~ contains at least two
different maximal slices we infer from [ GC] that they are both totally geodesic and
that all maximal surfaces form a layer of totally geodesic surfaces. More precisely,
we may assume w.Lo.g. ([B 1, Proposition 3.2]) that the references slices

S={Xe?|tx)=t}
form a layer ¥,= () % of totally geodesic maximal slices, where — o0 <t,
to<t<ty

<t, < 0. Inside €, the metric § of ¥~ splits isometrically into

g—= —dt2+gyt0.
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Since in particular V't is a constant vector in %, the evolution equation for the
height function u in Proposition 3.2 (i) reduces to

d
=2 Alu= 7
(& -4)u=o 0
inside this region.

Suppose first that for some sequence of times s, — oo M_converges to a totally
geodesic maximal slice & in the interior of €, i.¢. t, <t <t;. Then by the parabolic
maximum principle we have that M is in the interior of €, for all s = 5, sufficiently
large. We then compute from (7) and Proposition 3.1 (iii),

% I (u—n)*dpu, < -2 I Vul*du,+ I H*(u—u)*dp,

for s>s,,, where u(s)=|M| ™" j' udu,. In view of our uniform bounds for the

geometry of M, the Poincaré 1nequa11ty
[ (w—u)dus=c, j [Vul?du

holds with some fixed constant ¢, independently of s. Moreover, we see from (6)
that sup H*><¢ for s>s,2s,, and therefore conclude for e<cg’
Mg

4 f e ipdn s et | - 0Pdu.
S M, M

Together with our uniform estimates and standard interpolation inequalities this
implies exponential decay of sup |u—iu| and exponential convergence of M| to
$=M,. Ms

Suppose now there exists a sequence s,—oco such that M, converges to
M =9, (or M,=,). Then for arbitrary ¢>0 we can find k, such that u(s, )
<to+e. Since ¥, ., is maximal and therefore a stationary solution of the flow it
acts as a barrier to M, and the strong parabolic maximum principle yields

u(s)<t,+e

for every s 2 s, , proving that M converges to the unique limit &%, = M . Without
further assumptions we don’t expect faster convergence than in (6) in this case.

4.10. Remark. 1) Let M, be a compact Cauchy surface in ¥~ such that
inf H= H,>0. Let F? be the solution of (1) with # =0 = max H and define the

Mo Mo

past directed timelike curve v (p) for all pe M" by y,(p) (s)=F(p, 5). Then the proper
length of y,(p) can be estimated by n/H, independently of ¢ and p. This follows
from an analysis of the inequality

d oo 1H2

% mm = mm( min 6)
obtained from Proposition 3.3 (ii).

ii) It would be very interesting to find reasonable conditions for M, and ¥~
which imply that the solution of (1) with # =0 converges to a maximal surface,
without having to assume the existence of barriers.
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5. Constant Mean Curvature Cauchy Surfaces Passing Through
a Given Point

In this section let ¥ be a cosmological spacetime satisfying the timelike
convergence condition and let y,€ ¥~ be fixed. Given a compact Cauchy surface
M,=Fy,M") with Fy(p,)=y, for some p,e M" we want to construct a unique
constant mean curvature surface M, passing through y, by solving evolution
equation (1) with s =(s)=H(p,,s). We show that this approach succeeds
provided 7~ satisfies a suitable compactness condition.

5.1. Theorem. Let the spacetime ¥~ and the Cauchy surface M, be given as above.
Assume furthermore either of the following conditions holds:

(a) 7" ~1(y,) is compact.
(b) There exist two smooth compact spacelike barrier surfaces M* CI*(M,)
satisfying
Hy.<infHZ<supH<H, .
My Mo

Then problem (1) with #(s)= H(p,, s) has a unique smooth solution for all s >0 which
converges to a unique constant mean curvature surface passing through the point y,,.

5.2. Remark. (i) It was shown in [B2] that condition (a), introduced in [GR],
implies the existence of a constant mean curvature surface passing through y,,.

