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Abstract. We consider the motion of a test particle in a compound central potential
field on a two-dimensional torus. We discuss three different classes of potentials
(attracting, repelling, and mixed) that lead to Hamiltonian systems which have
positive Lyapunov exponent almost everywhere and are ergodic. Included among
the mixed potentials are smooth potentials without singularities.

1. Introduction

Do gas molecules interacting in a box behave stochastically? Boltzmann's ergodic
hypothesis, rephrased in modern language, asserts the affirmative. In the nineteen
forties, the Russian physicist Krylov [Kr] studied the case of a gas of hard spheres.
His calculations indicated that collisions between the spheres would lead to an
exponential divergence of trajectories. Hopf [H] had recently shown that geodesic
flow on surfaces of negative curvature was ergodic precisely because of such
exponential instability of trajectories. Krylov argued that the hard sphere gas
should therefore also behave stochastically.

In the early 1960s, Sinai [Sil] continued the work of Krylov. He translated
the problem of two hard spheres into a billiard system consisting of one particle
moving on a two dimensional torus T2 with circular obstacles (scatterers). Sinai
[Si2] showed that this billiard system was ergodic. Furthermore, recent work has
proven ergodicity of systems of three and four balls [SC, KSS1, KSS2].

We will study a related systems, also discussed by Krylov, obtained by replacing
the circular scatters on the billiard table by symmetric potentials of finite range.
One then examines the motion of a point particle in the potential field. The resulting
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dynamical system is determined by a Hamiltonian function H:-— = ̂ —, — = — ——.
at oq at op

If there are n disjoint scatterers on the torus, then letting peR2, qeT2,

H(p,q) = ̂ p2+Σ Vfa-qά (1.1)
^ i=l

where the radially symmetric potentials V{ vanish outside a disk Dt of radius Rt.
The total energy E of the point particle is preserved under the Hamiltonian flow

induced by (1.1) We restrict our attention to the E = 1/2 energy surface; a compact
three dimensional manifold which we denote by Jί. The choice of E = 1/2 implies
that the particle will move with unit speed while outside uDt . We denote by φ* the
flow induced on Jί by (1.1) and let μ be the restriction of the Louville measure to
M. This measure is invariant under φ*. We will study the dynamical system

(Jί,Φ\μ\ (1.2)

To simplify matters, we will discuss the case of one scatterer and will set q^ equal
to the origin, but our results apply to the more general situation as well.

Recently, Knauf [Knl] examined the case of attracting potentials and showed
the existence of attracting potentials with — r"1 singularities (Coulomb), and more
generally singularities of type _r-

2(1~1/«)? fleZ + \{0, i}5 for which the system has
positive entropy and is ergodic. We generalize this result to show

Theorem 1. For any αe(0,2), there exist attracting potentials with singularity of
order — r~afor which the system has positive Lyapunov exponents almost everywhere
and is ergodic.

Note that if the singularity is — r~2 or stronger, then a positive measure set of
trajectories would be pulled into the singularity, trivializing the dynamics.

In the case of repelling potentials, Sinai [Sil] and then later Kubo [Ku] showed

Theorem 2. There exist repelling potentials, which are continuous but not C1, for
which the system has positive Lyapunov exponent almost everywhere and is ergodic.

In their examples, the discontinuity in V occurred at the boundary of the disk.
At the discontinuity, they needed that \V'\ was greater than a certain energy
dependent lower bound. We generalize their results by constructing potentials with
an arbitrarily small discontinuity in V for which the conclusion of Theorem 2 still
holds. Other works on this subject are [KSS4, KuM, M, VI, V2].

In [Dl, D2], Donnay created smooth metrices on the sphere and two-torus for
which the geodesic flow had positive Lyapunov exponent almost everywhere and
was ergodic (see also [BG2]). In analogy with his construction, we show

Theorem 3. There exist smooth potentials without singularities for "which the system
has positive Lyapunov exponent almost everywhere and is ergodic.

