Localization in the Ground State of the Ising Model with a Random Transverse Field

Communications in Mathematical Physics © Springer-Verlag 1991

Massimo Campanino*, Abel Klein** and J. Fernando Perez***

Department of Mathematics, University of California, Irvine, Irvine, CA 92717, USA

Received March 21, 1990

Abstract. We study the zero-temperature behavior of the Ising model in the presence of a random transverse field. The Hamiltonian is given by

$$H = -J \sum_{\langle x, y \rangle} \sigma_3(x) \sigma_3(y) - \sum_x h(x) \sigma_1(x),$$

where $J > 0, x, y \in \mathbb{Z}^d, \sigma_1, \sigma_3$ are the usual Pauli spin $\frac{1}{2}$ matrices, and $\mathbf{h} = \{h(x), x \in \mathbb{Z}^d\}$ are independent identically distributed random variables. We consider the ground state correlation function $\langle \sigma_3(x)\sigma_3(y) \rangle$ and prove:

1. Let d be arbitrary. For any m > 0 and J sufficiently small we have, for almost every choice of the random transverse field **h** and every $x \in \mathbb{Z}^d$, that

$$\langle \sigma_3(x)\sigma_3(y)\rangle \leq C_{xh}e^{-m|x-y|}$$

for all $y \in \mathbb{Z}^d$ with $C_{x,\mathbf{h}} < \infty$.

2. Let $d \ge 2$. If J is sufficiently large, then, for almost every choice of the random transverse field **h**, the model exhibits long range order, i.e.,

$$\lim_{|y|\mapsto\infty} \langle \sigma_3(x)\sigma_3(y) \rangle > 0$$

for any $x \in \mathbb{Z}^d$.

1. Introduction

Quantum spin systems with random parameters have been introduced to study the effects of impurities in several physical systems (see for example, Halperin, Lee

^{*} Permanent address: Dipartimento di Matematica, Universita di Bologna, p.zz.a S. Donato, 5, I-40126 Bologna, Italy

^{**} Partially supported by the NSF under grant DMS 8905627 and INT 8703059

^{***} Permanent address: Instituto de Física, Universidade de São Paulo, P.O. Box 20516, CEP 01498 São Paulo, Brazil. Partially supported by the CNP_q and FAPESP

and Ma [1] where models related to superfluidity and superconductivity were discussed).

Examples of such systems are given by quantum X - Y, Heisenberg and Ising models in the presence of a random transverse field. In [1] it was argued that for such models localization should take place in the ground state of the system destroying the long-range order of the non-random component of the spin system, for sufficiently high disorder.

Klein and Perez [2] have studied the quantum X - Y model with a random transverse field in one dimension and proved localization in the ground state of the system for any disorder. In particular they proved exponential decay for the two-point function, which is to be compared with the polynomial decay obtained by Lieb, Schultz and Mattis [3] for zero transverse field. Their method was to map the model into a free Fermi gas in the presence of a random external potential; the one-particle Hamiltonian for the Fermi gas turned out to be the onedimensional Anderson Hamiltonian and exponential decay for the two-point function followed from Anderson localization.

In this article we study the Ising model in the presence of a random transverse field. The corresponding deterministic model appears in the pseudospin formulation of several phase transition problems and was used to study order disorder ferroelectrics with a tunneling effect by de Gennes [4] and magnetic ordering in materials with singlet crystal field ground state by Wang and Cooper [5]. The one-dimensional deterministic model was studied by Pfeuty [6] following Lieb, Schultz and Mattis [3].

The Ising model with a random transverse field is given, in a finite volume $\Lambda \subset \mathbb{Z}^d$, by the Hamiltonian

$$H_{\Lambda} = -J \sum_{\langle x, y \rangle \subset \Lambda} \sigma_3(x) \sigma_3(y) - \sum_{x \in \Lambda} h(x) \sigma_1(x)$$

acting on the Hilbert space $\mathscr{H}_{\Lambda} = \bigotimes_{x \in \Lambda} \mathscr{H}_x$, with $\mathscr{H}_x = \mathbb{C}^2$ for all x, where J > 0, $\langle x, y \rangle$ denote a pair of nearest neighbor sites, σ_1, σ_3 are the usual Pauli spin $\frac{1}{2}$ matrices:

$$\sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \quad \sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix},$$

with $\sigma_i(x), i = 1, 3, x \in \Lambda$, the corresponding operator on \mathcal{H}_{Λ} acting only on \mathcal{H}_x . The random transverse field is $\mathbf{h} = \{h(x), x \in \mathbb{Z}^d\}$, where the $h(x), x \in \mathbb{Z}^d$ are taken to be independent identically distributed random variables. Since for any $x_0 \in \Lambda$ we have

$$\sigma_3(x_0)H_A\sigma_3(x_0) = H_A + 2h(x_0)\sigma_1(x_0),$$

we can take $h(x) \ge 0$ without loss of generality.

If h(x) > 0 for all $x \in \mathbb{Z}^d$, H_A has a unique ground state Ω_A for each A and, the correlation functions

$$\langle \sigma_3(x)\sigma_3(y) \rangle_A \equiv (\Omega_A, \sigma_3(x)\sigma_3(y)\Omega_A)$$

are monotone increasing in Λ and decreasing functions of each h(x). These follow from the representation of H_{Λ} as the generator of a positivity improving semigroup plus correlation inequalities derived in the corresponding path space (see the

discussion in Sect. 2). We can thus define the infinite volume ground state correlation function by

$$\langle \sigma_3(x)\sigma_3(y)\rangle = \lim_{\Lambda \neq \mathbf{Z}^d} \langle \sigma_3(x)\sigma_3(y)\rangle_{\Lambda}, \tag{1.1}$$

preserving the monotonicity in each h(x). We will always assume $\mathbf{P}{h(x) > 0} = 1$.

The deterministic uniform model, i.e., $h(x) \equiv h > 0$ for all x, is one of the simplest quantum spin system with a non-trivial phase diagram, typical for a large class of models exhibiting discrete symmetry breakdown. The relevant parameter is $\zeta = h/J$. In any dimension there exists $0 < \zeta_1 \leq \zeta_2 < \infty$ such that if $\zeta > \zeta_2$ the correlation function (1.1) decays exponentially and if $\zeta < \zeta_1$ there is long range order [7, 8]. In one dimension it is known that $\zeta_1 = \zeta_2 = 2$ [8].

It follows from the monotonicity of (1.1) in each h(x) that, with $\zeta(x) = h(x)/J$, the random model correlation function decays exponentially if $\zeta(x) > \zeta_2$ with probability one, and exhibits long range order if $\zeta(x) < \zeta_1$ with probability one. Thus, if $0 < a \le h(x) \le b < \infty$ with probability one, the random model will exhibit a phase transition by varying J.

The interesting nontrivial case is thus when the events $\{\zeta(x) > \zeta_2\}$ and $\{\zeta(x) < \zeta_1\}$ both have nonzero probability, so the system exhibits Griffiths' singularities. Typical cases would be when each h(x) is uniformly distributed or the interval [0,1] or exponentially distributed. Let $p_1 = \mathbf{P}\{\zeta(x) < \zeta_1\}, p_2 = \mathbf{P}\{\zeta(x) > \zeta_2\}$, and recall $\mathbf{P}\{h(x) > 0\} = 1$. Then, we have $\lim_{J \downarrow 0} p_1 = 0$, $\lim_{J \downarrow 0} p_2 = 1$ so for J sufficiently small we should expect exponential decay of the correlation function (1.1) with probability one. On the other hand, $\lim_{J \to \infty} p_1 = 1$, $\lim_{J \to \infty} p_2 = 0$, so for sufficiently large

the system should exhibit long range order.