(ii) If we assume the “ubiquitous energy condition” Ric(X,X)>0 for all
timelike vectors X, or if the mean curvature of the limiting surface is nonzero, then
the convergence in Theorem 6.1 occurs at an exponential rate.

Proof of Theorem 5.1. As a first step we show that either of the conditions a) or b)
implies an a priori height bound for the surfaces M: From the definition of the flow
problem (1) with #(s)= H(po, s)= H ,, we know that all surfaces M contain y,,.
Since the M are spacelike condition (a) implies that they have to stay inside the
fixed compact region #” ~ I(y,) during the whole flow. In case of condition (b) we
first observe that

sup |[H| < sup |H]|.

Mg Mo

This is an immediate consequence of Proposition 3.3 (ii), the timelike convergence
condition and the parabolic maximum principle. From here we conclude as in
Proposition 4.9 that M* and M~ act as barriers for the surfaces M, proving the
desired height bound. Since all other a priori estimates of Sect. 4 carry over, we
have existence of a longtime solution and it remains to establish asymptotic
convergence. From [MT, GC, Theorem 7.3] we know that Cauchy surfaces with
nonzero constant mean curvature in ¥~ are unique. Moreover there cannot be two
distinct maximal slices passing through y,. Hence it suffices to show that

lim sup H— inf H| =0.
s | Mg Mg
Using Proposition 3.3 (i), the timelike convergence condition and |4|*> > . H?* we

infer for the Lipschitz continuous functions H,(s)= sup H and H,;,(s)= inf H
Mg Mg
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the inequalities

d 1
- £——-(H H?
dS Hmax = n ( max ) max ? (8)
Ay > Y _m)m 9)
ds min = n min po/ * " min>»
and hence
e~ o) S - (Hoa = Hy) Ho— i Hy) B (10

(i) Suppose there exists s,= 0 such that

(59)<0 or (59)>0.

max

In view of (8) and (9) we then have

mm

H . (s)<—¢ or Hg(s)>e¢
for all s=s, and some ¢>0. This however implies by (10)

@ e o) S — (s~ Ho)
dS max min) = n max min/ »

such that (H H,,;,) converges to zero exponentially fast in this case.
(ii) Assume that for all s>0 we have

H, .20 and H_,(s)=<0. (11)
If there are sequences s; — o0 and s, —oo such that

Hpa(si) >0 and  Hpo(s)—0

we conclude again from (8) and (9) that 11m H,.(s5)= 11m H ;. (s)=0. Suppose this

max

is not true. Then we may assume w.l.o. g that for some ﬁxed 0>0 Hpp,,(s)= 0 for all
5>0. In fact, by (8) we may assume

lim H,,(s)=6>0. (12)

§—+ 0
Moreover, suppose there exists a sequence s,— o0 such that
(Hmax—Hpo) (Sk)gﬁ>0

for some f > 0. In view of Proposition 4.7 we have uniform estimates for H, H, and
all their derivatives, so we may find a positive constant « =o(f) >0 independent of
s, such that

Hpl5)~Hofs)2

uniformly in each interval [s,, s, + «(f)]. This yields in view of (8)

dy 1B
ds ™™= n2
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in these intervals. This however forces H,,, to become negative in finite time
contradicting (12). Hence it remains only to consider the case where in addition to
(11) and (12) we have

Hm (H 0 (5) — H ,,(s) = 0.

s>

Now let p,e M" be such that H(p,, s)=H,;,(s). In view of (11) and our uniform
estimates for |V H| we can find for arbitrary ¢>0 a radius g, such that

H(p,s)=e VpeB,(py), (14)

where B, (p;) is a geodesic ball around p; satisfying | B, (p,)| = ¢, >0 independently
of s. For the volume 7, C 7" enclosed by M, and some fixed reference slice, we have
the identity

d
dr [75l=— J (H_Hpo)d:us'
M

In view of our uniform height estimate there exists a sequence s,— oo such that
[ (H—H,)(s)du, 0. (15)

1
Furthermore we can write

[ (H=H,s)dpu,= [ (H=H,(s)dp,+ [ (H—H,(s))dys.