These are the first examples of a smooth Hamiltonian of the form H = Kinetic
Energy + Potential Energy for which the flow is ergodic [Be, p. 185],

We can construct several different sorts of smooth potentials. The crucial
ingredient in the construction is that there exist a closed orbit inside the disk D.

We prove our results on Lyapunov exponents by applying Wojtkowski's
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Fig. 1. Attracting potential causes divergence

Fig. 2. Repelling potential causes focusing

method of invariant cone-fields [Wl] to the flow φ*. A positive Lyapunov exponent
implies that a family of infinitesimally nearby trajectories will diverges from one
another exponentially fast.

In free motion, V = 0, a parallel family of trajectories stays parallel and never
diverges. The attracting potentials of Theorem 1 will cause every parallel family
of trajectories that enters the disk to become strictly divergent (Fig. 1) Once all
parallel families are shown to become strictly divergent, the cone-field method
immediately implies that almost every such family will diverge exponentially.

The repelling potentials of Theorem 2 cause the parallel family to converge.
Before returning to the next potential, the converging family focuses and then
becomes strictly divergent (Fig. 2). If the repelling potential were C1 smooth, then
the time until this focusing occurred could become arbitrarily large; in particular
longer than the return time to the potential. The method of proof then breaks
down.

For the systems of Theorem 3, the trajectories that enter the disk but do not
cross the closed orbit will exhibit the diverging behavior. Those trajectories that
cross the closed orbit will display, in a finite time, the focusing behavior. Dividing
these two sets of trajectories are the trajectories that become asymptotic to the
closed orbit.

These trajectories introduce a type of discontinuity into the system. Typically, in
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going from the diverging behavior, to the focusing-in-finite-time behavior, one must
encounter the focusing-in-unbounded-time behavior. We are able to skip over this
intermediate situation because of the discontinuity caused by the closed orbit.

To prove ergodicity, two different methods are available. One method is based
on the Burns-Gerber [BG1] argument for contact flows. The Burns-Gerber
argument relies heavily on Pesin theory [P] and requires that the system be smooth.
This smoothness requirement fails for the examples of Theorems 1 and 2. However
for the special potentials with singularities of order _ r-

2(1~1/w)? we can regularize
the singularity to produce a smooth flow. We combine this regularization with the
cone technique to give a different proof of Knauf 's ergodicity result.

Knauf's proof was based on the Maupertius principle [A, p. 246] which states
that the motion of a particle under the effect of a potential can be viewed as
geodesic motion relative to a special metric. The trajectories on the torus produced
by the potential V agree with the geodesic trajectories produced by the Riemannian
metric

ds2 = (E-V(q})ds\ (1.3)

where ds is the Euclidean metric and E is the total energy of the particle. Note that
although the trajectories of the two systems coincide, the time parametrizations
of the flows do not. For any examples in Theorem 3 one can prove ergodicity by
combining the Maupertius principle with the Burns-Gerber argument.

For the potentials he constructed, Knauf showed that inside the disk D, the
metric ds was of negative curvature. Outside the disk the curvature is clearly zero.
For such a metric, the geodesic flow is ergodic (in an appropriate covering space)
and hence so is the potential flow. We note that Krylov [Kr] did calculations for
potentials of power-type indicating the likelihood that the associated metrics
would have negative curvature.

The other method is based on Chernov's and Sinai's ideas [SC]. These
techniques were developed to prove ergodicity in the case of non-smooth systems
(systems of hard balls), and relied on a detailed analysis of the properties of the
singularities in the system.

Finally in analogue with Donnay's light-bulb example [Dl], we show

Theorem 4. There exist smooth potentials without singularities for which the system
has positive Lypunov exponent on a set of positive measure but is not ergodic.