Our results are

Theorem 1.1. Suppose $\mathbf{E}(h(x)^{-\delta}) < \infty$ for some $\delta > 0$. Then for any d = 1, 2, ... and m > 0 there exists $J_1 > 0$ such that for any $J < J_1$ and for almost every choice of the random transverse field **h** and every $x \in \mathbb{Z}^d$ we have

$$\langle \sigma_3(x)\sigma_3(y)\rangle \leq C_{x,\mathbf{h}}e^{-m|x-y|}$$

for all $y \in \mathbb{Z}^d$ with $C_{x,\mathbf{h}} < \infty$.

Theorem 1.2. Let h(x) have an arbitrary distribution. Then for any $d \ge 2$ there exists $J_2 < \infty$ such that for all $J > J_2$ we have, for almost every choice of the random transverse field,

$$\lim_{|y|\to\infty} \langle \sigma_3(x)\sigma_3(y) \rangle > 0$$

for any $x \in \mathbb{Z}^d$.

Following Driessler, Landau and Perez [8] we write the correlation function (1.1) as the limit of two-point functions of (d + 1)-dimensional classical Ising models with *d*-dimensional disorder. In Sect. 2 we show that

$$\langle \sigma_3(x)\sigma_3(y)\rangle = \lim_{n \to \infty} \langle \sigma(x,0)\sigma(y,0)\rangle^{(n)},$$

where $\langle \rangle^{(n)}$ is the expectation for the classical Ising model on $\mathbf{Z}^d \times \frac{1}{n} \mathbf{Z}$ with

Hamiltonian

$$H^{(n)} = \frac{-J}{n} \sum_{t} \sum_{\langle x, y \rangle} \sigma(x, t) \sigma(y, t) - \sum_{x} \sum_{t} K_n(x) \sigma(x, t) \sigma\left(x, t + \frac{1}{n}\right),$$
(1.2)

where $\tanh K_n(x) = e^{-(2/n)h(x)}$. Models of this type were studied by Campanino and Klein [9], who developed a multiscale expansion to prove exponential decay for the (d + 1)-dimensional system with *d*-dimensional disorder, and gave a simple percolation argument to show long range order when $d \ge 2$. They proved analogous results to Theorems 1.1 and 1.2 for such models, but their results can be applied directly only for *n* fixed. In this article we refine their methods to obtain estimates uniform in *n* for *n* large.

This paper is organized as follows. In Sect. 2 we discuss some general features of the deterministic model, construct the associated path space and the approximation by classical Ising models. In Sect. 3 we obtain mean field type bounds on the deterministic system which will give the initial step for the multiscale analysis. Section 4 contains the multiscale analysis and the proof of Theorem 1.1. In Sect. 5 we prove Theorem 1.2.

2. The Approximation by Classical Ising Models

Let $\mathscr{G}_{\Lambda} = \{1, -1\}^{\Lambda}$, if $\sigma \in \mathscr{G}_{\Lambda}$ we have $\sigma = \{\sigma(x), x \in \Lambda\}$ with each $\sigma(x) \in \{1, -1\}$.

If we identify \mathbb{C}^2 with $l^2(\{1, -1\})$ in the obvious way we can identify \mathscr{H} with $l^2(\mathscr{G}_{\lambda})$; notice that the matrices of linear operators with respect to the standard base in either \mathbb{C}^2 or \mathscr{H}_{λ} are now the kernels of the same operators on $l^2(\{1, -1\})$ or $l^2(\mathscr{G}_{\lambda})$, respectively.

In this representation the operator $\sigma_3(x)$ is given by multiplication by the function $\sigma(x)$, for each $x \in \Lambda$. Thus, if we write

with

$$H^{I}_{\Lambda} = -J \sum_{\langle x, y \rangle \subset \Lambda} \sigma_{3}(x) \sigma_{3}(y),$$

 $H_{\Lambda} = H^{I}_{\Lambda} + H^{t}_{\Lambda}$

 H_A^I is given by multiplication by the function $-J \sum_{\langle x,y \rangle \in A} \sigma(x)\sigma(y)$ and $H_A^I = -\sum_{x \in A} h(x)\sigma_1(x)$ generate a positivity improving semigroup since h(x) > 0 for all x and

$$e^{t\sigma_1} = \cosh t + (\sinh t)\sigma_1$$

has a strictly positive kernel for t > 0.

It follows from the general theory that H_A generates a positivity improving semigroup and hence H_A has a unique ground state Ω_A which is a strictly positive function. In particular, there exists a path space, i.e., a stochastic process $\{\sigma(x,t); x \in A, t \in \mathbf{R}\}$ taking value on $\{1, -1\}$, stationary and symmetric with respect to t, such that, for example,

$$\frac{(\Omega_{A},\sigma_{3}(x)e^{-|t|H_{A}}\sigma_{3}(y)\Omega_{A})}{(\Omega_{A},e^{-|t|H_{A}}\Omega_{A})} = \langle \sigma(x,0)\sigma(y,t)\rangle,$$

where $\langle \rangle$ denotes the expectation in the stochastic process (see, for instance, Klein and Landau [10] for a general discussion).

In our situation \mathscr{H}_A is finite dimensional, H_A , H_A^I , H_A^I , H_A^I are therefore bounded self-adjoint operators, so it is possible to do everything more explicitly. For example, to show uniqueness of the ground, let $\lambda < H_A^I$, we have

$$(H_A - \lambda)^{-1} = (H_A^I - \lambda)^{-1} \sum_{n=0}^{\infty} (-H_A^t (H_A^I - \lambda)^{-1})^n,$$

the series being uniformly convergent for $\lambda \ll H_A^I$. It clearly follows that for such λ , $(H_A - \Lambda)^{-1}$ has strictly positive kernel and hence the Perron-Frobenius theorem applies so we can conclude that H_A has a unique ground state Ω_A which is a strictly positive function.

The operator H_{Λ}^{t} has the (normalized) unique ground state $\Omega_{\Lambda}^{(0)}$ given by

$$\Omega_{\Lambda}^{(0)}(\sigma) = \frac{1}{2^{|\Lambda|}}$$

for all $\sigma \in \mathscr{G}_{\Lambda}$. It follows immediately that

$$(\boldsymbol{\Omega}_{\Lambda},\boldsymbol{\Omega}_{\Lambda}^{(0)}) > 0,$$

so for any operator A in \mathscr{H}_A we have

$$\langle A \rangle_{\Lambda} \equiv (\Omega_{\Lambda}, A\Omega_{\Lambda}) = \lim_{\beta \to \infty} \frac{(\Omega_{\Lambda}^{(0)}, e^{-(\beta/2)H_{\Lambda}}Ae^{-(\beta/2)H_{\Lambda}}\Omega_{\Lambda}^{(0)})}{(\Omega_{\Lambda}^{(0)}, e^{-\beta H_{\Lambda}}\Omega_{\Lambda}^{(0)})}$$

Following Driessler, Landau and Perez [8] we can use Trotter's product formula to conclude that, if $B \subset A$,

$$\left\langle \prod_{x \in B} \sigma_3(x) \right\rangle_{\Lambda} \equiv \left(\Omega_{\Lambda}, \prod_{x \in B} \sigma_3(x) \Omega_{\Lambda} \right) = \lim_{\beta \to \infty} \lim_{n \to \infty} \left\langle \prod_{x \in B} \sigma(x, 0) \right\rangle_{\Lambda, \beta}^{(n)}$$
(2.1)

where $\langle \rangle_{\Lambda,\beta}^{(n)}$ is the expectation for the classical Ising model on $\mathbf{Z}^d \times \frac{1}{n} \mathbf{Z}$ with Hamiltonian given by (1.2) restricted to the region $\Lambda \times \left(\left[-\frac{\beta}{2}, \frac{\beta}{2} \right] \cap \frac{1}{n} \mathbf{Z} \right)$, with free boundary conditions.

