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Abstract. We study a one dimensional tight binding hamiltonian with a potential
given by the period doubling sequence. We prove that its spectrum is purely
singular continuous and supported on a Cantor set of zero Lebesgue measure, for
all nonzero values of the potential strength. Moreover, we obtain the exact
labelling of all spectral gaps and compute their widths asymptotically for small
potential strength.

I. Introduction

The discovery of the quasi-crystalline phase in AIMn by Schechtman et al. [1] (see'
e.g. [2] for a review) has provoked an increasing interest in physical systems that
are neither periodic nor random, i.e. neither crystalline nor amorphous. Besides
the host of experimental studies, there have been considerable efforts to study
theoretically the properties of such systems. Most results are so far confined to the
one-dimensional case, most notably to the one dimensional tight-binding
hamiltonian

HV=-A + V, (1.1)

where V is a diagonal matrix whose diagonal elements are given by some aperiodic
sequence Vn. The problem of studying the spectral properties of such operators
turns out to be an extremely interesting mathematical problem in itself, and there is
by now a considerable amount of literature, both heuristic and rigorous, dealing
with it. There is a considerable amount of general results concerning the case where
Vn is quasiperiodic [3,1,4]. Among these, the Fibonacci sequence has attracted
special attention [5], and it has been proven by Sϋtό [6] and by Bellissard et al. [7]
that, for any nonzero value of the potential strength, the spectrum of Hv in this case
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is purely singular continuous. The proofs make use of the existence of what is called
the trace map [8], a recursion formula for the trace of the transfer matrix (to be
discussed below) that in some sense expresses the existence of an exact
renormalization group structure in this model. This property is shared by a large
class of sequences, in particular sequences obtained from substitutions [9] (or
"automatic sequences"). The example of the Thue-Morse sequence has been
mostly studied [10, 11], but in a recent paper Luck [12] has considered a number
of examples and has presented some interesting conjectures concerning the
spectral properties of the associated hamiltonians, including rather detailed
information on the labelling and opening of gaps.

From these studies one is led to expect the following picture for all models of
this class: First, they should have singular continuous spectrum as soon as the
potential is turned on; the particular structure of the Cantor set supporting the
spectrum depends on the sequence chosen, with spectral gaps labelled by some set
of algebraic numbers. This set can be determined using ^-theory, as shown by
Bellissard [13].

In this note we present a rather complete and detailed analysis for the case of
the "period doubling sequence" [14]. Apart from proving that the general picture
above is correct in this particular case, we give a precise description of the spectral
gaps. This will be seen to confirm the predictions of Luck [12] for this example.

As in previous rigorous works, our basic tool in investigating the spectrum of
Hv will be the "trace map," a recursion formula for the transfer matrix associated
with H. We will show that the investigation of this dynamical system will suffice to
obtain all desired information on the spectrum of Hv.

The period doubling sequence belongs to a class of "automatic sequences"
obtained from a certain substitution rule on the letters of a given alphabet (see, e.g.
[9]). In the case of the period doubling sequence, the alphabet consists of two
letters, say A and B and the substitution rule is given as

A-^AB, B-+AA. (1.2)

Thus, starting from the letter A or B, respectively, after n applications of the
substitution rule we arrive at sequences of length 2", denoted by A(n} and B(n\ The
period doubling sequence is the limiting infinite sequence A(co) obtained from this
process. Finally, a numerical sequence st above is obtained from this one by
replacing A with + 1 and B with — 1 in A(co\ The diagonal elements V{ of the
potential in (1.1) are then defined as Vt= K _ 1 _ j = εj7.

By construction the partial sequences satisfy the recursion relation

which will be seen to furnish the basic tool to analyze our Hamiltonian. For,
writing the eigenvalue equation for Hv in the conventional vector form,

where

ί-K -1
, (1.5)
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we see that the behaviour of solutions of (1.1) is governed by the transfer matrix

TN(E)= Π P(^E). (1.6)
k=ι

The recursion relations (1.3) imply a recursion relation for the transfer matrix
where N = 2n. Defining T^A) and 7^(β) as the transfer matrices corresponding to the
sequences A(n) and B(n\ respectively, one verifies that they satisfy

,* -^

( '
Remarkably, this recursion for the transfer matrices gives rise to a similar relation
for their traces [8]. Making use of the fact that any unimodular 2 x 2-matrix M
satisfies

0, (1.8)

a straightforward computation shows that if xn = tr(T£A)) and yn = tr(7^(B)),

*π+1=*f%2' (1.9)
)Wι=*«-2.

Equation (1.9) is called the trace map. Notice that the initial values x = x0 and
y = y0 are related to E and V by

x0 = E-V9 y0 = E+V. (1.10)

The trace map is the fundamental tool for investigating the spectrum of Hv\ its
analog has been used in the study of the Thue-Morse and Fibonacci sequences
[11, 6, 7]. For general results on the existence and nature of trace maps, see [8].

