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Abstract. We consider the motion of a test particle in a compound central potential
field on a two-dimensional torus. We discuss three different classes of potentials
(attracting, repelling, and mixed) that lead to Hamiltonian systems which have
positive Lyapunov exponent almost everywhere and are ergodic. Included among
the mixed potentials are smooth potentials without singularities.

1. Introduction

Do gas molecules interacting in a box behave stochastically? Boltzmann's ergodic
hypothesis, rephrased in modern language, asserts the affirmative. In the nineteen
forties, the Russian physicist Krylov [Kr] studied the case of a gas of hard spheres.
His calculations indicated that collisions between the spheres would lead to an
exponential divergence of trajectories. Hopf [H] had recently shown that geodesic
flow on surfaces of negative curvature was ergodic precisely because of such
exponential instability of trajectories. Krylov argued that the hard sphere gas
should therefore also behave stochastically.

In the early 1960s, Sinai [Sil] continued the work of Krylov. He translated
the problem of two hard spheres into a billiard system consisting of one particle
moving on a two dimensional torus T2 with circular obstacles (scatterers). Sinai
[Si2] showed that this billiard system was ergodic. Furthermore, recent work has
proven ergodicity of systems of three and four balls [SC, KSS1, KSS2].

We will study a related systems, also discussed by Krylov, obtained by replacing
the circular scatters on the billiard table by symmetric potentials of finite range.
One then examines the motion of a point particle in the potential field. The resulting
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dynamical system is determined by a Hamiltonian function H:-— = ̂ —, — = — ——.
at oq at op

If there are n disjoint scatterers on the torus, then letting peR2, qeT2,

H(p,q) = ̂ p2+Σ Vfa-qά (1.1)
^ i=l

where the radially symmetric potentials V{ vanish outside a disk Dt of radius Rt.
The total energy E of the point particle is preserved under the Hamiltonian flow

induced by (1.1) We restrict our attention to the E = 1/2 energy surface; a compact
three dimensional manifold which we denote by Jί. The choice of E = 1/2 implies
that the particle will move with unit speed while outside uDt . We denote by φ* the
flow induced on Jί by (1.1) and let μ be the restriction of the Louville measure to
M. This measure is invariant under φ*. We will study the dynamical system

(Jί,Φ\μ\ (1.2)

To simplify matters, we will discuss the case of one scatterer and will set q^ equal
to the origin, but our results apply to the more general situation as well.

Recently, Knauf [Knl] examined the case of attracting potentials and showed
the existence of attracting potentials with — r"1 singularities (Coulomb), and more
generally singularities of type _r-

2(1~1/«)? fleZ + \{0, i}5 for which the system has
positive entropy and is ergodic. We generalize this result to show

Theorem 1. For any αe(0,2), there exist attracting potentials with singularity of
order — r~afor which the system has positive Lyapunov exponents almost everywhere
and is ergodic.

Note that if the singularity is — r~2 or stronger, then a positive measure set of
trajectories would be pulled into the singularity, trivializing the dynamics.

In the case of repelling potentials, Sinai [Sil] and then later Kubo [Ku] showed

Theorem 2. There exist repelling potentials, which are continuous but not C1, for
which the system has positive Lyapunov exponent almost everywhere and is ergodic.

In their examples, the discontinuity in V occurred at the boundary of the disk.
At the discontinuity, they needed that \V'\ was greater than a certain energy
dependent lower bound. We generalize their results by constructing potentials with
an arbitrarily small discontinuity in V for which the conclusion of Theorem 2 still
holds. Other works on this subject are [KSS4, KuM, M, VI, V2].

In [Dl, D2], Donnay created smooth metrices on the sphere and two-torus for
which the geodesic flow had positive Lyapunov exponent almost everywhere and
was ergodic (see also [BG2]). In analogy with his construction, we show

Theorem 3. There exist smooth potentials without singularities for "which the system
has positive Lyapunov exponent almost everywhere and is ergodic.

These are the first examples of a smooth Hamiltonian of the form H = Kinetic
Energy + Potential Energy for which the flow is ergodic [Be, p. 185],

We can construct several different sorts of smooth potentials. The crucial
ingredient in the construction is that there exist a closed orbit inside the disk D.

We prove our results on Lyapunov exponents by applying Wojtkowski's
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Fig. 1. Attracting potential causes divergence

Fig. 2. Repelling potential causes focusing

method of invariant cone-fields [Wl] to the flow φ*. A positive Lyapunov exponent
implies that a family of infinitesimally nearby trajectories will diverges from one
another exponentially fast.

In free motion, V = 0, a parallel family of trajectories stays parallel and never
diverges. The attracting potentials of Theorem 1 will cause every parallel family
of trajectories that enters the disk to become strictly divergent (Fig. 1) Once all
parallel families are shown to become strictly divergent, the cone-field method
immediately implies that almost every such family will diverge exponentially.

The repelling potentials of Theorem 2 cause the parallel family to converge.
Before returning to the next potential, the converging family focuses and then
becomes strictly divergent (Fig. 2). If the repelling potential were C1 smooth, then
the time until this focusing occurred could become arbitrarily large; in particular
longer than the return time to the potential. The method of proof then breaks
down.

For the systems of Theorem 3, the trajectories that enter the disk but do not
cross the closed orbit will exhibit the diverging behavior. Those trajectories that
cross the closed orbit will display, in a finite time, the focusing behavior. Dividing
these two sets of trajectories are the trajectories that become asymptotic to the
closed orbit.

These trajectories introduce a type of discontinuity into the system. Typically, in
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going from the diverging behavior, to the focusing-in-finite-time behavior, one must
encounter the focusing-in-unbounded-time behavior. We are able to skip over this
intermediate situation because of the discontinuity caused by the closed orbit.

To prove ergodicity, two different methods are available. One method is based
on the Burns-Gerber [BG1] argument for contact flows. The Burns-Gerber
argument relies heavily on Pesin theory [P] and requires that the system be smooth.
This smoothness requirement fails for the examples of Theorems 1 and 2. However
for the special potentials with singularities of order _ r-

2(1~1/w)? we can regularize
the singularity to produce a smooth flow. We combine this regularization with the
cone technique to give a different proof of Knauf 's ergodicity result.