Since our classical Ising models are ferromagnetic and we are using free boundary conditions, we can apply correlation inequalities to obtain

$$\left\langle \prod_{X \in \mathbf{W}} \sigma(X) \right\rangle_{\Lambda,\beta}^{(n)} \leq \left\langle \prod_{X \in \mathbf{W}} \sigma(X) \right\rangle_{\Lambda',\beta'}^{(n)}$$
(2.2)
for any $\Lambda \subset \Lambda', \beta \leq \beta', \mathbf{W} \subset \Lambda \times \left(\left[-\frac{\beta}{2}, \frac{\beta}{2} \right] \cap \frac{1}{n} \mathbf{Z} \right).$

Thus we can interchange the limits in (2.1) to conclude

$$\left\langle \prod_{x\in B} \sigma_3(x) \right\rangle_A = \lim_{n\to\infty} \left\langle \prod_{x\in B} \sigma(x,0) \right\rangle_A^{(n)}$$

so using again (2.2) we obtain the existence of the limit

$$\left\langle \prod_{x\in B}\sigma_3(x)\right\rangle \equiv \lim_{\Lambda\to Z^d} \left\langle \prod_{x\in B}\sigma_3(x)\right\rangle_{\Lambda} = \lim_{n\to\infty} \left\langle \prod_{x\in B}\sigma(x,0)\right\rangle^{(n)}.$$

M. Campanino, A. Klein and J. F. Perez

In particular we obtain (1.1).

More generally, for a fixed finite Λ we define

$$\sigma_3(x,t) = e^{-tH_A}\sigma_3(x)e^{tH_A},$$

so we have existence of

$$\langle \sigma_3(x,t)\sigma_3(y,s)\rangle \equiv \lim_{\Lambda \to \mathbf{Z}^d} \langle \sigma_3(x,t)\sigma_3(y,s)\rangle_{\Lambda}$$

and

$$\langle \sigma_3(x,t)\sigma_3(y,s)\rangle = \lim_{n \to \infty} \langle \sigma(x,t^{(n)})\sigma(y,s^{(n)})\rangle^{(n)},$$
 (2.3)

where for $r \in \mathbf{R}$ we let $r^{(n)} = \frac{1}{n} [nr]$ if $r \ge 0$ and $r^{(n)} = -|r|^{(n)}$ if r < 0.

3. Percolation, Self-Avoiding Walks and Mean-Field Bounds

For each *n* we consider the bond Bernoulli percolation model on $\mathbb{Z}^d \times \frac{1}{n}\mathbb{Z}$ with occupation probabilities

$$q_{(x,t),(y,s)}^{(n)} = \begin{cases} 1 - e^{-2(J/n)} & \text{if } t = s, x, y \text{ nearest neighbors} \\ 1 - e^{-2K_n(x)} & \text{if } x = y, |t - s| = \frac{1}{n} \\ 0 & \text{otherwise} \end{cases}$$

The corresponding percolation probability will be denoted by $\mathbf{Q}^{(n)}$; notice that it depends on the choice of the random transverse field **h**.

If $\mathbf{W} \subset \mathbf{Z}^d \times \mathbf{R}$, we set $\mathbf{W}^{(n)} = \mathbf{W} \cap \left(\mathbf{Z}^d \times \frac{1}{n}\mathbf{Z}\right)$. If $X, Y \in \mathbf{W}^{(n)}$, by $X \xrightarrow{w} Y$ we mean that X is connected to Y by a path of occupied bonds in $\mathbf{W}^{(n)}$. We set

$$G_{\mathbf{W}}^{(n)}(X, Y) = \mathbf{Q}^{(n)} \{ X \xrightarrow{\mathbf{W}} Y \}.$$

It follows from the Fortuin-Kasteleyn representation of Ising models and from Fortuin's comparison principles (see Aizenman et al. [11]) that

$$\langle \sigma(X)\sigma(Y)\rangle_{\mathbf{W}}^{(n)} \leq G_{\mathbf{W}}^{(n)}(X,Y),$$
(3.1)

where the left-hand-side denotes the two-point of the classical Ising model in $\mathbb{Z}^d \times \frac{1}{n}\mathbb{Z}$ with Hamiltonian given by (1.2), restricted to the region $\mathbb{W}^{(n)}$ with free boundary condition.

Following Campanino and Klein [9], we will prove Theorem 1.1 by showing decay for $G^{(n)}(X, Y)$.

Since if $X \xrightarrow{w} Y$ we can always find a self-avoiding walk in $\mathbf{W}^{(n)}$ starting at X and ending at Y, we also have

$$G_{\mathbf{W}}^{(n)}(X, Y) \le S_{\mathbf{W}}^{(n)}(X, Y),$$
(32)

where

$$S_{\mathbf{W}}^{(n)}(X, Y) = \sum_{w} q_{w}^{(n)},$$
(3.3)

504

the summation being taken over all nearest neighbors self-avoiding walks w in $\mathbf{W}^{(n)}$ that go from X to Y, i.e., $W:\{0, 1, ..., |w|\} \to \mathbf{W}^{(n)}$ with w(0) = X, w(|w|) = Y, and w(i), w(i+1) nearest neighbors, $w(i) \neq w(j)$ if $i \neq j$. Here

$$q_W^{(n)} = \prod_{i=0}^{|w|-1} q_{w(i),w(i+1)}^{(n)}.$$

Another similar bound for $\langle \sigma(X)\sigma(Y) \rangle^{(n)}$ (but not for $G^{(n)}(X, Y)$) was obtained by Fisher [12]:

$$\langle \sigma(X)\sigma(Y)\rangle_{\mathbf{W}}^{(n)} \leq \widetilde{S}_{\mathbf{W}}^{(n)}(X,Y),$$
(3.4)

where $\tilde{S}_{\mathbf{W}}^{(n)}$ is defined also by (3.3) but with $q_{\mathbf{x},\mathbf{y}}^{(n)}$ replaced by

$$\tilde{q}_{(x,t),(y,s)}^{(n)} = \begin{cases} \tanh \frac{J}{n} & \text{if } t = s, x, y \text{ nearest neighbors} \\ \tanh K_n(x) & \text{if } x = y, |t-s| = \frac{1}{n} \\ 0 & \text{otherwise} \end{cases}$$