The remainder of this paper is organized as follows: In Sect. 2 we will show that
the spectrum of Hv is the complement of the set of unstable points for the
dynamical system (1 .9); by this we understand the set of initial conditions for which
the modulus of xn will "eventually" be larger than two. This will be used to prove
that the spectrum of Hv is purely singular continuous, for any FφO. In fact, this
will follow from a general theorem stating that for a class of aperiodic sequences,
comprising in particular sequences obtained from substitutions with "primitive"
[9] substitution rules, the spectrum of the corresponding hamiltonians is always of
measure zero, provided the Lyapunov exponent vanishes on the spectrum. This
theorem is based on a lemma of Kotani [15] and a generalization of a result of
Avron and Simon [3] for almost periodic sequences, using a lemma of Herman
[16]. This part of our analysis is similar to those of Sutό [6] and Bellissard et al.
[7].

In Sect. 3 we analyze the spectral gaps of our hamiltonian in detail. We show
that there are two families of spectral gaps, one labelled by dyadic numbers and
opening linearly for small V, the other by dyadic numbers divided by 3 and opening
exponentially [i.e. like exp( — 1/| V\)~]. Moreover, we show that the spectral gaps are
bounded by at least differentiable curves, and we establish precise asymptotic
formulas for them. Notice that we will prove directly that these are all gaps,
without making reference to K-theory, as was done in a similar analysis of the gaps
of the Thue-Morse hamiltonian in [11].
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II. The Trace Map and the Spectrum of Hv

In this section we establish a precise relation between the trace map and the
spectrum of our hamiltonian. Some soft analysis will then show that the spectrum
is purely singular continuous.

We begin with the definition of the unstable set for the dynamical system given
by the trace map.

Definition. A point (x, y) e R2 is called unstable, if there is n0 s.t. if x0 = x,y0 = y, for
all n^n0, \xn\>2. We denote by % the set of all unstable points.

Remark. In [11],̂  was defined as the interior of the set of unstable points. We will
see, however, that % is an open set.

The following lemma provides a very convenient characterization of ̂  for our
system. Let us introduce the sets

0(±0> = {(x,)>)b»2,±x>2}. (2.1)

Lemma 1. (x, y) e ^U if ana only it there exists n such that either (xπ, yn) e D(+} or

Proof. We show first that (xπ, yn) e D(+ } implies instability. By definition \xn\ > 2 if
(xn,yn)eD(+\ so we only need to show that (xn+k,yn+^εD(+} for all k. Now,
if (xn,yn)€D(°\ then \xn + 1\^\xllyH\-2>4-29 and yn + ί=x2

n-2>4-2, so
(Xn+i^π+JeD^. Thus (x,);) is unstable.

To prove that the images of any unstable point eventually enter D(+* or D(2\ let
(x, y) be unstable. Then there is n such that |xπ +k\>2 for all k ̂  0, and in particular
\xn+i\>2. But if |xπ| > 2, then yn+ 1 > 2, and since \xn+ J > 2, (xπ+ 1? yn+ J is either in
D(+* or D(°\ which proves the lemma. Π

As a first application of Lemma 1 we have:

Lemma 2. The set of unstable points, tfl, is open.

Proof. By Lemma 1, (x,y)e<% implies that for some finite n, (xn,yn)eD(?}vD(2}.
Since for n fixed, xn and yn are analytic functions of x, y, and D(+)uD(^) is open, there
is a neighborhood of (x, y) those rcth image is in D^uD^, and thus unstable. Π

The set of unstable points determines completely the spectrum of Hv.

Theorem 1. E is in the spectrum of Hv, if and only if x — E + V and y = E—V are
such that (x, y) e V. Moreover, Hv has no eigenvalues, no generalized eigenfunction
tends to zero at infinity.

Proof. In [11] it was shown that if (x,y)e^, then E is in the complement of the
spectrum ofHv. We will now show that the converse is also true, i.e. stable points
are in the spectrum. The main ideas of the proof are those used by Sutό [6] on a
technical level much more work is required. Theorem 1 will follow from the
following lemma:

Lemma 3. Assume (x, j;) e <^c. Then TjA) does not converge to a projection.

The proof of Lemma 3 is, unfortunately, very cumbersome and will be
postponed to Appendix A. We will now show that this lemma implies the theorem.

Assume that E φ σ(Hv). Then the inhomogeneous equation

(Hv -E)\pE = δ0
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has a solution in /2(Z). Then, since \pE( — 1), ψE(0) and ψE(l) cannot be all zero, either

U*(0)7 °Γ U*(-l)/ 1S nθnzer° In the CaSC (ψE(0)J

ίψE(2nι + l)\=τw\

But then

^ Σ•£ 1 = 0
(2.3)

The case φO can be excluded by the same argument, using the

Thus we conclude that

But by Lemma 3, if (x, y) were not in the unstable set, there would exist no vector
Ψq such that the sequence \TJA)Ψ0\ converges to zero, and thus the series

Σ \TnA) { /n\ ) would diverge, and ψE would not be in /2(Z), contrary to our
I WE(W/

assumption.

\ ΨE( ~
reflection symmetry of the potential, i.e. F_ M _ 1 =
(x,y)eV.

At the same time, if Eeσ(Hv\ E cannot be an eigenvalue. For otherwise an /2

solution of the homogeneous equation (Hv — E)ψE = Q would exist, which is
excluded by the arguments given above; it follows even that ψE(ri) does not decay at
infinity. Π

For some particular points we can even make more precise statements
concerning the generalized eigenfunctions:

Lemma 4. Let (x, y) be such that for some n, xn = yn = 2, and let n denote the smallest
such number. Then

(i) iW^im^and
(ii) E E σ(Hv\ E is not an eigenvalue and there exists a periodic solution ψE of the
Schrδdίnger equation with period 2n. Unless F=0, there is only one such solution.