Knauf's proof was based on the Maupertius principle [A, p. 246] which states
that the motion of a particle under the effect of a potential can be viewed as
geodesic motion relative to a special metric. The trajectories on the torus produced
by the potential V agree with the geodesic trajectories produced by the Riemannian
metric

ds2 = (E-V(q})ds\ (1.3)

where ds is the Euclidean metric and E is the total energy of the particle. Note that
although the trajectories of the two systems coincide, the time parametrizations
of the flows do not. For any examples in Theorem 3 one can prove ergodicity by
combining the Maupertius principle with the Burns-Gerber argument.

For the potentials he constructed, Knauf showed that inside the disk D, the
metric ds was of negative curvature. Outside the disk the curvature is clearly zero.
For such a metric, the geodesic flow is ergodic (in an appropriate covering space)
and hence so is the potential flow. We note that Krylov [Kr] did calculations for
potentials of power-type indicating the likelihood that the associated metrics
would have negative curvature.

The other method is based on Chernov's and Sinai's ideas [SC]. These
techniques were developed to prove ergodicity in the case of non-smooth systems
(systems of hard balls), and relied on a detailed analysis of the properties of the
singularities in the system.

Finally in analogue with Donnay's light-bulb example [Dl], we show

Theorem 4. There exist smooth potentials without singularities for which the system
has positive Lypunov exponent on a set of positive measure but is not ergodic.

The outline of our paper is as follows. We review (Sect. 2) the necessary material
about cone-fields. We then consider the potential system as an example of a more
general abstract system (Sect. 3). We determine conditions for this abstract system
that will insure positive Lyapunov exponents (Sect. 4). We use these conditions to
prove Theorems 1, 2, 3 and 4 (Sect. 5). We discuss the ergodicity of our examples
(Sect. 6). We relate (Sect. 7) our potentials to the metrics given by the Maupertius
principle. In Appendices I, II, we compute explicitly some relevant quantities for
our model, and obtain the estimates needed to prove the existence of the Lyapunov
exponents for the flows under consideration. In Appendix III, we supply calcula-
tions used for the proof of Theorem 3. In Appendix IV, we provide the modifications
necessary to apply the Sinai-Chernov theory, in the version presented in [KSS3], to
our examples. Finally, Appendix V discusses embedding the associated Maupertius
metrics.
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2. Lyapunov Exponents and Cone-Fields

Let M be a C3 compact, connected, three dimensional Riemannian manifold and
μ a measure on Jt that is equivalent to the Riemannian volume. Let φ* be a
measurable flow on M, generated by a vector field X, that preserves μ. Osceledec's
multiplicative ergodic theorem [O] implies that for a flow satisfying

Jlog + sup \\dφt(x)\\dμ(x)<ao, (2.1)
Jl fe[0,lj

one has that for μ - a.e. xeJt the Lyapunov exponents of ξe$~xJί, ξ^Q,

λ+(x,ξ) = lim j logWίll
f-» + 00 ί

and

r(x,ξ) = lim log W£ || (2.2)
- -f-» -oo

are well defined.
We define the maximal Lyapunov exponent at x to be

λ+(x) = sup λ+(x, ξ) = lim Aiog ||<ty'(jc)||. (2.3)
-

Wojtkowski's [Wl] technique for proving that the maximal Lyapunov exponent
is positive involves cone families.

As in [BG1], we define a cone C in two dimensional vector space P to be a subset
C = C(X19X2) = {aXi + bX2:ab ^ 0}, where Xλ and X2 are linearly independent
vectors and a, Z?e]R. We call Int (C) = {aX1 + fcJT2 :α& > 0 or α = b = 0} the interior
of C. The family is measurable (continuous) if the vectors {Xί9X2} vary in a
measurable (continuous) way.

At each point xeJΐ, we produce a two-dimensional vector space P(x) by taking
the three-dimensional tangent space yxM and quotienting out by the flow direction

For concreteness, we will choose a fixed representative of P(JC) at each x. We
denote by & the projection in the flow direction onto this subspace P; for
ξ = ocX + peFxJt, peP(x), we have

Theorem 2.1. Assume that the flow satisfies (2.1). Let U ^Jί be a set of positive
measure with X(x)^0 for every xeU. Suppose that there is a measurable two
dimensional distribution P defined on U and a measurable family of cones C c P over
U such that

(i) P(x) and X(x) span 3ΓxJί for each xe(7;
(ii) ^>(dφtC(x)) S C(<^x) whenever xel/, ^xel/ and ί ̂  0;

(iii) /or μ almost every xeU there is a t(x) > 0 such that φt(x}xeU and

Then for μ - a.e. XG U = y 1̂7, ί/iβ maximal Lyapunov exponent satisfies λ+(x) > 0.
ί€R

Proo/. We follow [Wl] where the case of maps is studied. Let T= φ1 be the time



272 V. Donnay and C. Liverani

one map of the flow φ*. Let Tv be the derived transformation defined for xeU by
Tυx = Tku(x)x, where kυ(x) = min {n ̂  1 : T"xe U}. We denote by dTv: U -» GL(3, R)
the differential of Tυ. Condition (2.1) implies that jlog+ \\dTυ(x)\\dμ(x)< oo, so

that the Lyapunov exponents for the cocycle (TU9dTv) exist almost everywhere.
Standard ergodic theory techniques imply that if the maximal Lyapunov

exponent for the cocycle (TU9dTv) is positive almost everywhere in U9 then the
same is true for the maximal Lyapunov exponent λ + (x) of the flow φ*.

We examine an associated cocycle (TU9 &(dTΌ)\ where 0>(dTΌ): U -> GL(2, R) is
the map from P(x) to P(Tυx) defined using the projection map. The Lyapunov
exponents for this cocycle exist since log+ ^3P(dTυ)\(£l}(U9μ). Conditions (ii) and
(iii) allow us to apply [Wl, Theorem 2.2] and conclude that the maximal Lyapunov
exponent of (Tυ93P(dTυ}) is positive almost everywhere. This result implies that
the maximal Lyapunov exponent for (TU9dTv) is also positive almost everywhere
(for more details see also [W2, Lemma 1]).

For smooth flow (at least C2), Pesin [P] showed that the measure theoretic
entropy hμ is given as the average of the positive Lyapunov exponents.

hμ= f λ + (x)dμ(x). (2.4)
xeJί

Katok and Strelcyn [KS] have extended this result to systems with singularities.
If the set Γ of points with a positive Lyapunov exponent has positive measure
then Γ decomposes into at most a countable number of invariant components,
each of positive measure. On each component the system exhibits very strong
ergodic properties.