The outline of our paper is as follows. We review (Sect. 2) the necessary material
about cone-fields. We then consider the potential system as an example of a more
general abstract system (Sect. 3). We determine conditions for this abstract system
that will insure positive Lyapunov exponents (Sect. 4). We use these conditions to
prove Theorems 1, 2, 3 and 4 (Sect. 5). We discuss the ergodicity of our examples
(Sect. 6). We relate (Sect. 7) our potentials to the metrics given by the Maupertius
principle. In Appendices I, II, we compute explicitly some relevant quantities for
our model, and obtain the estimates needed to prove the existence of the Lyapunov
exponents for the flows under consideration. In Appendix III, we supply calcula-
tions used for the proof of Theorem 3. In Appendix IV, we provide the modifications
necessary to apply the Sinai-Chernov theory, in the version presented in [KSS3], to
our examples. Finally, Appendix V discusses embedding the associated Maupertius
metrics.
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2. Lyapunov Exponents and Cone-Fields

Let M be a C3 compact, connected, three dimensional Riemannian manifold and
μ a measure on Jt that is equivalent to the Riemannian volume. Let φ* be a
measurable flow on M, generated by a vector field X, that preserves μ. Osceledec's
multiplicative ergodic theorem [O] implies that for a flow satisfying

Jlog + sup \\dφt(x)\\dμ(x)<ao, (2.1)
Jl fe[0,lj

one has that for μ - a.e. xeJt the Lyapunov exponents of ξe$~xJί, ξ^Q,

λ+(x,ξ) = lim j logWίll
f-» + 00 ί

and

r(x,ξ) = lim log W£ || (2.2)
- -f-» -oo

are well defined.
We define the maximal Lyapunov exponent at x to be

λ+(x) = sup λ+(x, ξ) = lim Aiog ||<ty'(jc)||. (2.3)
-

Wojtkowski's [Wl] technique for proving that the maximal Lyapunov exponent
is positive involves cone families.

As in [BG1], we define a cone C in two dimensional vector space P to be a subset
C = C(X19X2) = {aXi + bX2:ab ^ 0}, where Xλ and X2 are linearly independent
vectors and a, Z?e]R. We call Int (C) = {aX1 + fcJT2 :α& > 0 or α = b = 0} the interior
of C. The family is measurable (continuous) if the vectors {Xί9X2} vary in a
measurable (continuous) way.

At each point xeJΐ, we produce a two-dimensional vector space P(x) by taking
the three-dimensional tangent space yxM and quotienting out by the flow direction

For concreteness, we will choose a fixed representative of P(JC) at each x. We
denote by & the projection in the flow direction onto this subspace P; for
ξ = ocX + peFxJt, peP(x), we have

Theorem 2.1. Assume that the flow satisfies (2.1). Let U ^Jί be a set of positive
measure with X(x)^0 for every xeU. Suppose that there is a measurable two
dimensional distribution P defined on U and a measurable family of cones C c P over
U such that

(i) P(x) and X(x) span 3ΓxJί for each xe(7;
(ii) ^>(dφtC(x)) S C(<^x) whenever xel/, ^xel/ and ί ̂  0;

(iii) /or μ almost every xeU there is a t(x) > 0 such that φt(x}xeU and

Then for μ - a.e. XG U = y 1̂7, ί/iβ maximal Lyapunov exponent satisfies λ+(x) > 0.
ί€R

Proo/. We follow [Wl] where the case of maps is studied. Let T= φ1 be the time
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one map of the flow φ*. Let Tv be the derived transformation defined for xeU by
Tυx = Tku(x)x, where kυ(x) = min {n ̂  1 : T"xe U}. We denote by dTv: U -» GL(3, R)
the differential of Tυ. Condition (2.1) implies that jlog+ \\dTυ(x)\\dμ(x)< oo, so

that the Lyapunov exponents for the cocycle (TU9dTv) exist almost everywhere.
Standard ergodic theory techniques imply that if the maximal Lyapunov

exponent for the cocycle (TU9dTv) is positive almost everywhere in U9 then the
same is true for the maximal Lyapunov exponent λ + (x) of the flow φ*.

We examine an associated cocycle (TU9 &(dTΌ)\ where 0>(dTΌ): U -> GL(2, R) is
the map from P(x) to P(Tυx) defined using the projection map. The Lyapunov
exponents for this cocycle exist since log+ ^3P(dTυ)\(£l}(U9μ). Conditions (ii) and
(iii) allow us to apply [Wl, Theorem 2.2] and conclude that the maximal Lyapunov
exponent of (Tυ93P(dTυ}) is positive almost everywhere. This result implies that
the maximal Lyapunov exponent for (TU9dTv) is also positive almost everywhere
(for more details see also [W2, Lemma 1]).