Proof. The cases n = 0 and n = 1 are trivial, as they correspond to E = ± 2 and V= 0
and thus the free laplacian. For n ̂  2 notice that xn = yn = 2 implies that xn _ 2 = 0.
Thus, using (1.8) (TΆ)2=-id and hence T^\ = -id, T^=-TΆ, and Ί™
= (Tn

(A))2. It is thus obvious that Tft\ will be a power of Tn

(A\ and a simple
calculation shows that the power is the one given in (i).

Now, since tr(T^A}) = 2, there is a basis such that

and thus

With this explicit form for T^A\ one repeats the proof of Theorem 1 to show that E
is in the spectrum and not an eigenvalue; moreover, since T^A\ has an eigenvalue
one, (the same for all fc!), a solution of the Schrόdinger equation with period 2n can
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be constructed. There is only one eigenvector and thus only one periodic solution,
unless απ=0. But notice that T^\ = -id implies T^\T^2=^T^\T^\, and thus
T^2 = T™2 1 a fortiori, yn _ 2 = xn ~ 2 = 0. This, however, can only arise if x0 = J^ and
thus K=0. D

Remark 1. We will see in Sect. 3 that the set verifying the assumptions of Lemma 4
forms part of the boundaries of the spectral gaps.

Remark 2. It is interesting to note that in a rather different, hierarchical model, the
generalized eigenstates belonging to some gap boundaries have a very similar
characterization [17].

Theorem 1 allows us to compute (in principle) the spectrum of Hv by studying
the dynamical system (1.9). We have already seen that as a by-product of our proof
we obtained that the spectrum is continuous. We will see that with rather little
effort we can show that it is purely singular continuous. To do this, we first
establish that the Lyapunov exponent vanishes on the spectrum. Remember that
the Lyapunov exponent γ(E, V) is defined as

T(E,F)=lim-ln||T;(E,F)||, (2.4)
«-»oo ft

provided this limit exists.

Proposition!. Let Φv = {E\γ(E, F) = 0}. Then σ(Hv) = Θv.

Proof. The positivity of the Lyapunov exponent outside the spectrum of Hv is a
general result based on the exponential decay of the Green's function for E in the
resolvent set (see e.g. [18]). What is left to show is that the Lyapunov exponent
vanishes whenever E is in the spectrum. This will be based on the following simple
bound on xn.

Lemma 5. Let (x, y) e (JUC. Then for any α > |/2, there exist constants c, d and an
integer rc0, such that for all n^n0,

W *<***. (2.5)

Proof. By Lemma 1 , (x, y) e V implies that (XB, yn) will never enter D(£\ If \xn\ ̂  2 for
all n, there is nothing to prove. If for some n, \xn\ >2, then yn+1 >2, and we must
thus have \xn+ί\ = \xnyn-2\^2. But then

6. (2.6)

From this the bound (2.5) follows by induction. Π

The bound obtained for xn will now be used to get a bound on the norm of

Lemma 6. Let (x, y) e W. Then for any β > *—- — , there exist constants c, d, and an
integer n0, such that for all n^.nϋ,

(2.7)

Proof. Notice that (1.7) together with (1.8) implies that

(2.8)
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From (2.8) the bound (2.7) follows by induction, using the bound (2.5) for xn _ ί with
some ]/2<α</J. Π

To conclude the proof of the proposition, notice that it follows from the
5

definition of the period doubling sequence that if n = £ 2li, then

Tn(E,V)= Π 1£\. (2.9)
i = 0

Using the Schwarz inequality and the bound (2.7) we get that

(2.10)
n n i=o n ;=o

which, since β can be chosen less than 2, implies

Remark. Proposition 1 together with the fact that ̂  is in the complement of the
spectrum in fact allows to show that tflc = σ(Hv) without using Lemma 3. Notice
simply that on the complement of the spectrum the Lyapunov exponent is positive,
while we show that it vanishes on the complement of ̂ . Thus W is contained in the
spectrum and the spectrum is contained in it. Unfortunately, this argument does
not yield the continuity of the spectrum, as subexponentially decaying eigenfunc-
tions may exist.

Proposition 1 has an important consequence for the nature of the spectrum of
Hv, due to a general theorem, that we will now derive. Let vn be any aperiodic
sequence taking a finite number of values and denote by Ω its "hull," that is the
closure in the product topology of the set of translates of this sequence. Let ω
denote an element of Ω and let Hv(ω) be the hamiltonian with potential given by
the sequence ω. Let μ be any probability measure on Ω such that the translations,
T, are an ergodic, measure preserving group. Thus (Ω, T9 μ) is an ergodic dynamical
system. We call the system uniquely ergodic, if there is no other invariant
probability measure.

Theorem 2. Assume the sequence vn is aperiodic and (Ω, T, μ) is uniquely ergodic.
Then, if σ(Hv) = {E\y(E, F) = 0}, σ(Hv) is supported on a set of zero Lebesgue
measure.

Proof. Our proof follows the ideas of Sutό [6] who proved this result for the
Fibonacci sequence. The main new ingredient needed for the generalization is a
lemma of Herman [16].