Burns and Gerber [BG1] have given a simple condition for ergodicity of smooth
systems in terms of cone-fields. Essentially, they show that if the distribution P is
flow invariant

dφ'P(x) = P(φtx) (2.5)

then continuity of the cone-field implies ergodicity. For systems with singularities,
the ergodicity proof of Chernov and Sinai [SC] (see also [KSS3,Bu]) can be
phrased in terms of continuous cone-fields, but additional conditions on the
singularity manifold are needed. We will refer to these methods to prove ergodicity
for our examples (see Sect. 6 and Appendix IV).

3. Model System

The dynamics of our system (1.2) consist of the composition of two easily under-
stood motions. Outside the disk, a particle moves in a straight line with unit speed.
Inside the disk, the symmetry of the potential implies that the motion is integrable.

To simplify the discussion, we will assume that every particle that starts inside
the disk and every particle that enters the disk will leave the disk. This imposes
certain restrictions on the potential V(r) (see (3.6)). We give the disk D polar
coordinates (r,θ), re[0,R], θe[0,2π], and denote by φe[ — π,π] the angle a
trajectory makes with the boundary of the disk. We set

= {(θ,φ):0e[0,2π)andφe[-π,0]}.
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Fig. 3. Rotation function Δθ(φ)

They represent, respectively, the points in the phase space M at which trajectories
enter and leave the disk. Abusing notation slightly, we will say a point x = (p, q)
is in the disk D if qeD.

The symmetry of the potential implies that a particle that enters the disk at
the point (0, φ\ φe[0,π], will leave the disk at a point (θ + Δθ(φ\ —φ) (Fig. 3).
The function

Δθ(φ\ φe(0,π) (3.1)

is called the rotation function; it will determine the ergodic properties of the system.
The exact nature of the rotation function depends on the potential V(r) in the
following way.

Let V(r\ reR+ be a radial potential that satisfies

suppKc=[0,#),

(0,£)). (3.2)

For r ̂  R, the trajectory of a particle (r(ί), θ(t)) of mass 1, energy \, and angular
momentum / entering in this potential is given by

ι = i(r2 + r202)+F(r),

I = r2θ,

r(0) = Rι 0(0) = 00e[0,2π); r(0)^0. (3.3)

The dot indicates the derivative with respect to time and the particle is assumed
to enter the disk at time t = 0.

Rewriting the first of (3.3) gives

/2

f2 = 1 - -2 - 2V(r) = r~2(h(r) - /2),

where (3.4)
h(r) = r2(l-2V(r)).

Combining (3.3), (3.4) we have

' (3.5)
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dθ
This sign of — depends on whether r is increasing or decreasing.

Before going further we impose an additional condition on our potential,

h'(r) > 0 (3.6)

for all except perhaps one value of re(0,#). This condition insures the absence of
"trapping zones": invariant regions of phase space in which the motion is completely
integrable (see the end of the section).

With this assumption, if / Φ 0, then there exists a time ίeR+ u {00} such that
r(t) ^ 0 for t < t and r(t ) = 0. This is the time at which the particle comes closest
to the center of the potential. Denote by f = r(φ) this minimum radius. For potentials
satisfying (3.2) and (3.6), we can integrate (3.5) and get the following expression for
the rotation function for φe[0,π/2):

dr, l = Rcosφ = h(f)112. (3.7)

An orbit that enters the potential field with angle π — φ will rotate clockwise
around the disk by the same amount that an orbit entering the disk with angle φ
will rotate counterclockwise. Thus for <pe(π/2,π], we can define

Δθ(φ)= -Δθ(π-φ). (3.8)

This definition produces a rotation function that will typically be discontinuous at
φ = π/2 (see Lemma 5.5). In such a case, we ignore those trajectories that enter
the disk with angle φ = π/2. These points from a set of measure zero. Note that

ΔΘ'(φ) = ΔΘ'(π-φ), (3.9)

so that when we study properties that depend only on the derivative of the rotation
function, it will suffice to examine φe[0,π/2).

Actually, in many of the examples, we will be able to define the rotation function
to be continuous and even smooth for <pe[0,π]. If

lim Δθ(φ) = nπ, rceZ, (3.10)
φ-»(π/2)-

we set ΔΘ(π/2) = nπ and define

Δθ(φ) = 2nπ - Δθ(π - φ), φe(π/2,π]. (3.11)

We will derive conditions on the derivative of the rotation function, Δθ'(φ\
which will imply the existence of a strictly invariant cone field. To compute this
derivative, we first make the change of variables s = r/f to get

Rf~1 I
Δθ(φ) = 2 f ds,

and then differentiate. By trial and error, we have found that the result can be
written in a particularly simple form if we introduce the function



Ergodic Potentials on the Two-Torus 275

One then gets that

Δff(φ) = lΩVΓ^R2 - n2[h(R-) - PΓ1/2 + -dr . (3.13)

For details, see Appendix I.

Trapping Zones. If /ι'(r)<0 for some re(0,.R), then there exist orbits that start
inside the disk and never leave. Equation (3.4) implies that on a trajectory (r(t\ θ(t)\
one will always have h(r(t)) ^ I2. Hence trajectories that start inside the disk with
a value of angular momentum / close to the maximum value of h will have
K0e[rmίn,rmax] for all ίeR, where h(rmin) = h(rmaκ) = I2 (Fig. 9).

There can also exist closed orbits inside the disk. If there exist rce(0,Λ) such
that

h'(rc) = 0 or equivalently Ω(rc) = 0, (3.14)

then there exists a closed orbit with r(t) = rc. To see this, let (r(ί), θ(t)) be a trajectory
with angular momentum I2 = h(rc) that satisfies r(0) = rc. Then using (3.4), we get
dr

dt 0

= 0 and using h'(rc) = 0 we get -~-
d t

= 0. Hence r(t) = r(0) =

4. Cone Fields

We define the cone field (C(x)}, xe£7, and derive conditions on Δθ'(φ) that imply
the cone-field is strictly invariant (i.e. satisfies (ii, iii) of Theorem 2.1).

Definition 4.1. Let U c M be the set of all points x = (p, q) outside the disk D.