Let $\mathbf{W} = \Lambda \times [-T, T]$, with $\Lambda \subset \mathbb{Z}^d$. Following Fisher [12] we estimate (3.3) by replacing the self-avoiding condition by the weaker requirement of no immediate return after a vertical step, obtaining

$$S_{A \pm [-T,T]}^{(n)}((x,t),(y,s)) \leq \sum_{J:x \to y} \sum_{k_0,\dots,k_{|\tau|}}' \prod_{i=0}^{|\tau|} (1 - e^{-2K_n(\tau(i))})^{|k_i|} (1 - e^{-2(J/n)})^{|\tau|}, \quad (3.5)$$

where the first summation runs over all walks τ in Λ from x to y, the second summation being over the number of vertical steps k_i taken by τ after the i^{th} horizontal step, with $k_i > 0$ if the steps are upwards, $k_i < 0$ if downwards, the prime in the summation accounts for the restriction

$$\sum_{i=0}^{|\tau|} k_i = (s-t)^n.$$
(3.6)

In particular,

$$\sum_{i=0}^{|\tau|} |k_i| \ge |s-t|n.$$
(3.7)

Recall $e^{-2K_n(x)} = \tanh \frac{h(x)}{n}$, and set $h_A = \min_{x \in A} h(x)$. We get

$$\begin{split} S_{A\times[-T,T]}^{(n)}((x,t),(y,s)) & \leq \sum_{\tau:x\to y} (1-e^{-(2J/n)})^{|\tau|} \sum_{k_0,k_1,\dots,k_{|\tau|}}^{\prime} \left(1-\tanh\frac{h_A}{n}\right)_{i=0}^{|\tau|} \\ & \leq \left(1-\tanh\frac{h_A}{n}\right)^{\delta n|\tau-s|} \sum_{\tau:x\to y} (1-e^{-(2J/n)})^{|\tau|} \sum_{k_0,k_1,\dots,k_{|\tau|}}^{\prime} \left(1-\tanh\frac{h_A}{n}\right)^{(1-\delta)} \sum_{i=0}^{|\tau|} \\ & \leq \left(1-\tanh\frac{h_A}{n}\right)^{\delta n|\tau-s|} \sum_{\tau:x\to y} \sum_{k_0,k_1,\dots,k_{|\tau|-1}}^{\prime} \left(1-\tanh\frac{h_A}{n}\right)^{(1-\delta)} \sum_{i=0}^{|\tau|-1} \sum_{k_i}^{|\tau|} \left(1-\tanh\frac{h_A}{n}\right)^{(1-\delta)} \\ & \leq \left(1-\tanh\frac{h_A}{n}\right)^{\delta n|\tau-s|} \sum_{\tau:x\to y} \sum_{k_0,k_1,\dots,k_{|\tau|-1}}^{\prime} \left(1-\tanh\frac{h_A}{n}\right)^{(1-\delta)} \sum_{i=0}^{|\tau|-1} \sum_{k_i}^{|\tau|} \left(1-\tanh\frac{h_A}{n}\right)^{(1-\delta)} \\ & \leq \left(1-\tanh\frac{h_A}{n}\right)^{\delta n|\tau-s|} \\ & \leq \left(1-\tanh\frac{h_A}{n}\right)^{\delta n|\tau-s|} \sum_{\tau:x\to y} \sum_{k_0,k_1,\dots,k_{|\tau|-1}}^{\prime} \left(1-\tanh\frac{h_A}{n}\right)^{(1-\delta)} \\ & \leq \left(1-\tanh\frac{h_A}{n}\right)^{\delta n|\tau-s|} \\ & \leq \left(1-\frac{h_A}{n}\right)^{\delta n|\tau-s|} \\ & \leq \left$$

for any $0 \le \delta < 1$, using (3.7) and (3.6); where the sum over $k_0, \ldots, k_{|\tau|-1}$ is now unrestricted.

Thus, we have

$$S_{A\times[-T,T]}^{(n)}((x,t),(y,s)) \leq \left(1 - \tanh\frac{h_A}{n}\right)^{\delta n|t-s|} \sum_{\tau:x\to y} \zeta_{n,\delta}^{|\tau|}, \qquad (3.8)$$

where

$$\zeta_{n,\delta} = \frac{2(1 - e^{-2(J/n)})}{1 - \left(1 - \tanh\frac{h}{n}\right)^{1 - \delta}}.$$

If 0 < 2dR < 1, we have

$$\sum_{\tau:x \to y} R^{|\tau|} = (-R\Delta_A + 1)^{-1} (x, y) \le \frac{(2dR)^{|x-y|}}{1 - 2dR},$$
(3.9)

where Δ_A is the centered Laplacian in $\Lambda \subset \mathbb{Z}^d$, i.e., $\Delta_A(x, y) = 1$ if x and y in Λ are nearest neighbors, and equals zero otherwise. Thus it follows from (3.8) and (3.9) that

$$S_{A \times [-T,T]}^{(n)}((x,t),(y,s))) \leq \left(1 - \tanh\frac{h_A}{n}\right)^{\delta n |t-s|} (-\zeta_{n,\delta} \Delta_A + 1)^{-1}(x,y)$$
$$\leq \left(1 - \tanh\frac{h_A}{n}\right)^{\delta n |t-s|} \frac{(2d\zeta_{n,\delta})^{|x-y|}}{1 - 2d\zeta_{n,\delta}}.$$
(3.10)

We have

$$\lim_{n\to\infty}\zeta_{n,\delta}=\frac{4J}{(1-\delta)h_A}$$

It follows that, if $\frac{8dJ}{(1-\delta)h_A} < 1$, we have

$$\overline{\lim_{n \to \infty}} S^{(n)}_{A \times [-T,T]}((x,t^{(n)}),(y,s^{(n)})) \leq e^{-\delta h_A |t-s|} \left(-\frac{4J}{(1-\delta)h_A}\Delta_A + 1\right)^{-1}(x,y) \\
\leq \left(1 - \frac{8dJ}{(1-\delta)h_A}\right)^{-1} e^{-\delta h_A |t-s|} \left(\frac{8dJ}{(1-\delta)h_A}\right)^{|x-y|}$$
(3.11)

for any $0 < \delta < 1$. Similarly, if $\frac{2dJ}{(1-\delta)h_A} < 1$, we have $\overline{\lim_{n \to \infty}} \widetilde{S}_{A \times [-T,T]}^{(n)}((x, t^{(n)}), (y, s^{(n)})) \leq e^{-2\delta h_A |t-s|} \left(-\frac{J}{(1-\delta)h_A} \Delta_A + 1 \right)^{-1}(x, y)$ $\leq \left(1 - \frac{2dJ}{(1-\delta)h_A} \right)^{-1} e^{-2\delta h_A |t-s|} \left(\frac{2dJ}{(1-\delta)h_A} \right)^{|x-y|}.$ (3.12)

In particular, from (1.1), (2.3), (3.4) and (3.12) we immediately get

Theorem 3.1. Suppose $\overline{h} = \inf_{x \in \mathbb{Z}^d} h(x) > 0$.

Then, if $2dJ < \overline{h}$ we have

$$\langle \sigma_3(x)\sigma_3(y)\rangle \leq \left(-\frac{J}{\bar{h}}\Delta + 1\right)^{-1}(x,y) \leq \left(1-\frac{2dJ}{\bar{h}}\right)^{-1} \left(\frac{2dJ}{\bar{h}}\right)^{|x-y|}$$

for all $x, y \in \mathbb{Z}^d$.