We will need two basic lemmas. Denote by γω(E, V) the Lyapunov exponent
corresponding to Hv(ω). The ergodicity of translations imply that γω(E, V) exists
μ-almost surely and equals a constant, γμ(E9 V)= Jμ(ω)yω(E, V). Let Nμ denote the
set

Nμ{E\yμ(E,V) = 0}.
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Kotani [15] showed the following:

Lemma 7 (Kotani). Let υn be a sequence taking a finite number of values, and let μ be
an invariant measure on its hull. Then the set Nμ has Lebesgue measure zero, unless
the support of μ is a finite set.

Proof. See [15].

Obviously, suppμ can be finite only for periodic sequences, so Lemma 7
implies that in our case, Nμ has measure zero, unless V=0. The set Nμ can in
principle be different from the set Nω = {E\yω(E, F) = 0} for a specific sequence
ωeίλ However, the difference between the two sets must have zero Lebesgue
measure:

Lemma 8. // (Ω, T9μ) is uniquely ergodic, then for any ωeΩ, the set S = NμANω

 1

has Lebesgue measure zero.

Lemma 8 for almost periodic sequences follows from a result of Avron and
Simon [3] and was used in [6]. The generalization above is proven along the same
lines, using a lemma due to Herman [16]. We give the proof in Appendix B.

Obviously, the two lemmas imply Theorem 2. Π

Now, in [9] (see Chap. V, in particular Theorems V.2 and V.I 3) it is shown that
the assumption of Lemma 8 is verified in the case of automatic sequences under
some weak hypothesis on the substitution rule. In particular, the dynamical system
obtained from the period doubling sequence is uniquely ergodic. Combining thus
Theorem 2 with Proposition 1 and Theorem 1, we obtain as an immediate
corollary for the period doubling sequence:

Theorem 3. For any FφO, σ(Hv) is a Cantor set of zero Lebesgue measure and the
spectrum is purely singular continuous.

Remark. Theorem 3 presumably holds for a large class of automatic sequences.
Notice that the only hard part is to show the continuity of the spectrum, which
requires Lemma 3, while the fact that the spectrum has measure zero follows by
Theorem 2 from the rather simple estimates leading to Proposition 1. In the case of
the Thue-Morse sequence we have verified that all main results of this section can
also be obtained, as was conjectured in [11]. In fact, in this case the symmetry of
the substitution rule (the words A4n are mirror symmetric) allows even to prove
Lemma 3 in a much simpler manner.

III. Detailed Structure of the Spectral Gaps

In the previous section we established the link between the spectrum of Hv and the
set of unstable points of the dynamical system given by the trace map. A rather
simple analysis of this dynamical system allowed us to conclude that the spectrum
of Hv is singular continuous for all FΦO. In the present section we give a detailed
analysis of the dynamical system that will allow us to give a complete and detailed
description of the spectral gaps for Hv. For comparison and orientation, Fig. 1
represents the complement of the unstable set, that is the spectrum, as obtained
from numerical calculations.

Here A denotes the symmetric difference
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Y o -

Fig. 1. The complement of the unstable region for the trace map

A similar analysis has been given in [11] for the case of the Thue-Morse
potential. The gap structure for the period doubling sequence was studied
previously by Luck [12] using perturbation theory and numerical computations.
We will see that our results confirm and refine his findings.

The starting point of our investigation is Lemma 1 from Sect. II. It implies that
the set of unstable points, ̂ , consists of the pre-images of the two sets D(+) and D(_\
We are thus led to consider the inverse of the trace map.

Lemma 9. The trace map (1.9) has the following properties:

(i) Any point (x, j;)eR2\{( — 2, —2)} has two inverse images, given by

and
τ+(x,y) = (3.1)

τ_(x,y) = -

(ii) The inverse image of the point ( — 2, —2) is the line

The proof of this lemma is by simple inspection. The next lemma collects some
useful properties of the maps τ±.

Lemma 10.

(i) The map τ+ has a unique fixpoint, (2,2), and the tangent map, T+, at this point is
given by , Q

T —T+~
ί/2 -
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whose eigenvalues and eigenvectors are

+ _-1 ± 3

l,2

(ii) The map τ_ has a unique fixpoint, ( — 1, — 1), and the tangent map, TL, at this
point is given by

T= (34)
-l 1/2/' l '

whose eigenvalues and eigenvectors are

_ l + 3 _ / 1

2

This lemma may again be verified by a simple computation.

Remark. The fixpoints and the tangent maps essentially determine the opening of
the gaps for small V. We will see later that the exponential opening of a class of
gaps, as predicted by Luck, is tied to the fact that T_ has an eigenvalue one.

We will see that τ+ and τ_ give rise to two invariant sets, D(^0) and D(*\ whose
interiors are contained in *. In fact, these sets are the limits of the sets D($
= tn±(D(±*\ the fixpoints of τ+ are in the boundary of D(+} and correspond to the
intersection of these sets with the spectrum of the free laplacian.