We can canonically identify the momentum p = q with its velocity vector q.
For q outside the disk, V(q) = 0, so a particle moves with speed one and the velocity
vector q has length one. We assign coordinates {v,vL, Φ] to M in a neighborhood
of x: v is the distance from q on T2, measured in the direction of q, VL is the distance
from q in the direction perpendicular to q and Φ is the angle of the unit velocity
vectors measured counterclockwise relative to a fixed axis. These coordinates induce
an orthonormal basis {X = Xυ9Xυ±9Xφ} for rζj(. We set P(x) = span {X^Xφ}.

It is easy to see that as long as φ*x does not intersect Z), the distribution P(x)
is invariant

\ (4.1)

We define the cone C(x) by

C(x) = {JXVL + J'Xφ.JJ' ^ 0}. (4.2)

In differential geometry, a vector ζeP(x) is identified with a Jacobi field, hence the
notation ( J, J') for the coordinates of the vector.

Theorem 4.2. If for almost every φe(0,π), the rotation function satisfies either
Δθ'(φ) >2 or Δθ'(φ) ^ 0, then the cone family defined by (4.2) is almost everywhere
eventually strictly invariant on U (i.e. satisfies (ii, iii) of Theorem 2.1).

We find it useful to interpret vectors ξe$~Jΐ geometrically. We identify a vector
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ξ with the one-parameter family of trajectories y(s) = (φ), vL(s), Φ(s)), se[-ε,ε],
that generates it: y(0) = x and y'(0) = ξ. Such a one-parameter family is called
a variation. If ξeP(x) then φ) = 0: the variation is perpendicular to the flow
direction. The cone specified by (4.2) is then

C(x) = {variations in P(x) that are diverging}. (4.3)

The edges of the cone are the variations (J = 0, J' = 1) and (J = 1, J' = 0); the former
is most strongly divergent, the latter is parallel and is least strongly divergent.

Proof of Theorem 4.2.
a. Outside the disk, this family of cones is invariant (i.e. satisfies (ii) of Theorem 2.1):
any divergent family of trajectories will stay divergent. The family of cones is not
strictly invariant though (does not satisfy (iii) of Theorem 2.1), since the parallel
family remains parallel.
b. To understand how the cones evolve when they go through the disk, we examine
first the case V(r) = 0, re[0, K]. Then the trajectories in the disk would be straight
lines and by simple trigonometry, one finds that the rotation function is

Δθ(φ) = 2φ, φe[0,π/2], (4.4)
so that

Λθ'(φ) = 2. (4.5)

The cones would evolve as they had been doing outside the disk. The diverging
variations would stay diverging, but the parallel variation would never become
strictly divergent; it would remain parallel. Thus the cone field would never become
strictly invariant.

To produce a system with positive Lyapunov exponents, we must push the
horizontal edge (i.e. the variation (J = 1, J' = 0)) of the cone up, so that the cone
family becomes strictly invariant. This amounts to making the parallel family
become strictly divergent.
c. Knowing the above information in the V(r) = 0, case, one can quickly conclude
that if

Δff(φ)>2, (4.6)

then a parallel family that enters the disk with angle φ will be strictly divergent
when it leaves the disk. Also any strictly diverging variation remains strictly
divergent. From the geometry of diverging variations one can see that if

Δff(φ) g 0 (4.7)

then the same result holds. A more quantitative proof of this proposition follows
from Lemma 4.5.

If the rotation function Δθ'(φ) takes values in the interval (0,2), then we can
still produce an eventually strictly invariant cone family, but we must modify our
definition of C(x\ and also the minimum time between returns to the disk must
be sufficiently large.

For xe^, we define ί0(x) to be the time it takes to go through the disk. We
define t1(x)e(t0(x). + oo] to be the time until xjnext returns to the disk: φtl(x\x)e^9

if t^x) is finite. Then for te(t0(x)9tί(x))9 φ*x is outside the disk. We set

ίmin = mίn(ί1(x)-t0W) (4 8)
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Theorem 4.3. If there exists a δ e(0, 2) such that Δθ'(φ) < 2 - δfor almost all φ e [0, π],
then providing that

there exists a cone-field Ci defined on U satisfying conditions (ii) and (iii) of
Theorem 2.1

According to the previous theorem a given potential will produce the wanted
behavior in a sufficiently large torus. An alternative, but equivalent, point of view
is to fix the size of the torus and reduce R by rescaling. In this case (4.9) will be a
condition on the support of the potential.

Remark 4.4. If we assume that the torus has width 1 then ίmin = 1 — 2.R. Condition
(4.9) translates into the restriction,

R<-. (4.10)

To prove this result, we will need more quantitative information about the
evolution of variations. Outside the disk, if

ξ = oc

then

dφ'ξ = *

where

J(ί) = J0 + J'0ί and J'(t) = J'0. (4.11)

For x = (θ, φ)e£f (see Sect. 3), let £0(x) be the time the orbit takes going through
the disk: dφto(x} = x, where xeS?. Since the potential is symmetric, the function
only depends on φ: ί0(x) = t0(φ).

Lemma 4.5. Let x = (θ,φ)e&' and

ξ = aX + JXVL

Then

where

& = a + (-4— + J'}(RΔΘ'(φ)CθSφ-^(
\Rsmφ J\ dφ

J = J(AΘ'(φ) - 1) + J'(RΔff(φ) sin φ),

J' = —!—(Δff(φ) - 2) + J'(Δff(φ) - 1). (4.12)
K sin φ

The image in P(x) of a vector ξ = JXVL + J'XΦe^~xJί, is

0>(dφto™ξ) = JXVL + J'XΦ. (4. 1 3)
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Proof. Let 7(5), se( —ε,ε), be a variation that generates ξ so that y(0) = x and
y'(0) = ξ. We will use a prime for the derivative with respect to s computed at s = 0
(when it is not conflicting with previous definitions).
a. The tangent space ZΠf to the boundary of the disk has basis {Xθ9 Xφ}. Since
the boundary of the disk has radius of curvature 1/R and remembering that the
coordinate v1 is defined using arc-length, one has that

(4.14)
.R sin φ ,R sin φ φ

Therefore,

£ v \ Ωf y I f f j y ί λ ι c\

where

-J J
o C i - α + Jcotφ, θ'= —: , φ' = —: + J'. (4.16)

R sin φ R sin φ

b. The map from entering the disk to leaving the disk sends (#', φ') to (#', φ') with

θ' = θ' + Δθ'(φ)φ', φ' = — φ'> (4.17)

c. A vector Θ'Z0 + φ'Xφe3~& can be written as

όϋf + JX± + J'Xφe^Jί, (4.18)

where

d. Then the composition of the previous three maps gives the vector

—
n rfs °

Using (4.16) to determine — , we arrive at (4.12).
as

In two dimensions, for a vector to be in a cone is projective property: if ξeC(x)
then λξeC(x) for λeR. We define a projective coordinate u for the space P(x):

J'
u = -.