More generally, we have

$$\begin{aligned} \langle \sigma_3(x,t)\sigma_3(y,s)\rangle &\leq e^{-2\delta\bar{h}|t-s|} \left(\frac{-J}{(1-\delta)\bar{h}}\Delta + 1\right)^{-1}(x,y) \\ &\leq \left(1 - \frac{2dJ}{(1-\delta)\bar{h}}\right)^{-1} e^{-2\delta\bar{h}|t-s|} \left(\frac{2dJ}{(1-\delta)\bar{h}}\right)^{|t-y|} \end{aligned}$$

for any $x, y \in \mathbb{Z}^d$, $t, s \in \mathbb{R}$ and all $0 \leq \delta < 1$ such that $2dJ < (1 - \delta)\overline{h}$.

4. The Multiscale Analysis

We will now prove Theorem 1.1. Our proof follows the proof of Theorem 2.1 in [9], the main difference is that we need to control the limit as $n \to \infty$ in (1.1) so we must perform a multiscale analysis uniformly in *n* for *n* large.

In view of (3.1) Theorem 1.1 will follows from

Theorem 4.1. Suppose $\mathbf{E}(h(x)^{-\delta}) < \infty$ for some $\delta > 0$. Then for any $d \ge 1$, m > 0 and v > 1 there exists $J_1 > 0$ and $n_1 < \infty$ such that if $J < J_1$, then for almost every choice of **h** we have

$$G^{(n)}((x,t),(y,s)) \leq C_{x,\mathbf{h}} e^{m|(x-y,(\log|t-s|)^{\nu})|}$$

for all $n \ge n_1, x, y \in \mathbb{Z}^d$, $t, s \in \mathbb{R}$, with $C_{x,\mathbf{h}} = C_{x,\mathbf{h}}(J, m, v) < \infty$.

We will restrict ourselves to the case v = 2, the modification for arbitrary v > 1will be clear. Notice we use the notation $|(x, t)| = \max \{|x|, |t|\}$, where $|x| \equiv ||x||_{\infty}$ for $x \in \mathbb{Z}^d$.

The proof of Theorem 4.1 will use properties of independent bond percolation, including the Harris-FKG, van der Berg-Kesten (v - BK) and Hammersley-Simon-Lieb (HSL) inequalities. The first two will be used as described in [9], but we will need a slightly different form of the HSL inequality which follows from the v - BK inequality.

Let $\Lambda, \Lambda' \subset \mathbb{Z}^d, I, I' \subset \mathbb{R}, \mathbb{W} = \Lambda \times I, \mathbb{W}' = \Lambda' \times I'$. Let $\mathbb{W}^{(n)} = \mathbb{W} \cap \left(\mathbb{Z}^d \times \frac{1}{n}\mathbb{Z}\right)$, similarly for $\mathbb{W}^{(n)}$. We set

$$\hat{\sigma}_{H}^{(n)}(\mathbf{W},\mathbf{W}') = \left\{ (y,s) \in \mathbf{W}^{(n)} \cap \mathbf{W}^{\prime(n)}; \text{ where } \left(y,s+\frac{1}{n} \right) \text{ or } \left(y,s-\frac{1}{n} \right) \in \mathbf{W}^{\prime(n)} \setminus \mathbf{W}^{(n)} \right\},\\ \hat{\sigma}_{V}^{(n)}(\mathbf{W},\mathbf{W}') = \left\{ \langle (y,s), (y',s) \rangle; (y,s) \in \mathbf{W}^{(n)} \cap \mathbf{W}^{\prime(n)}, (y,s') \in \mathbf{W}^{\prime(n)} \setminus \mathbf{W}^{\prime(n)} \right\}.$$

If $\mathbf{W}' = \mathbf{Z}^d \times \mathbf{R}$, we omit \mathbf{W}' . We also write $\partial^{(n)}\mathbf{W} = \partial^{(n)}_H \mathbf{W} \cup \{Z; \langle Z, Z' \rangle \in \partial^{(n)}_V \mathbf{W}$ for some $Z'\}$.

Now let $X \in \mathbf{W}^{(n)} \cap \mathbf{W}^{(n)}$, $Y \in \mathbf{W}^{(n)} \setminus \mathbf{W}^{(n)}$, it follows from the HSL inequality that

$$\begin{aligned}
G_{\mathbf{W}'}^{(n)}(X,Y) &\leq \sum_{Z \in \partial_{H}^{(n)}(\mathbf{W},\mathbf{W}')} G_{\mathbf{W} \cap \mathbf{W}'}^{(n)}(X,Z) G_{\mathbf{W}'}^{(n)}(Z,Y) \\
&+ (1 - e^{-2(J/n)}) \sum_{\langle Z, Z' \rangle \in \partial_{V}^{(n)}(\mathbf{W},\mathbf{W}')} G_{\mathbf{W} \cap \mathbf{W}'}^{(n)}(X,Z) G_{\mathbf{W}'}^{(n)}(Z',Y).
\end{aligned}$$
(4.1)

For large $n, 1 - e^{-2J/n} \approx \frac{2J}{n}$; this factor is needed in (4.1) since a vertical line of length T contains nT points of $\mathbb{Z}^d \times \frac{1}{n}\mathbb{Z}$.

We will use the following consequence of (4.1). If $X \in \mathbf{W}^{(n)}$, let

$$G_{\mathbf{W}}^{(n)}(X,\partial) = \sum_{Z \in \partial_{H}^{(n)} \mathbf{W}} G_{\mathbf{W}}^{(n)}(X,Z) + (1 - e^{-2J/n}) \sum_{\langle Z, Z' \rangle \in \partial_{V}^{(n)} \mathbf{W}} G_{\mathbf{W}}^{(n)}(X,Z).$$

Then, for $X \in \mathbf{W}^{(n)} \cap \mathbf{W}^{\prime(n)}$, $Y \in \mathbf{W}^{\prime(n)} \setminus \mathbf{W}^{(n)}$, we have

$$G_{\mathbf{W}}^{(n)}(X,Y) \leq G_{\mathbf{W}}^{(n)}(X,\partial) G_{\mathbf{W}}(Z_1,Y)$$

$$(4.2)$$

for some

$$Z_1 \in \partial_H^{(n)}(\mathbf{W}, \mathbf{W}') \cup \{ Z'; \langle Z, Z' \rangle \in \partial_V^{(n)}(\mathbf{W}, \mathbf{W}') \text{ for some } Z \}.$$

We will now start the multiscale analysis. For $x \in \mathbb{Z}^d$ and L > 0 let us consider the hypercube

$$\Lambda_L(x) = \{ y \in \mathbb{Z}^d; |x - y| \le L \}.$$

For $X = (x, t) \in \mathbb{Z}^d \times \mathbb{R}$, L > 0, T > 0, we consider the cylinder

$$B_{L,T}(X) = \Lambda_L(x) \times [t - T, t + T]$$

and, in particular

$$B_L(X) = B_{L,e^{\sqrt{L}}}(X)$$

Definitions. Let m > 0, L > 0, $\bar{n} > 0$. A site $x \in \mathbb{Z}^d$ is said to be (m, L, \bar{n}) -regular if

$$G_{B_L((x,0))}^{(n)}((x,0), Y) \leq e^{-mL}$$

for all $n \ge \bar{n}$ and $Y \in \partial^{(n)} B_L((x, 0))$. Otherwise x is said to be (m, L, \bar{n}) -singular. A set $\Lambda \subset \mathbb{Z}^d$ is called (m, L, \bar{n}) -regular if every $x \in \Lambda$ is (m, L, \bar{n}) -regular.

If x is (m, L, \bar{n}) -regular we have

$$G_{B_L((x,t))}^{(n)}((x,t),\partial) \le e^{-(m-2/\sqrt{L})L}$$
(4.3)

for all $n > \overline{n}$, $t \in \mathbf{R}$ and all L sufficiently large.