To construct the set D(^o) explicitly, we introduce the following family of
functions, which will be seen to describe the boundary of D(+\ Let g0:(J/2, oo)
->>(0, oo) be given by

(3.5a)

and define, for n>0, gB:(|/2, oo)-^(0, oo) recursively by

^ *•--'•'*;- 2)+2. (3.5b)
Proposition 2. The gn defined above have the following properties:

(i) The functions gn are monotonous, strictly decreasing convex functions on their
domain; they are infinitely differ entiable except at x = 2.
(ii) For all |/2<x<oo, and all n>0,

/ 4

\x2 — 2

2,

4/x,

)/x, for|/2<x<2

for x = 2

for x>2,

(iii) gn(x) form the lower boundary of the regions D(++2\ i.e.

n(x)} . (3.6)
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(iv) The sequence of functions converges to a function g^x) that is uniformly
decreasing, convex and continuously differ entiable. It satisfies the functional
equation

~ l 2 —
(3-7)

γX

and is the unique solution of this equation with the above properties.

D^ = {(x,y)\x>]/2,y>ga:,(x)}. (3.8)

(v) Near x = 2, g^ permits an asymptotic expansion given by

goo(2 + ε) = 2 - 2ε - - ε* ln M + ε^(ε) + °^ > <3'9)

where p(ε) is a bounded function satisfying p( — 2ε)=p(ε).

Proof. Point (iii) is clearly the rationale for defining the sequence gn. To establish
point (i), notice that g0 has all the properties stated; monotonicity and
differentiability properties for gn are easily seen to follow from those of gπ_ x. To
establish convexity of gπ, we compute the second derivative of gn:

If gπ- 1 is decreasing and convex, then so is gΰ-l9 and thus by (3.10), g^x) is positive
wherever it exists, which is everywhere except at x = 2. Thus the two branches of gn

for x < 2 and x > 2 are convex, and we only have to show that the left and right
tangents of the two branches enclose an angle smaller than or equal to π. But this is
true for g0 (check!), and as gn(2) = 2 for all n, the behaviour of the tangents is
governed by the map T+ given in Lemma 10, and a simple calculation shows that
this remains true for all n. Moreover, one finds that the slope of both left and right
tangents converge to — 2 as n tends to infinity (i.e. they follow the direction of the
eigenvector with largest eigenvalue of T+). Thus we have proven (i).

To prove that gn(x) for any x is a decreasing sequence, notice that gn(x)
^gn_1(x) is equivalent to

Thus assuming this to hold, we see that

gn(xgn(x) - 2) ̂  gn _ Λxg^x) - 2) = x2 - 2 ,

and thus gn + ι(x) ̂  gn(x)- It remains to show that g^x) ̂  g0M> which one may check
by hand.

Using the monotonicity of the gn established above, it is easy to show that they
form indeed the boundaries of D(++2\ For n = 0, this is true by construction
(check !) and for general n it is proven by induction : If (x, y) are such that y > gn _ l (x)

.χ. i 2
and x>|/2, then for (x/,/) = τ+(x,j;), xf = ]/y + 2 and /= — — . Since gn-l is
decreasing, y > gn _ t(x) implies x > g "ΛGO, and thus *

..
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Moreover, y = gπ-ι(x) is mapped to / = gn(x'), and since gn is below g π _ l 5 the
continuity of τ+ implies the result. Note also that D^+'^CD^.

By (ii) and the fact that gw(x)^0, the gπ(x) converge pointwise and being
monotone even uniformly on compact subsets. Moreover, the limiting function is
convex and as such has left and right derivatives at every point. We will show that
they must in fact coincide everywhere. Let g^R(x) denote the left and right
derivative at x. Put d(x) = g* (x) — g«(x). Since g^ must satisfy (3.7), one verifies that

2 v (\\
^L.R/.Λ ^ SooW / O Ί Λ \

Notice that g^x2 —2) = τ+1(x). From (3.12) we may then obtain, using that
)^0, the inequality

(3.13)

On the other hand, from (3.12) we derive

^ It \ / -^^

d(τ'+
2(x))

(3.14)

Now since by convexity d(x)^0, if for some x other than the fϊxpoint of τ+, d(x)
= δ > 0, then for all k d(τ + (x)) > δ, which will force the slope of g^ to be positive
for x large enough, contradicting the fact that g^ is decreasing. This proves that
d(x) = 0 except possibly at x = 2. However, as remarked above, the properties of the
tangent map T+ ensure that the left and right derivatives at x = 2 both equal —2.
Thus goo is in fact a C1 function.

We want to prove that g^ is the unique positive, decreasing solution of the
functional Eq. (3.7). Note that any solution of (3.7) crossing the line x = y must do
so at x = 2. Since the branch x < 0 is determined by the branch x > 2, the idea is to
show that only one solution of (3.7) can be bounded between zero and two for all
x > 2. Assume thus that there are two solutions, / and g, of (3.7) such that /(2)
= g(2) = 2. Assume now that for a given x0>2, /(x0)— g(x0) = <5>0. Put

Notice that (3.7) implies

/(x/(x)-2) = g(xg(x)-2),

and thus

/(x/(x) - 2) - g(x/(x) - 2) = g(x(g(x) - 2) - g(x/(x) - 2) = x(g(x) - /(x)) g'(z) ,

for some z in [xg(x) — 2,x/(x)— 2]. Using this relation with x = x1? iterating twice
and using convexity to bound the derivative of g, we obtain

/(*2) - g(*2) ̂  <5*ι*og'(*ι)g'(*2) ̂  41/25 ,

where the last bound made use of (3.13) and the obvious bounds x0>2, X j > j/2.
Iterating this bound shows that eventually /(xπ) — g(xπ) > 2, which is impossible if g
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is positive and / monotone decreasing. Thus δ must equal zero, which we wanted
to prove.