J' J'
Going through the disk, Lemma 4.5 implies that ύ = ̂  is related to u = — by

J J

« = /», (4.20)

where

_
J 1.W - , _ ') sin φ) <• >
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Fig. 4. The effect of going through the disk

Δθ'(φ)

The effect of (4.20) on the edges of the cone, u = 0 and u = + oo, is

Rsmφ\ΔΘ'(φ)-ΐf

Δ f f ( φ ) - l

RΔΘ'(φ)sinφ'

(4.22)

(4.23)

In Fig. 4, we graph the functions fφ(oo) and fφ(Q) as functions of Δθ'(φ). Outside
the disk, u(t) evolves according to

u'(t)=-u2(t). (4.24)

We can define global solutions to (4.24): we identify ± oo and set u(t^ = — oo if
lim. u(t)= -oo. For ί>ίHί, we continue u so that lim u(t)= +00. From (4.11),

f->ί* ί~» ί*+

one immediately gets

Lemma 4.6. Ifu(Q) < 0, then at time τί = \ l/w(0)|, one has that u(τ±) = — oo. After
a further time τ2, one has u(τί + τ2) = I/τ2.

Having identified ± oo, we can consider solutions of (4.24) to live on the circle.
The uniqueness property of solutions of ordinary differential equations imply that
on the circle, the order of solutions is preserved. If τ1 < τ2 and w0, M I ? u2 are solutions
of (4.24) with Uffai) between u^τ^) and u2(τί)9 then u0(τ2) is between ui(τ2) and
w2(τ2). The map fφ also preserve the ordering.

Proof of Theorem 4.3. For x = (θ, φ)e«^, we define C^x) by

Cx(x) = [JX^ + J'̂ Γφ :0 ̂  J'/J ^ wtoP}, (4.25)

where

(4.26)
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Having defined {C(ix)}9 xe£f, we simply push the cones forward to define the
cone-field on U: for φ^eU, ίe(ί0(x), ^(x)), we define

Cl(φt(x)) = ̂ (dφt

xCl(x)). (4.27)

Since almost every ye U reaches ^ in backwards time, (4.27) defines a cone at
almost every yeU. Only a set of periodic orbits of measure zero will not reach £f.
To make the cone field on U strictly invariant, we need only insure that

dφ**(x)Cι(x) c Int(C^tl(x)x)). (4.28)

By the ordering property of /φ and of solutions of (4.24), (4.28) will hold if we
show that tι(f ΛX), x) < wtop, where u(t, x) has initial value w(ί0, x) = fφ(utop). We claim

that for 0 < Δff(φ) ^2-δ either u(t0) = />top) ̂  - -/— or u(ί0) = />top)e
K(2 — 0)

(0, + oo]. In the first case, after a time t > - - - one has that
o

(4 29)

R(2 - δ)
In the second case, (4.29) holds for t > -̂ —-. When Δff(φ) ^ 0 then 0 ̂  u(t0) ̂o

fφ(+ oo) ̂  + oo and so (4.29) holds for t > ( ~ '.

To prove our claim, we notice that the numerator in (4.21) satisfies

(Δffίφ) - 2) + uίop(AΘΊφ) - 1) ̂  — + wtop(l - δ)
Rsmφ R

<. ~* -
:R(2-δ) '

and the denominator

9'(ψ) - 1) + ut0ί>(RΔΘ'(φ) sin φ)^(ί-δ) + utopR(2 - δ)

- 1) + M^ίR^lθ'ίφ) sin φ) > 0, then we have the first case.
If (Δff(φ) - 1) + utop(RΔΘ'(φ) sin φ) ̂  0, then we have the second case.

Geometrically, our cones consist of variations that the diverging when they first
enter D and are again diverging when they return to D. If Δθ'(φ) ^ 0, then any
variation that is diverging when it enters D will be diverging when it leaves D and
stay diverging until it returns to D. For 0 < Δθ'(φ) <2 — δ, some of the variations
will be converging when they leave D, but after some finite time they will focus
and then be diverging. We insure that they focus before returning to D.

Remark 4.7. As 2 — δ approaches 2, the focusing time becomes infinite. So if the
value of Δff(φ) goes continuously from 2 to some 2 — ε, the focusing time for some
variation becomes arbitrarily large and our methods of proof breaks down.
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For such system, one would still expect the existence of non-zero Lyapunov
exponents. However present methods can not handle this situation in which the
expanding direction gets sent onto the contracting direction, in our case by going
through the disk. Moreover, in general, it is possible to arrange the geometry of
the scatters in such a way as to obtain periodic stable orbits (in the sense of KAM
theory), and hence a non-ergodic system. In order to prove positive Lyapunov
exponents it would seem necessary to consider a family of similar systems and
exclude the ones that may exhibit the undesired behavior. Recent work by [BC]
on the Henon map begins to make progress on this type of problems.

5. Potentials

For a potential V(r\ re(0, R) satisfying V(r) ^^, we can use (3.12) to write

Since our motion occurs on the E = \ energy surface, no trajectory can enter the
region in which V > \. Thus any potential we are interested in can be expressed
via (5.1) in terms of the corresponding function Ω. This function determines Λθ'(φ)
in a simple way.

/. Attracting Potentials. We call a potential with F'(r)^0, re(0,#), attracting.

Theorem 5.1. Let V be an attracting potential satisfying (3.2), (3.6) and such that
Ω(r) is strictly increasing for re(0, R) with Ω(0) > 0 and V(R) = V'(R) = 0 (Ω(R) = 2).
Then Λθ'(φ) >2for all φe(0,π/2).

Proof. Since Ω(r) — Ω(f) Ξ> 0, Vre[r,#], and the other terms in the integrand are
positive we get from (3.13), (3.4), and (3.12) that

4 Γ #2 _ p HI/2 4
Δθ'(φ] > > = 2

Note that by (3.12), ί2(r)e(0,2), Vre(0,#), is equivalent to V being attracting.

Corollary 5.2. Any attracting potential V(r) satisfying the assumptions of Theorem
5.1 mil produce a flow (φ\ Jί ', μ) for which the maximal Lyapunov exponents λ+(x)
are positive almost everywhere and is ergodic.