Theorem 4.2. Assume $\mathbf{E}(h(x)^{-\delta}) < \infty$ for some $\delta > 0$. Fix J > 0, and let $p > 2d^2$. Suppose there exists $m_0 > 0$, $L_0 > 0$ and $n_0 > 0$ such that

$$\mathbf{P}\{0 \text{ is } (m_0, L_0, n_0) - regular\} \ge 1 - \frac{1}{L_0^p}$$

Let $\alpha \in \left(2d, \frac{p}{d}\right)$, set $L_{k+1} = L_k^{\alpha}, k = 0, 1, \dots$ Then for any $0 < m_{\infty} < m_0$ there exists

508

 $\overline{L}(p,d,m_0,m_\infty,\alpha,J) < \infty$, nondecreasing in J, such that if $L_0 > \overline{L}$ there exists $\overline{n} < \infty$ such that

$$\mathbf{P}\{0 \text{ is } (m_{\infty}, L_k, \bar{n}) - regular\} \ge 1 - \frac{1}{L_k^p}$$

for all $k = 0, 1, 2, \ldots$

Theorem 4.2 implies Theorem 4.1. For given m > 0 let $m_0 = 2m$, $m_2 = m$, take $\Lambda = \Lambda_L(0)$ and suppose that

$$h_A > 16dJe^{2m_0}$$
 (4.4)

and

$$h_{\Lambda} > 4m_0 L e^{\sqrt{L}}.\tag{4.5}$$

It follows from (3.2) and (3.11) that if (4.4) and (4.5) hold we have that 0 is (m_0, L, n_1) -regular for some $n_1 > \infty$ if J is sufficiently small and L sufficiently large. Let E_{LL} be the event that (4.4) and (4.5) hold. We have

$$\mathbf{P}(E_{J,L}^{c}) \leq (2L+1)^{d} [\mathbf{P}\{h(0) \leq 16dJe^{2m_{0}}\} + \mathbf{P}\{h(0) \leq 4m_{0}Le^{\sqrt{L}}\}]$$
$$\leq (2L+1)^{d} \mathbf{E}(h(0)^{-\delta}) [(16dJe^{2m_{0}})^{\delta} + (4m_{0}Le^{-\sqrt{L}})^{\delta}].$$

Thus there exist $J_{\alpha} > 0$, $\tilde{L} < \infty$ such that if $J \leq J_{\alpha}, L > \tilde{L}$ we have

$$\mathbf{P}(E_{J,L}) \ge 1 - \frac{1}{L^p}$$

Now pick $\overline{L}(J_2)$ from Theorem 4.2, take $L_0 > \max{\{\overline{L}(J_a), \widetilde{L}\}}$, and pick $0 < J_1 \leq J_2$ such that $\mathbf{P}(E_{J,L_0}) \geq 1 - \frac{1}{L_0^p}$ for all $J \leq J_1$. Since $\overline{L}(J)$ is nondecreasing in J we have $\overline{L}(J) < L_0$ and hence we can apply Theorem 4.1 for $J \leq J_1$.

Theorem 4.1 now follows from Theorem 4.2 by the proof of Corollary 3.2 in [9]. Notice that under the conclusions of Theorem 4.2 the estimates can be done uniformly in n for $n \ge \bar{n}$.

Theorem 4.2 is proved in a similar way to Theorem 3.1 in [9]. Again, the main difference is that the estimates have to be done uniformly in n for n large enough. This has been built in our definitions of regular sites and regular regions, which include the uniformity in n for all n large enough.

For the benefit of the reader we will sketch the proof stating clearly the main steps in the framework of this paper and highlighting the differences from [9].

Theorem 4.2 is proven by induction. The induction step is given by the following lemma.

Lemma 4.3. Let $p > 2d^2$, $\alpha \in (2d, p)$ and $L = l^{\alpha}$. Suppose

$$\mathbf{P}\{0 \text{ is } (m, l, \bar{n}) - regular\} \ge 1 - \frac{1}{l^p}$$

with $m \ge \frac{3}{\sqrt{l}}$. Then, we have

$$\mathbf{P}\{0 \text{ is } (M, L, \bar{n}) - regular \ge 1 - \frac{1}{L^p}$$

M. Campanino, A. Klein and J. F. Perez

with

$$M \ge m - (a_1 m + a_2) \frac{1}{\sqrt{l}} \ge \frac{3}{\sqrt{L}}$$

for some constants a_1, a_2 independent of l, in case l and \bar{n} are sufficiently large.

As in the proof of Lemma 3.5 in [9], one starts by picking a positive integer R such that

$$\alpha < \frac{(R+1)p}{p+(R+1)d}$$

For l large enough we can show that

$$\mathbf{P}\left\{\text{there exists } x_1, \dots, x_R \in A_L(0) \text{ such that } A_L(0) \setminus \bigcup_{j=0}^R A_{2l}(x_j) \\ \text{ is a } (m, l, \bar{n}) - \text{ regular region}\right\} \ge 1 - \frac{1}{2L^p}.$$

$$(4.6)$$

We now want to estimate $G_{B_L(0)}^{(n)}(0, Y)$ for $Y \in \partial^{(n)} B_L(0)$ and $n \ge \bar{n}$. There are two distinct cases: either Y is in the vertical boundary $\partial_V^{(n)} B_L(0)$ or in the horizontal boundary $\partial_H^{(n)} B_L(0)$. We can restrict ourselves to the case when the event described in (4.6) holds.

Sublemma 4.4. Suppose there exist $x_1, \ldots, x_R \in \Lambda_L(0)$ such that

$$\Lambda_L(0) \setminus \bigcup_{j=1}^R \Lambda_{2l}(x_j)$$

is (m, l, \bar{n}) -regular region. Then, if l is sufficiently large and $m > \frac{3}{\sqrt{l}}$, we have

$$G_{B_L(0)}^{(n)}(0, Y) \leq e^{-M_1 I}$$

with

$$M_1 \ge m - (a_3m + a_4) \frac{1}{\sqrt{l}} \ge \frac{3}{\sqrt{L}}$$

for all $Y \in \partial_V^{(n)} B_L(0)$ and $n \ge \overline{n}$, for some constant, a_3, a_4 independent of l and n.

Proof. Same as Sublemma 3.6 in [9].

Sublemma 4.5. Suppose there exist $x_1, \ldots, x_R \in \Lambda_L(0)$ such that $\Lambda' = \Lambda_{L(0)} \setminus \bigcup_{j=1}^n \Lambda_{l^{\kappa}}(x_j)$ is a (m, l, \bar{n}) -regular for $1 < \kappa < \frac{\alpha}{2d}$,

$$\widetilde{\Lambda} = \left(\bigcup_{j=1}^{R} \Lambda_{l^{\kappa}}(x_{j})\right) \cap \Lambda_{L}(0),$$

and suppose

$$e^{2Jd|\tilde{\lambda}|}\prod_{x\in\tilde{\lambda}}\left(1-\left(1-\tanh\frac{h(x)}{n}\right)^n\right) \leq e^{-\sigma|\tilde{\lambda}|}$$
(4.7)

510

for all $n \ge \bar{n}$, where $\sigma > 0$ is a given constant. Then, if $m \ge \frac{3}{\sqrt{l}}, \frac{1}{2} < \tau < \kappa - \frac{1}{2}$, we have

$$G_{B_L(0)}^{(n)}(0, Y) \leq e^{-M_2 e^t}$$

for $Y \in \hat{c}_H^{(n)} B_L(0), n \ge \bar{n}$, with

$$M_2 \ge m - e^{-l^t/4}(m+1),$$

for l sufficiently large.