What is left is to compute the asymptotic expansion for g^ near x — 2. To do so,
we put

, (3.15)

and use that by (3.7)

gCG(xgao(x) — 2) = x2 — 2. (3.16)

In terms of h this gives

0 = 3ε2 — (4 + 2ε) h(ε) — h( — 2ε — 2ε2 + (2 + ε) h(ε)). (3.17)

Keeping only the leading order terms, this simplifies to

0 = 3ε2 - 4Λ(ε) + h( - 2ε). (3.18)

One verifies that

, ( -— "\
/z(ε) = ε2ln(jε| 41n2p(ε)J, (3.19)

is a solution for any p(ε) satisfying p(ε) = p( — 2ε). Such a function is necessarily
bounded at zero. It will be determined by higher order terms, which, in principle
may of course be computed. We will content ourselves with the present expression.
This completes the proof of Proposition 2. Π

We see thus that D(^0) is a convex region asymptotically bounded by the x-axis
and the line x = ]/2, whose boundary intersect the straight line x = y (i.e. F=0) at
x = y = 2 (E = 2) with slope —2. Apparently, this region determines the upper
boundary of the spectrum of Hv. Before we come to the gaps generated by D(™\ we
construct the corresponding domain D(™\ As we will see, the boundaries of the
regions D("} are formed by two functions un and dn, where

are recursively defined as follows:

_2-]/2

(3.20)

and u« =

Then _ t 2

(3.21)
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and

(ξn,Cn) = τ_(^-1,Cn-1). (3.22)

Proposition 3. The functions dn and un defined above have the following properties:

(i) dn and un are monotonous, strictly decreasing and infinitely differentiable
functions on their respective domains.
(ii) The following relations hold wherever left- and right-hand side are defined:

(3.23)

(iii) dn(x) and un(x) form the boundaries of the region D("+4\ i.e.

D^+4) = {(x, y)\x < ξn, dn(x) <y< un(x)} . (3.24)

(iv) The functions dn and un converge to monotone decreasing functions with
bounded derivatives,

satisfying the functional equations

^_fiVz2±l.

Moreover, they are the unique solution of these equations with the stated properties.
(v) d^ and u^ permit an asymptotic expansion at — 1 to the left,i.e. for 0^<

U Q o - - = - - . ( ' J

Moreover,

(3.27)

where f is a function that satisfies for any ε>0, δε<f(δ)<δ~ε.

Proof. The proof of Proposition 3 is largely anologous to that of Proposition 2,
and we will spare the reader most of the details. Theproofs of points (i) through (iii)
proceed like those of the analogous statements in Proposition 2; notice however
that we do not show that the dn and un are convex (or concave) functions, since this
is in general not true. One sees from the asymptotic expansion of u^ and the fact

that it must diverge at x=— 1/2 that this function must possess a point of
inflection; musing the functional equations (3.25), it is possible to show that indeed
both d^ and u^ possess an infinity of inflection points. The lack of convexity
requires some modifications in the proof of point (iv). In particular, we have not
been able to show that the derivatives of u^ and d^ are continuous. The
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boundedness of the derivatives follows however from the monotonicity and
Eqs. (3.25), which imply that

The proof of the uniqueness of the solutions of (3.21) is also somewhat different.
Note first that the solutions obtained as the limits of dn and un are necessarily the
largest and smallest ones, respectively, since they bound the unstable set D(*\ Any
solution d of (3.21) must then satisfy the bounds

g^Z, (3.29)

and by computing the successive images of a point (x, j;) under the twice iterated
trace map, one shows that in order that (3.29) remains satisfied, y is determined
uniquely as a function of x.

Point (v) is of particular interest as it contains the information pertinent to the
opening of gaps. To derive the asymptotic expansion, we put, for δ ̂  0,

x--=- .

Writing (3.25) in the form

ux(xdx(x) - 2) = ίUxnJx) - 2) = x2 - 2 , (3.31)

we obtain for Γ and Φ the equations

,

=0. (' '

Neglecting terms of order δ3 this simplifies to

= 0,

( '
which implies (3.26). We are particularly interested in the difference between ux

and dx. Substracting the two Eqs. (3.32), and putting Δ(δ) = Φ(δ) — Γ(δ), we obtain

2Δ(δ)(\ +δ)-

+ Φ(δ + 2δ2 + Φ(δ) (1+ δ)) - Φ(δ + 2δ2 + Γ(δ) (1 + δ)) = 0 , (3.34)

or, by the mean value theorem

2A(δ) (ί+δ)-A(δ + 2δ2 + Φ(δ)(ί + δ))

+ Φ'(δ + 2δ2 + Φ(δ)(ί+δ) + sA(δ)(ί+δ))(ί+δ)A(δ)=0. (3.35)

Keeping only the leading orders in δ, this simplifies to

2 Δ(δ) (1 - 2δ2) = Δ(δ + δ2) . (3.36)
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Taking logarithms of this equation, and setting

(3.37)

we find that to leading order in δ, ρ(δ) = In 2 In δ, which gives (3.27), and concludes
the proof of the proposition. Π

Remark. The region D(!0) constructed above is the first spectral gap, opening at
x = y = — 1, corresponding to E= — 1, 7=0. Equation (3.27) tells us how the gap

2V
opens asymptotically for V small, δ is related to V by δ = — , so that the width of
the gap is given by

l n 2. (3.38)

Note that the result of Luck [12] which predicts such a behaviour with the
exponent of V near 0.5 on the basis of perturbation theory and numerical
computations is compatible with our exact formula.