Ms Ms\Bo(Ps) Bo(ps)

By (13) and the uniform estimate on |M | the first integral can be made arbitrarily
small whereas in view of (12), (13), (14) and the inequality |B, (p,)| = c, the second
integral can be estimated by

0
H—H < ——
o HHo()di 1B ) (s 2)
0 0
< < = _
=c£<e 2) < c64<0

0 . . . .
if sis sufficiently large and ¢ < T But this contradicts (15). Hence in case (ii) we must
also have lim H,,(s)= lim H,;.(s)=0.

§—> 00 s

In case we assume Ri—)(o)o(, X) >0 for all timelike vectors X we actually have
Ric(v,v)=c,>0
in view of our height and gradient estimates. Hence Proposition 3.3 (ii) yields
d
ds
which immediately implies an exponential rate of convergence.

(Hmax - Hmin) é - CO(Hmax - Hmin)

6. Constant Mean Curvature Cauchy Surfaces Enclosing
a Prescribed Volume

In this section we consider the volume preserving flow given by problem (1) with
H = (s)= H(s), where B
H(s)=IM/™" | Hdy,
M
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is the average of the mean curvature on M,. This flow was studied in [H 4] for the
Riemannian case.

6.1. Theorem. Let ¥~ be a cosmological spacetime satisfying the timelike conver-
gence condition. Let My C ¥ be a smooth compact Cauchy surface enclosing a volume
W with respect to some fixed reference slice X. Assume furthermore that ¥~ satisfies
one of the following compactness conditions:

a) There exist two smooth compact spacelike barrier surfaces M* CI*(M,)
satisfying
Hy o <infHy Ssup Hy <Hy - .

b) For each ye M, V" ~1(y,) is compact.

Then there exists a unique longtime solution M =F(M") of problem (1) with #/(s)
= H(s) which converges exponentially fast in C* to a smooth compact constant mean
curvature Cauchy surface M , enclosing the same volume with X as M.

6.2. Remark. Condition b) was used in [GG].

Proof of Theorem 6.1. From Proposition 3.3 (ii) with # =H and the timelike
convergence condition we conclude that

—‘i supH=<0 and i infH=0.
ds M, S M

Thus, if condition a) is satisfied, we obtain a height-bound as in Proposition 4.9. In

case of condition b) the height estimate follows from the fact that M intersects M,

for all s, since it encloses the same volume with respect to 2 as M. All the other

estimates of Sect. 4 carry over unchanged since in this case

sup |#’| < sup |H|
Mg Mo

and V# =0.

This establishes the existence of a smooth solution of the volume preserving
flow for all s> 0. It remains only to prove the asymptotic convergence. We proceed
as in Sect. 4, following [H 4] to prove

sup |[H—H|-»0 as s—o0. (16)

In fact, as # is the mean value of H, we even have
d 7)2
S Mg

in view of Proposition 3.1 (iii). We now compute using Proposition 3.1 (iii) and
Proposition 3.3 (ii)
d _ _
o (H—HPdp <=2 | WHPdu+ | |HI(H— B dp,. (17)
MS MS

S M,
By (16) and (17) we actually have

& (H-APdus 2 | WHPdu+o [ (H- By,
S Mg Ms M
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for s=s,. We now proceed as in the proof of Theorem 4.1. In view of our uniform a
priori estimates for the geometry of M, we can apply the Poincaré inequality with a
constant ¢, independent of s. If we choose ¢ small enough we finally arrive at

d _ _ _
d_ j. ]H_led:usé_co ! j 'H—ledus
S M M

which establishes the desired exponential convergence result for sup |H—H| in

M,
view of standard interpolation inequalities. This immediately yields exponential
convergence of M, to a limiting surface M.
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