Proof. The proof proceeds as in the proof of Sublemma 3.7 in [9] with one important modification. The main difficulty in the proof is how to control the percolation inside the cylinder based on the singular region. This was done in [9] by introducing the event D_s of the existence of a vertical disconnection at height s in a certain neighborhood of the singular region. In this paper we replace D_s by the events

$$D_{s}^{(n)} = \left\{ \text{all horizontal bonds } \langle (x,t), (y,t) \rangle \text{ are vacant for } x, y \in \tilde{A}, \text{ nearest} \right.$$

neighbors, $t \in [s, s+1] \cap \frac{1}{n} \mathbb{Z}$, and for each $x \in \tilde{A}$ at least one vertical bond
of the type $\left\langle (x,t), \left(x,t+\frac{1}{n}\right) \right\rangle, t, t+\frac{1}{n} \in [s,s+1] \cap \frac{1}{n} \mathbb{Z} \text{ is vacant} \right\}.$

We have

$$D_{s}^{(n)} \subset \left\{ \text{there is no connection from } \tilde{\Lambda} \times \{s^{(n)}\} \text{ to } \tilde{\Lambda} \times \{(s+1)^{(n)}\}, \text{ contained in } \tilde{\Lambda} \times \frac{1}{n} \mathbb{Z} \right\},$$

and

$$\mathbf{Q}^{(n)}(D_s^{(n)}) \ge (e^{-2J/n})^{nd|\tilde{A}|} \prod_{x \in \tilde{A}} \left(1 - \left(1 - \tanh\frac{h(x)}{n}\right)^n\right).$$

By (4.7) we have

$$\mathbf{Q}^{(n)}(D_s^{(n)}) \geq e^{-\sigma(2l^{\kappa}+1)^d R} \geq e^{-\xi l^{\kappa d}},$$

where $\xi = 3^d \sigma R$, for all $n \ge \bar{n}$. Apart from this modification the proof is identical to that of Sublemma 3.7 in [9].

To finish the proof of Lemma 4.3 we need only to show that

$$\mathbf{P}\{(4.7) \text{ holds for all } n \ge \bar{n}\} \ge 1 - \frac{1}{2L^p},$$

This follows from the following lemma.

Lemma 4.6. Let
$$\mu = \log \mathbf{E}((1 - e^{-h(x)})^{-\delta}),$$

 $\sigma = 2\delta^{-1}(2dJ\delta + \mu + \log 2), \quad v = \delta\sigma.$

M. Campanino, A. Klein and J. F. Perez

Then, there exists $\bar{n} < \infty$ such for all $n \ge \bar{n}$ and all $\Lambda \subset \mathbb{Z}^d$ finite we have

$$\mathbf{P}\left\{e^{-2dJ|\Lambda|}\prod_{x\in\Lambda}\left(1-\left(1-\tanh\frac{h(x)}{n}\right)^n\right)\leq e^{-\sigma|\Lambda|}\right\}\leq e^{-\nu|\Lambda|}.$$

Proof. Notice $\mu < \infty$ since $\mathbf{E}(h(x)^{-\delta}) < \infty$. Using Chebychev's inequality we get

$$\mathbf{P}\left\{e^{-2dJ||A|}\prod_{x\in A}\left(1-\left(1-\tanh\frac{h(x)^n}{n}\right)\leq\varepsilon\right\}\right\}$$
$$\leq\varepsilon^{\delta}e^{2dJ||A|}\left[\mathbf{E}\left[\left(\left(1-\left(1-\tanh\frac{h(x)}{n}\right)^n\right)^{-\delta}\right]\right]^{|A|}$$

Since $\lim_{n \to \infty} \left(1 - \tanh \frac{h}{n} \right)^n = e^{-h}$, there exists \bar{n} such that if $n \ge \bar{n}$ we have

$$\mathbf{E}\left[\left(\left(1-\left(1-\tanh\frac{h}{n}\right)^{n}\right)^{-\delta}\right] \leq 2\mathbf{E}\left[\left(1-e^{-h}\right)^{-\delta}\right].$$

Choosing $\varepsilon = e^{-\sigma |\Lambda|}$, the result follows.

This finishes the proof of Theorem 4.2.

5. Long Range Order

We first discuss the existence of long-range order and spontaneous magnetization in the ground state for the uniform deterministic model. Related results may be found in the literature (see Ginibre [7] for a finite temperature discussion, Pfeuty [6] for an explicit solution in d = 1 with periodic boundary conditions, and also Driessler, Landau and Perez [8]), but none are in the form needed in this work.

Our Peierls' argument is performed in the classical Ising model approximation coupled with Fisher's trick [12] for summing over contours, which allows estimates uniform in n.

Let, for $x \in \mathbb{Z}^d$.

$$P_{\pm}(x) = \frac{1 \pm \sigma_3(x)}{2}.$$

Then

$$\langle P_+(x)P_-(y)\rangle = \lim_{n \to \infty} \langle P_+(x,0)P_-(y,0)\rangle^{(n)},$$

where

$$P_{\pm}(X) = \frac{1 \pm \sigma(X)}{2}, \quad X \in \mathbb{Z}^d \times \frac{1}{n}\mathbb{Z}.$$

We now apply Peierls' contour argument to the right-hand side to obtain

$$\langle P_+(x,0)P_-(y,0)\rangle^{(n)} \leq \sum_{y \supset (x,0)} e^{-E^{(n)}(y)},$$

where the sum is performed over all closed contours γ in the dual lattice of $\mathbb{Z}^d \times \frac{1}{n}\mathbb{Z}$

enclosing the point (x, 0). For the deterministic model with h(x) = h for $x \in \mathbb{Z}^d$,

$$E^{(n)}(\gamma) = |\gamma_h| 2K_n + |\gamma_v| 2\frac{J}{n}$$

where γ_h are the horizontal elements of γ and γ_v the vertical elements of γ . We now perform the sum over γ by fixing $|\gamma_h| = L$, and an upper bound is obtained by summing over all possible numbers of vertical steps (with no immediate returns) after each horizontal step:

$$\langle P_+(x,0)P_-(y,0) \rangle^{(n)} \times \sum_{L=2}^{\infty} L^d (2d)^L e^{-2K_n L} \times \left(\frac{2(2d-1)}{1-e^{-2J/n}}\right)^L$$

= $\sum_{L=2}^{\infty} L^d \left(\frac{4d(d-1)\tanh\frac{h}{n}}{1-e^{-2J/n}}\right)^L$.

Now

$$\lim_{n \to \infty} \frac{\tanh \frac{h}{n}}{1 - e^{-2J/n}} = \frac{h}{2J}$$

and for n > J, $\frac{\tanh \frac{h}{n}}{1 - e^{-2J/n}} < \frac{h}{2J}$ and therefore,

$$\langle P_+(x)P_-(y)\rangle \leq \sum_{L=2}^{\infty} L^d \left(\frac{4d(2d-1)h}{J}\right)^L$$

$$\leq \left(\frac{4d(2d-1)h}{J}\right)^2 c_d \left(\frac{h}{J}\right) \quad \text{if} \quad \left(\frac{4d(d-1)h}{J}\right) < 1,$$

where: $c_d(x)$ is monotonically increasing in x for $x \ge 0$, $c_d(0) = 2d$. Therefore for all $x, y \in \mathbb{Z}^d$, $\langle \sigma_3(x)\sigma_3(y) \rangle \ge a > 0$ for some a > 0, provided $\left(\frac{4d(2d-1)h}{J}\right)^2 c_d < \frac{1}{2}$. The above discussion may be summarized as follows.