We will now show how the totality of spectral gaps is constructed. First, all
images of D^ under an arbitrary sequence of the maps τ+ and τ_ are spectral
gaps, intersecting the line 7=0 at the image point of ( — 1, — 1). The second family
of gaps in associated to D(™\ Note first that a simple computation shows that

τ_(D(^)=-D(?\ (3.39)

which corresponds obviously to the lower boundary of the spectrum. Now no
point with y < — 2 has a real image under τ + or τ _ , and the image of ( — 2, — 2) is the
j -axis. Putting these together, we get the following lemma, describing the first gap
associated to

Lemma 11. Let
D = {(x,y)\x< -2, -gΰΰ(-x)>y> -2} ,

then the region G+ = τ+(/5)uτ_(/5) is a spectral gap, opening at x = y = 0. It is
bounded by the y-axίs and the images of the curve y= — g^ — x), withx< —2. The
gap opens linearly with an opening angle α = arctan 2.

As before, this gap gives rise to an infinite family of spectral gaps that open at
the image points of (0, 0). This exhausts all gaps.

Theorem 4. Let ω denote a sequence (σ0,σ1? ...,σw), with σ f =±l, and put
τω = τσ n...τσ o. Then

(i) Let (x, y) be such that E φ σ(Hv). Then there exists a sequence ω such that (x, y) is
contained in either τω(D(^) or τω(D(-}).
(ii) The corresponding regions intersect the interior spectrum of the free Laplacίan

at the points τω(0,0) and τω(— 1, — 1), respectively. That is, spectral gaps open at
exactly those energies, and no others.
(iii) The gaps at the points τω(0, 0) open linearly, the opening angle being typically of
the order 2~ |ω|. The other gaps open exponentially according to the relation given in
(3.38).
(iv) The value of the density of states at the energies where gaps open is either a
dyadic number or one third of a dyadic number.



Spectral Properties of a Tight Binding Hamiltonian 395

Proof. Points (i) and (ii) summarize our findings above. For point (iii), we have seen
in Lemma 1 1 that the gap opening at (0, 0) opens with an angle arctan 2. The
opening angles of the subsequent gaps can be computed by considering the images
of straight lines with given slope near x = y. Denoting the slope after n applications
of τ + or τ_ by an, one gets the recursion2

<Vn = -l + f (3.40)
Un

Starting with two lines of slope α0, fc0, the difference becomes

One checks easily that the recursion (3.40) has two fixpoints, 1 and —2, of which
— 2 is stable and 1 unstable. Thus an and bn will in general converge to —2, and
asymptotically we get from (3.41) that \an — bn\~2~n\a0 — fe0|, from which follows
(iii).

Finally point (iv) follows from the known formula for the density of states of the
free Laplacian, *

N(E) = - arccos( - E/2) (3.42)
n

(see, e.g. [11]). Π

Remark. In Sect. 2 we have proven that the support of the spectrum is a Cantor set
of zero measure. It would seem natural to prove this fact directly by computing the
measure of the gaps, e.g. for small V. This turns out, however, to be rather difficult
and we have not been able to do this in a rigorous way. In fact, what seems to
happen is slightly different from naive intuition. Naively, we would expect that, for
small K the linear gaps are the most important ones, and that they have full
measure. This is further supported by our finding that the opening angles of the nth

hierarchy of gaps behave like 2~", from which one would be tempted to say that
each hierarchy contributes a measure of the order of a constant. However, this is
wrong: the region of linear opening shrinks exponentially fast with n and is
followed by a region where the gap width remains constant. This is due to the fact
that the principal gap, for large V, is contained between the axis y = 0 and y = ± ]/2.
A rough estimate indicates that indeed in the limit F=0, the total measure of the
linear gaps is zero ! Thus, the exponential gaps carry full measure, a fact that is less
surprising if one considers the fact that the region D(!0) is widening linearly for large
V.

Appendix A

In this appendix we give the proof of Lemma 3. Since we have to show only that
T£A] does not converge to a projection on any given subspace, we may choose a
basis for which this amounts to show that

Here we use a linear analysis, assuming that y Φ 2
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To do this, since Ί$A) is unimodular with trace xn, we write

δ x-ε

where γn = εn(xn — ej — 1 We will show that if we choose A >0 small enough, then
there exists a sequence, nb of integers tending to infinity, such that either |επj > Δ, or
|<5πJ>zl. The construction of this sequence will be given in an algorithmic form.

Notice first that for (x, y) e ^Uc, it is impossible that for some n, both xn and xn + ^
have modulus bigger than 2. For |xn| > 2 implies yn+ ί > 2, and thus, if \xn+ί\ were
bigger than 2, (x,y) would be unstable by Lemma 1.

Let us start by choosing a n0 such that |xΛo| ̂ 2. If at least one of εfto, δno, εno+ί9

δno+1 has modulus larger than Δ, set n0 = n0 or n0 = n0 + \, respectively, and
put n1 = n0 + l or n1 = w0H-2 (depending on whether |xπo+1|^2, or |xno+2|^2).
This way we produce a sequence with the desired property, until we reach a point,
say nt, for which all four epsilons and deltas have modulus less than Δ. At this
point, we will make use of the fact that (1.7) allows to compute εnι + 2 and δnι + 2

One gets (we let for notational simplicity π = nz):

(A 2)
^ + 2=^Λeπ+ι+^π+ι7» + (^»-β»)2^.