For smooth flow (at least C2), Pesin [P] showed that the measure theoretic
entropy hμ is given as the average of the positive Lyapunov exponents.

hμ= f λ + (x)dμ(x). (2.4)
xeJί

Katok and Strelcyn [KS] have extended this result to systems with singularities.
If the set Γ of points with a positive Lyapunov exponent has positive measure
then Γ decomposes into at most a countable number of invariant components,
each of positive measure. On each component the system exhibits very strong
ergodic properties.

Burns and Gerber [BG1] have given a simple condition for ergodicity of smooth
systems in terms of cone-fields. Essentially, they show that if the distribution P is
flow invariant

dφ'P(x) = P(φtx) (2.5)

then continuity of the cone-field implies ergodicity. For systems with singularities,
the ergodicity proof of Chernov and Sinai [SC] (see also [KSS3,Bu]) can be
phrased in terms of continuous cone-fields, but additional conditions on the
singularity manifold are needed. We will refer to these methods to prove ergodicity
for our examples (see Sect. 6 and Appendix IV).

3. Model System

The dynamics of our system (1.2) consist of the composition of two easily under-
stood motions. Outside the disk, a particle moves in a straight line with unit speed.
Inside the disk, the symmetry of the potential implies that the motion is integrable.

To simplify the discussion, we will assume that every particle that starts inside
the disk and every particle that enters the disk will leave the disk. This imposes
certain restrictions on the potential V(r) (see (3.6)). We give the disk D polar
coordinates (r,θ), re[0,R], θe[0,2π], and denote by φe[ — π,π] the angle a
trajectory makes with the boundary of the disk. We set

= {(θ,φ):0e[0,2π)andφe[-π,0]}.
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Fig. 3. Rotation function Δθ(φ)

They represent, respectively, the points in the phase space M at which trajectories
enter and leave the disk. Abusing notation slightly, we will say a point x = (p, q)
is in the disk D if qeD.

The symmetry of the potential implies that a particle that enters the disk at
the point (0, φ\ φe[0,π], will leave the disk at a point (θ + Δθ(φ\ —φ) (Fig. 3).
The function

Δθ(φ\ φe(0,π) (3.1)

is called the rotation function; it will determine the ergodic properties of the system.
The exact nature of the rotation function depends on the potential V(r) in the
following way.

Let V(r\ reR+ be a radial potential that satisfies

suppKc=[0,#),

(0,£)). (3.2)

For r ̂  R, the trajectory of a particle (r(ί), θ(t)) of mass 1, energy \, and angular
momentum / entering in this potential is given by

ι = i(r2 + r202)+F(r),

I = r2θ,

r(0) = Rι 0(0) = 00e[0,2π); r(0)^0. (3.3)

The dot indicates the derivative with respect to time and the particle is assumed
to enter the disk at time t = 0.

Rewriting the first of (3.3) gives

/2

f2 = 1 - -2 - 2V(r) = r~2(h(r) - /2),

where (3.4)
h(r) = r2(l-2V(r)).

Combining (3.3), (3.4) we have

' (3.5)
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dθ
This sign of — depends on whether r is increasing or decreasing.

Before going further we impose an additional condition on our potential,

h'(r) > 0 (3.6)

for all except perhaps one value of re(0,#). This condition insures the absence of
"trapping zones": invariant regions of phase space in which the motion is completely
integrable (see the end of the section).