Proof. If V is C2, then Ω is C1 and we show in Appendix II that the Lyapunov
exponents exist. Then combining Theorem 2.1, Theorem 4.2 and Theorem 5.1
proves the result. Ergodicity is discussed in Sect. 6.

From Ω we can determine the behavior of V at r = 0.

Lemma 5.3. Let ΩeC1 ([0, K]) and α = 2 - ί2(0). Then V will have a singularity at
r = 0 of the form — l/rα.
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Ω(r).

a) 2

Ω(0)

V(r)

-1/r1

f(p]

O R p

Fig. 5. Attracting Potential

Proof. Using (5.1), we get that

/ \2-β(θ) ι
lim V(r)( ^ = constant - i e x p Γ ds (5.2)
r->o \R/ 2 \o 5 /

The integral in (5.2) converges, for ΩεC1, proving the lemma.

Example. For any αe(0,2), we can construct smooth potentials V(r) with singularity
of order — r~α for which the flow has positive Lyapunov exponents almost
everywhere and is ergodic: take Ω monotone increasing in (5.1) with Ω(0) = 2 — δ
and Ω(R) = 2, Ω(k)(R) = 0, V f c ̂  1 (this proves Theorem 1). For such a potential,
we use (7.5) to show the relationship between Ω and V (Fig. 5a,b). For these
potentials, the associated Maupertius metric can be isometrically embedded in R3

as a surface of revolution determined by a function z=f(p\ pe[0,K] (see
Appendix V). We graph this function in Fig. 5c.

Remark. 5.4. If we consider a smooth attracting potential with no singularity at the
origin and for which the rotation function is continuous, we are unable to prove
positive Lyapunov exponents.

To see this, note that if V is smooth at the boundary then lim Δθ'(φ) = 2
φ-+Q +

since for φ = 0 the particle is tangent to the disk and hence stays in the 7=0
region. And we know that for V= 0, Λθ'(ϋ) = 2. So we are forced to make Δθ' > 2
for all φ, since if Δθf decreases continuously from 2 the cone method breaks down
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(see Remark 4.7). But if V is smooth and bounded, and ΔθεC1 then

Δθ(π/2) = π = π$ Δθ'(φ)dφ
o

so that Δθ' cannot be always bigger than 2.

Regularization. Knauf [Knl] showed that for potentials with singularities of the
type — r~2 ( 1~1 / f l ), neZ + \{0,1}, the flow could be regularized in an appropriate
covering space, i.e. could be extended to a smooth flow. We explain why the
regularization is possible using the rotation function Δθ.

Lemma 5.5.
lim ΔΘ(φ) = 2π/Ω(0). (5.3)

φ-+π/2-

Proof. We introduce the function

Γ(λ)=l/Ω(h~1(λ2))9 λe[-*,Λ], (5.4)

where h~1 is h inverse. Then the change of variables h(r) = λ2 applied to (3.7) yields
for φe(0,π/2).

ϊ λjλ2-!

I = Rcos(φ) = h(r) = angular momentum. (5.5)

oo dλ

Taking the limit as /->0 and using that Γ(0) = 1//2(0), J —-̂ = = π/2 gives the
u _ i λJλ2 — 1

result. v

2
For Ω(0) = -, n > 1, neZ, one has that lim Δθ(φ) = nπ. In these cases, we

n φ-*π/2~

can use (3.11) to define a rotation function continuous at π/2. In fact, using (5.5)
one can show that the rotation function is smooth at π/2. The degree of smoothnes
depends on the smoothness of Ω. Thus for these examples, we could define 40 (π/2)
and t0(π/2) to produce a smooth system and hence an ergodic flow (see Sect. 6).

//. Repelling Potentials. Sinai [Sil] and Kubo [Ku] have given examples of
repelling potentials, V(r) ^ 0, V'(r) fg 0, re(0, R\ for which the system had positive
entropy and was ergodic. In their examples, the potential was continuous but not
C1.

We prove positive Lyapunov exponents for a class of repelling potentials which
generalizes Kubo's "bell-shaped" potentials.

The reason that one has not yet been able to make C1 potentials for which
one can prove positive Lyapunov exponents can be understood by reference to
Remark (4.7). If the potential is smooth, then 40'(0) = 2. For small angles, the
repelling nature of the potential causes trajectories to rotate less far around the
disk than they would in the V = 0 case. Hence for small φ,ΔΘ'(φ)<2. Thus the
values of Δθ' fill up some interval [2 — (5,2], and our cone-field method can not
handle this case.
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Theorem 5.6. // V satisfies conditions (3.2), (3.6) and

i. Ω(r) is non-increasing for re(0,#).
ii.

iii.

Then

ΔΘ'(φ) ^ 2 - (5, Vφe(0, π), for some δ > 0. (5.6)

Proof. Ω(r) is non-increasing, hence we have Ω(r) — Ω(f)^ 0, Vre[r, R\ while the
other terms in the integrand (3.13) are all positive. Since Ω(f)~1 ^ Ω(R~)~ 1

9 we get

1/2 4

^ 7̂ 77̂  < 2, (5.7)

using that (ii) implies h(R~) = R2 and (ii), (iii) imply by (3.12) that Ω(R~) > 2.

Remark 5.7. The previous theorem holds for more general conditions than (ii), (iii).
See example (Π.b) below.

Using Theorem 4.3. (Remark 4.4.) and estimate (5.7) gives

Corollary 5.8. Any repelling potential V(r) satisfying the assumptions of Theorem 5.6
4R

and for which ίmin satisfies ίmin > — - will produce a flow (φ\ Jί,μ)for which
— 2

the maximal Lyapunov exponents λ+ (x) are positive almost everywhere and is ergodic.

Proof. Theorem 4.3 and Theorem 5.6 implies that λ+(x) ^ 0 a.e. while the ergodicity
is discussed in Sect. 6.