Moreover, computing the trace of T}$2

 m this way and comparing with the trace
map yields an extra equation:

L 2xnεn(xn +! εnλ

(A.3)

In the following, we assume that |επ|< J, |<5J</d, |εn+1 |<zl, \δn+ι\<Δ. Note
that this implies that γn= — 1 +0(Δ). Thus (A.3) can be simplified to

δn+ί δn
Y 2 = X I Λt Y "

M +1. (A.4)

Now, from (A.2) we see that

and thus \εn+2\>Δ, unless
x

(A.5)v« c

°n

Thus, either we are done and can put nt = n + 2, or (A. 5) holds. In the latter case we
can compute επ + 3 to leading orders, to get

II T^

-y x Γ-" + 1 L

n + l

(A.6)
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X2δ
Notice that the quantity in brackets can be small (e.g. <0(1)), only if -^-^ = 1

+ 0(1). Combining this with (A.4), one finds that this can be true only if \χ*\ <*A.
Keeping this in mind we use the trace condition Eq. (A.4) to get that, to leading
order

We now distinguish three cases:

Cn*P 1 I Y l< /I1/2
l_/Wι3t> i. \J^,n^Γ ^\^L\

In this case, xn+2 = xn+ι(Xn — 2) — 2 & — 2. We may thus start anew with n +1
replacing n, and can be sure not to fall back into this case.

Case2. A
In this case, yn+1 = — 1 + o(A1/2), and

επ+3 = xn+1[l-*„(*„+!+2)],

will be bigger than Δ, unless the bracket is smaller than Ai/2. But this requires, by
the remark above, |xj < A1/3, and thus \xn+x | w A ~1/3, which implies that \xn+2\>2
as well, which is impossible on the stable set.

CaseS. \xn + 1\>A~if2.
By the same reasoning as above, επ+3 will have to be large, unless, possibly,

γn + ίxn+! is small. But this implies that xn+ί ~ε~+ι But for the same reason as in
Case 2, xn cannot be very small on the stable set, and we find that again |επ+3|
^\xnx

2+ι\ is much larger than A.
We see thus that either επ+2, επ+3 or (if Case 1 applies) εn+4 has modulus larger

than Δ, and we may choose the corresponding value as the new nλ. Obviously, in
this way we construct the desired sequence and prove that T^A) does not converge
to a projection on a given subspace. Π

Appendix B

In this appendix we give the proof of Lemma 8. As we will see, it is a extension to
the case of potentials generated by automatic sequences of a result of Avron and
Simon [3] for almost periodic potentials. The main ingredient of the proof is the
following result of Herman [16]:

Lemma B.I. Let Y a compact space, G an homeomorphism on Y. Let ψεC°(Y,R)
such that there exists λ such that, for any v G-invariant probability measure on Y,

1 n~1

$ψdv = λ. Then, if n-+ao9— £ ψoG1 converges uniformly to λ.
n i=o

For sake of completeness, we reproduce the very nice proof of Herman.

Proof. Denote by F = {η — η o G\η e C°(Y, R)}. Obviously, a Radon measure μ on Y
is G-invariant if and only iff fdμ = 0 for any /e F. Thus, FL is the set of G-invariant
Radon measures on Y. Moreover, any G-invariant Radon measure μ has a unique
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decomposition μ = μ+ — μ_, where μ+ and μ_ are G-in variant positive measures.
Therefore the hypothesis of the lemma implies that J(φ — λ)dμ = 0 for any μeF1.
Thus ψ — λ E F11 which, by Hahn-Banach theorem, is nothing but the closure of F
for the topology of uniform convergence. This means that there exists a sequence

converging uniformly to (ψ — λ). But for ηt — η^ GeF,

n k = o n

converges to zero uniformly, and putting both observations together, the claim of
the lemma is immediate. Π

Now the proof of Lemma 8 follows the lines of [3] and [6].

Lemma B.2. Assume Ω admits a unique translation invariant measure μ. Then, for
ί>0,

converges uniformly and the limit is independent of ω.

Proof. Fix t > 0. For (ω, x) e Ω x ί2, define

Since g(ω,x) = g(7]c(ω),0), where Tx(ω) = ω + x, we can denote g(ω,x) as g(Txω).
Now we can apply Herman's Lemma B.I with Y=Ω, G=TX, ψ = g which is

continuous on Ω and μ the unique translation invariant measure on Ω.
We obtain that

__Σ π g(T»

converges uniformly to

J tτ(e-'Hv(ω\x,x))dμ.
ωeΩ

The main consequence of Lemma B.2 is that the integrated density of states for
Hv(ω) is independent of ω. Thus one can write it as k(E). Let 3

and define the approximants of the Lyapunov exponent,

where Tn ω(E, V) is the transfer matrix for Hv(ω).
Avron and Simon showed in [3] that the uniform convergence of Lω implies

that yn

ω(E, V) converges to $(E) in L2(dE\ uniformly in ω. Obviously, this proves
Lemma 8. Π

3 This is known as Thouless formula [19]
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