With this assumption, if / Φ 0, then there exists a time ίeR+ u {00} such that
r(t) ^ 0 for t < t and r(t ) = 0. This is the time at which the particle comes closest
to the center of the potential. Denote by f = r(φ) this minimum radius. For potentials
satisfying (3.2) and (3.6), we can integrate (3.5) and get the following expression for
the rotation function for φe[0,π/2):

dr, l = Rcosφ = h(f)112. (3.7)

An orbit that enters the potential field with angle π — φ will rotate clockwise
around the disk by the same amount that an orbit entering the disk with angle φ
will rotate counterclockwise. Thus for <pe(π/2,π], we can define

Δθ(φ)= -Δθ(π-φ). (3.8)

This definition produces a rotation function that will typically be discontinuous at
φ = π/2 (see Lemma 5.5). In such a case, we ignore those trajectories that enter
the disk with angle φ = π/2. These points from a set of measure zero. Note that

ΔΘ'(φ) = ΔΘ'(π-φ), (3.9)

so that when we study properties that depend only on the derivative of the rotation
function, it will suffice to examine φe[0,π/2).

Actually, in many of the examples, we will be able to define the rotation function
to be continuous and even smooth for <pe[0,π]. If

lim Δθ(φ) = nπ, rceZ, (3.10)
φ-»(π/2)-

we set ΔΘ(π/2) = nπ and define

Δθ(φ) = 2nπ - Δθ(π - φ), φe(π/2,π]. (3.11)

We will derive conditions on the derivative of the rotation function, Δθ'(φ\
which will imply the existence of a strictly invariant cone field. To compute this
derivative, we first make the change of variables s = r/f to get

Rf~1 I
Δθ(φ) = 2 f ds,

and then differentiate. By trial and error, we have found that the result can be
written in a particularly simple form if we introduce the function
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One then gets that

Δff(φ) = lΩVΓ^R2 - n2[h(R-) - PΓ1/2 + -dr . (3.13)

For details, see Appendix I.

Trapping Zones. If /ι'(r)<0 for some re(0,.R), then there exist orbits that start
inside the disk and never leave. Equation (3.4) implies that on a trajectory (r(t\ θ(t)\
one will always have h(r(t)) ^ I2. Hence trajectories that start inside the disk with
a value of angular momentum / close to the maximum value of h will have
K0e[rmίn,rmax] for all ίeR, where h(rmin) = h(rmaκ) = I2 (Fig. 9).

There can also exist closed orbits inside the disk. If there exist rce(0,Λ) such
that

h'(rc) = 0 or equivalently Ω(rc) = 0, (3.14)

then there exists a closed orbit with r(t) = rc. To see this, let (r(ί), θ(t)) be a trajectory
with angular momentum I2 = h(rc) that satisfies r(0) = rc. Then using (3.4), we get
dr

dt 0

= 0 and using h'(rc) = 0 we get -~-
d t

= 0. Hence r(t) = r(0) =

4. Cone Fields

We define the cone field (C(x)}, xe£7, and derive conditions on Δθ'(φ) that imply
the cone-field is strictly invariant (i.e. satisfies (ii, iii) of Theorem 2.1).

Definition 4.1. Let U c M be the set of all points x = (p, q) outside the disk D.

We can canonically identify the momentum p = q with its velocity vector q.
For q outside the disk, V(q) = 0, so a particle moves with speed one and the velocity
vector q has length one. We assign coordinates {v,vL, Φ] to M in a neighborhood
of x: v is the distance from q on T2, measured in the direction of q, VL is the distance
from q in the direction perpendicular to q and Φ is the angle of the unit velocity
vectors measured counterclockwise relative to a fixed axis. These coordinates induce
an orthonormal basis {X = Xυ9Xυ±9Xφ} for rζj(. We set P(x) = span {X^Xφ}.

It is easy to see that as long as φ*x does not intersect Z), the distribution P(x)
is invariant

\ (4.1)

We define the cone C(x) by

C(x) = {JXVL + J'Xφ.JJ' ^ 0}. (4.2)

In differential geometry, a vector ζeP(x) is identified with a Jacobi field, hence the
notation ( J, J') for the coordinates of the vector.

Theorem 4.2. If for almost every φe(0,π), the rotation function satisfies either
Δθ'(φ) >2 or Δθ'(φ) ^ 0, then the cone family defined by (4.2) is almost everywhere
eventually strictly invariant on U (i.e. satisfies (ii, iii) of Theorem 2.1).

We find it useful to interpret vectors ξe$~Jΐ geometrically. We identify a vector