Examples.
(Π.a) Let V(r) satisfy (3.2), (3.6) with

Λ'(r)^0, Vre(0,Λ), F(Λ) = 0, (5.8a)

F'(^-)<0 (5.8b)

(see Fig. 6). Then by (3.12), Ω(R~) = 2(1 - K'(Λ ')/?), so that

For such a potential, Corollary 5.8 gives that ίmin should satisfy

imin>"n^y- (5 10)

Kubo [Ku] showed that if the potential was "bell-shaped", i.e.

dr ~

and if

-V(R~)>^ (5.11b)
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V(r)

Fig. 6. Repelling Potential

then the system would be ergodic and have positive Lyapunov exponents almost
everywhere, for ίmin sufficiently large. A direct calculation, and the relation
l-2K(r)>0, shows that (5.1 la) implies ί2'(r)^0. Thus our condition (5.8a) is
weaker than Kubo's. Note that Kubo needs that RV'(R~) < -2 (5.lib) while we
allow any RV'(R~) < 0 (5.8b) (i.e. any arbitrary small corner for V at the boundary).

2R
Also Kubo's minimum time, tn

is larger than ours (5.10).
-RV'(R-)-2'

(Π.b) We can allow discontinuities for V at the boundary: V(R~) φ 0. If we choose
V(r) = V0, re[0, R~), we have the case of a soft potential studied by Knauf [Kn2];
his results on positive Lyapunov exponents follows from our general set up. (Note
that he normalizes the energy to be 1 instead of 1/2 as we do.) For such a V,

i/2
(5.12)

When Fn < 0 then

so we get positive Lyapunov exponents provided that ίmίn > 2R[^/l — 2F0 — 1] *.

The situation for F0e(0,1/2) is slightly different. For (Rcosφ)2 = I2 :>h(R~), we
have Δθ(φ) = 0. For I2 < h(R~\ (5.12) gives Δff > 2. Hence soft potentials produce
positive Lyapunov exponents by two different mechanisms. Clearly one can produce
examples where V(R~)^Q and V is not constant provided that Ω has the
appropriate behavior.

///. Mixed Potentials. A potential V(r) being smooth does not necessarily imply
that the rotation function Δθ(φ\ φe[0,π/2), is smooth. It is this observation that



286 V. Donnay and C. Liverani

allows us to construct smooth, bounded potentials for which the flow has positive
Lyapunov exponents and is ergodic. This idea was originally introduced in [Dl].

The potential we construct will have a closed orbit for some rc<R, hence
Ω(rc) = 0. There will be an angle φcE(0,π/2) of entry for which the trajectory will
become asymptotic to this closed trajectory and hence never leave the disk. Thus
Δθ(φc) will be undefined.

Theorem 5.9. There exist smooth potentials, satisfying (3.2), (3.6), with a closed orbit
at some r0 <Rfor which the rotation function satisfies

Aθ'(φ)>2, φe(0,φc),

lim

Δθ'(φ)<2-δ, φe(φe,π/2], <5>0. (5.13)

By introducing the closed orbit, we permit the rotation function to start out
with Δθ' ^ 2 for small angles and then to have Δθ' ̂  2 — δ for larger angles. Yet
Δθ' never takes values in the interval (2 — (5,2).

The theorem is proved in Appendix III. The potential we construct will staisfy

2, (5.14a)

ί2(r)^0, re[0,R], (5.14b)

Λ'M^O, re(re,Λ], (5.14c)

fl'(rc) = 0, Λ(rc) = 0, (5.14d)

β'^0, re[0,rc), (5.14e)

plus some additional technical conditions (Fig. 7).
Combining the previous Theorem and the results of Sect. 3 on positive

Lyapunov exponents and Sect. 6 on ergodicity gives

Corollary 5.10. For a potential whose rotation function satisfies (5.73) and for which
ίmin > 2R(2 — δ)/δ, the flow has positive Lyapunov exponents almost everywhere and
is ergodic.

Remark 5.11. There exist smooth potentials for which (5.13) holds that have a hard
core: i.e. for some r* < rc, the potential satisfies V(r) > 1/2 for all rE(0,r*) (Fig. 8).
The particle can not enter this regipn. For such systems, the associated geodesic
flow is incomplete and therefore the [BG1] proof of ergodicity does not apply.

IV. Positive Entropy but Non-Ergodic Potentials. We outline the proof that there
exist potentials whose flow has positive entropy but is not ergodic (Theorem 4).

We take a potential with Ω(r) < 0 for re(r1? rc), with Ω(r^ = Ω(rc) = 0 and with
0 < rl < rc < R (Fig. 9). For such a potential the annulus between rx and rc is a
trapping zone: there is a positive measure set of trajectories that stay forever in
this region. These trajectories lie on invariant tori in phase space and hence have
zero Lyapunov exponent. These trajectories prevent the system from being
ergodic.

All trajectories that enter the disk with angle φ^φc will leave the disk. By
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V(r)

Fig. 7. Mixed Potential

Fig. 8. Mixed Potential with incomplete Maupertius metric
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Fig. 9. Trapping Region

applying the methods of Theorem 5.9, we can choose Ω so that (5.13) holds. Then
applying the cone-field argument to the invariant set of positive measure consisting
of trajectories that enter the disk infinity often, we get that almost every such
trajectory will have a positive Lyapunov exponent.

One can construct a positive entropy but non-ergodic potential in this way
such that any symmetric perturbation of the potential retains these properties.

V. Varying the Energy Level. In our examples, we examined the E = 1/2 subspace
and produced potentials for which the flow restricted to the subspace would be
ergodic. For such a potential, how does the flow behave on other energy levels?

If we take an attracting potential given by the example in I, then for any energy
surface E ̂  1/2, the flow restricted to that energy surface will have positive
Lyapunov exponent almost everywhere and will be ergodic. For the repelling
potentials given by example Il.a, the same conclusion holds provided that E ̂  1/2.
For the mixed potentials, if E > 1/2 then Ω(r) > 0, ΓE(0,Λ) and we are unable to
determine the stochastic properties of the system. For E < 1/2, the system will have
a trapping zone and hence will not be ergodic. It is possible that these non-ergodic
systems could have positive entropy as in IV.

All these results follow from repeating the analysis of Sect. 3 for the general
case of energy E rather than fo E = 1/2. In Eq. (3.4), we replace h(r) by

hE(r) = 2r2(E-V(r)).

Then (3.12) holds with Ω(r) replaced by

ΩE(r) = 2-
V'(r)r

E - V(r)'

Thus for a fixed potential F(r), the functions Ω = Ω1/2 and ΩE are related by

~ ~ , (£-i) Πr)r
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and hence

Thus for an attracting potential with Ω'1/2(r) > 0, if E > 1/2, then Ω'E(r) > 0.
Therefore the rotation function ΔΘE(φ) for the energy surface satisfies ΛΘ'E(φ) > 2.
Similar arguments apply for the other cases.