Theorem 5.1. Let $d \ge 1$ and consider the d-dimensional deterministic model with $h(x) \equiv h$. Then there exists $h_c(J,d) > 0$, monotonically increasing in J with $\lim_{d\to\infty} h_c(J,d) = \infty$, such that if $h < h_c(J,d)$, there exists a(h, J, d) > 0 with

$$\langle \sigma_3(x)\sigma_3(y)\rangle \ge a(h, J, d)$$

for all $x, y \in \mathbb{Z}^d$.

Proof. From the above discussion $h_c(J, d) \ge \overline{h}(J, d)$, where

$$\left(\frac{4d(2d-1)\bar{h}}{J}\right)c_d\left(\frac{\bar{h}}{J}\right) = \frac{1}{2}.$$

Monotonicity of $h_c(J, d)$ follows from Griffiths inequalities.

Remark 5.2. If we consider the deterministic model restricted to a half space $\mathbf{Z}_{+}^{d} = \{(x_1, \ldots, x_d) \in \mathbf{Z}^{d}, x_1 \ge 0\}$ the same results with essentially the same proof hold true with $h_c^+(J, d)$ and $a^+(d, Jh)$ substituting for the corresponding quantities. From Griffiths inequalities it follows that

$$h_c^+(J,d) < h_c^d(J).$$

To prove long range order for the random system we first introduce the independent *site* percolation model in \mathbb{Z}^d , where a site $x \in \mathbb{Z}^d$ is said to be occupied if $h(x) \leq (1 - \varepsilon)h_c^+(J, d)$, for $0 < \varepsilon < 1$. Therefore the probability of occupation of a site is

$$p(J) = \mathbf{P}(h \le (1 - \varepsilon)h_c^+(J, d)).$$

Now, from Theorem 5.1 and Remark 5.2 $h_c^+(J,d) \to \infty$ as $J \to \infty$ and therefore there exists J_2 such that $p(J) > p_c^{(d)}$ for all $J > J_2$, where $p_c^{(d)}$ is the critical value for the *d* dimensional site percolation problem. So, if $J > J_2$ with strictly positive **P**-probability there exists an infinite selfavoiding path *w* of occupied sites starting at the origin:

$$w: \{0, 1, 2, ...\} \to \mathbb{Z}^d$$

 $i \to w_i; w_0 = 0, \quad w_i \neq w_j \quad \text{if} \quad i \neq j, \quad |w_{i+1} - w_i| = 1.$

We then consider the model in \mathbb{Z}^d given by

$$H_w = -J\sum_{i=0}^{\infty} \sigma_3(w_i)\sigma_3(w_{i+1}) - \sum_{x \in \mathbb{Z}^d} h(x)\sigma_1(x).$$

Notice that the points $x \in \mathbb{Z}^d$, $x \neq w_i$ for all *i*, are completely decoupled from the points in *w*. Therefore, the corresponding correlation functions are given by:

$$\langle \sigma_3(w_i)\sigma_3(w_j) \rangle_w = \langle \sigma_3(i)\sigma_3(j) \rangle^{(1)}$$

where the right-hand side is the two-point function of a one dimensional model in the half line with $h(i) \leq (1 - \varepsilon)h_c(J)$ for every $i \in \mathbb{Z}_+$. Therefore, from Theorem 5.1 and Remark 5.2

 $\langle \sigma_3(w_0)\sigma_3(w_i) \rangle_w \ge a > 0.$

From Griffiths inequalities it follows that

$$\langle \sigma_3(w_0)\sigma_3(w_j)\rangle \geq \langle \sigma_3(w_0)\sigma_3(w_j)\rangle_w \geq a > 0$$

which implies:

$$\lim_{y \to \infty} \langle \sigma_3(0) \sigma_3(y) \rangle \ge a > 0.$$

Ergodicity then implies that, with probability one, there exists $z \in \mathbb{Z}^d$ such that

$$\lim_{|y|\to\infty} \langle \sigma_3(z)\sigma_3(y) \rangle \ge a > 0.$$

As in [9] we now use the Harris-FKG [13] inequality, whose validity is guaranteed by the path-space approximation, to get

$$\langle \sigma_3(x)\sigma_3(y)\rangle \geq \langle \sigma_3(x)\sigma_3(z)\rangle \langle \sigma_3(z)\sigma_3(y)\rangle.$$

This implies that if $J > J_2$, with probability one

$$\lim_{|y| \to \infty} \langle \sigma_3(x) \sigma_3(y) \rangle > 0$$

for every $x \in \mathbb{Z}^d$, thus proving Theorem 1.2.

References

- 1. Ma, M., Halperin, B. I., Lee, P. A.: Phys. Rev. B34, 3136-3143 (1986)
- 2. Klein, A., Fernando Perez, J.: Localization in the ground state of the one-dimensional x y model with a random transverse field. Commun. Math. Phys. **128**, 99–108 (1990)
- Lieb, E. H., Schultz, T. D., Mattis, D. C.: Two soluble models of an antiferromagnetic chain. Ann. Phys. 16, 407–466 (1961)
- 4. de Gennes, P. G.: Solid State Commun. 1, 132 (1963)
- 5. Wang, Y. L., Cooper, B.: Phys. Rev. 172, 539 (1968)
- 6. Pfeuty, P.: The one-dimensional Ising model with a transverse field. Ann. Phys. 57, 79–90 (1970)
- Ginibre, J.: Existence of phase transitions for quantum lattice systems. Commun. Math. Phys. 14, 205–234 (1969)
- 8. Driessler, W., Landau, L. J., Fernando Perez, J.: Estimates of critical lengths and critical temperatures for classical and quantum lattice systems. J. Stat. Phys. 20, 123–162 (1979)
- Campanino, M., Klein, A.: Decay of two-point functions for (d + 1)-dimensional Percolation, Ising and Potts Models with d-Dimensional Disorder. Commun. Math. Phys. 135, 483–497 (1991)
- 10. Klein, A., Landau, L. J.: Singular perturbations of positivity preserving semigroups via path space techniques. J. Funct. Anal. 20, 44-82 (1975)
- 11. Aizenman, M., Chayes, J. T., Chayes, L., Newman, C. M.: Discontinuity of the magnetization in one dimensional line and Potte model. J. Stat Phys. **50**, 1, 40 (1089)

in one-dimensional $\frac{1}{|x-y|^2}$ Ising and Potts model. J. Stat-Phys. 50, 1–40 (1988)

- 12. Fisher, M.: Critical temperatures of anisotropic lattices II. General upper bounds. Phys. Rev. 162, 480 (1967)
- Fortuin, C., Kasteleyn, P., Ginibre, J.: Correlation inequalities on some partially ordered sets. Commun. Math. Phys. 72, 89-103 (1971)

Communicated by T. Spencer

Note added in proof. Theorem 1.2 has been extended to d = 1 by M. Aizenman and A. Klein if $E(e^{\delta h(x)}) < \infty$ for some $\delta > 0$.