6. Ergodicity

The method of Chernov and Siani [SC] was designed to prove ergodicity for maps
with singularities. It may also be useful for smooth flows since such systems can
have a non-smooth return map to a Poincare section. All our ergodicity claims
can be proven using this method (see Appendix IV).

For the smooth systems, there are simpler approaches to proving ergodicity,
although no one method handles all the cases. We can use the method of [D2] to
get ergodicity for the examples of Theorem 5.9. We can also appeal to the continuous
cone-field criteria of Burns and Gerber [BG1, Theorem 1.1], but there is a slight
problem. For our flow there does not exist an invariant two dimensional
distribution P:

dφ'P(x) = P(φtx)

(i.e. the flow is not a contact flow). If such a distribution existed, outside the disk
it would be given as the span of {Xΰ±9Xφ}. Going through the disk, 'Lemma 4.5
shows that a vector in this subspace can pick up a component in the flow direction.
A possible solution to the problem would be to prove a non-contact version of the
Burns-Gerber theorem.

Instead, we will re-parameterize the flow in the disk so that

RΔΘ'(φ)cos φ - ^-(φ) = 0, (6.1)
aφ

where t0(φ) is the time spent in the disk.
If the flow through the disk is given by a geodesic flow, then we know that

this condition holds since geodesic flows are contact (the perpendicular subspace
remains perpendicular).

Given a potential, we examine the geodesic flow of the associated Maupertius
metric. If this flow is smooth and complete (Remark 5.11), then we can apply
[BG1] to it. The trajectories of the geodesic flow and the potential flow are the
same but are parameterized with different speeds. Since ergodicity is invariant
under these reparametrizations, we get ergodicity for the potential flow.

For the attracting potentials with singularity of order — l/rα, α = 2(1 — 1/n),
«eZ+\{0,1} we showed that the flow was regularizable (Sect. 5). To prove
ergodicity for these flows, we can prove ergodicity of a closely related system
G/r,^,v).

To construct Jf, we start with the set U (see Definition 4.1) and its boundaries
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and y. We will connect £f and Sf by a suspended flow with height function

φe[0,π/2]. (6.2)
o

Note that ί0(φ) is bounded. We set.

and identify the points (x, 0), (x, ί0(Φ)) with the points xe^ and x = (0 + 40(0), - <
respectively. Our space jf is then UvΓ. The flow '̂ agrees with φ* on [7, while
on Γ, i//((x,s) = (x,s 4- ί). The ^-invariant measure v is induced by μ.

Our choice of t0(φ) implies that (6.1) holds. For φε(0,π), the flow ψ* is smooth
by the implicit function theorem (since Λff(φ) is smooth). At φ = 0, the flow is also
smooth since as φ -> 0, t0(φ) behaves as it would in the V = 0 case (t0(φ) = 2R sin φ).
Thus we can apply [BG1] to get ergodicity for ψ* and hence φ*.

For a potential of Theorem 5.9 whose geodesic flow is incomplete (Remark 5. 1 1),
we can prove ergodicity by combining the geodesic flow parameterization with
the height function argument, provided we do the above construction in a disk
contained inside the close orbit.

7. Surfaces

We derive relationships between the potentials discussed in Sect. 5 and their
associated metrices given by (1.3).

For geodesic flow, the evolution of tangent vectors to phase space is determined
by the Jacobi equation

j"(ί) + κ(fμ(f) = o, (7.1)

where K(t) is the curvature along an orbit. Our equation (4.11) is just a special
case of the Jacobi equation in the case K = 0. The projective coordinate u = J' /J
satisfies the Riccati equation

u'(t)=-K(t)-u2(t\ (7.2)

which is the generalization of (4.24). In negative curvature, one can easily see that
solutions of (7.2) grow exponentially, and hence the maximal Lyapunov exponent
is non-zero.

Lemma 7.1. For a given potential V(r\ the curvature of the associated metric ds is

™--Ή
so that

sign (K)=- sign (Ω1). (7.4)

Proof. For metrics conformal to the Euclidean metric, and of the form (1.3), one
has that, [Knl],

^(Eκ(q}-
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with the gradient V and the two-dimensional Laplacian Δ. For Vradially symmetric,

one has ΔV(r) = ( + \V(r) and (VV(r))2 = ( . From (3.12), we have

- v / 2*. ' \ ~/

The result now follows by a straightforward calculation.

From this lemma, we see that the attractive potentials of Sect. 5 correspond
to metrics of negative curvature. The repelling potentials correspond to metrics of
positive curvature. The smooth potentials correspond to a mixed case in which a
closed geodesic in zero curvature separates the two regimes.

Appendix I. Rotation Function

Let us remember that

M(φ) = τ"l -7=^ds>

h(f) = l2 = R2(cosφ)2. (1.1)

Moreover we can restrict ourselves to the case / ̂  0, f < R, h'(f) ^ 0. Then

Δθ(φ) = 2 J s-WfsyWfn-lΓ^ds. (1.2)
i

We can now take the derivative with respect to φ,

lT112^-dφ

fc (1.3)

Differentiating the second of the (I.I) we get

df
'(f)^- = - 21R sin φ = - 2UR2 - I2. (1.4)

dφ

Using the previous result we have

Λθ'(φ) = 4{_R2 - /2]1

Rf

+ 2 f

Formula (3.13) is then obtained by a simple change of variable in the integral.
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Appendix II. Existence of the Lyapunov Exponents

In this appendix we provide the estimates needed to prove the existence of the
Lyapunov exponents for the flows considered in the paper. In particular we study
the case when the potential is singular at the origin (Theorem 5.1). The existence
of the Lyapunov exponents in the other cases follows from standard considerations.
Let us remember that existence of the Lyapunov exponents is granted by condition
(2.1). In order to verify (2.1) we need some explicit estimates.

Note that

VPh(r)

I = h(r)ll2cosφ. (Π.l)

The equations of motion are given by

2r(ί)2

θ(t) = lr(tΓ2,

r(0) = r0; φ(Q) = φ0; 0(0) = Θ0. (11.2)

From (II.2) it is possible to explicitly compute dφ* in polar coordinates and check

that condition (2.1) is satisfied. Here we will explicitly find a bound for . similar
dφ(0)

or easier estimates apply to the other elements of the Jacobian of φ*.

Lemma ILL Given T > 0 we have

dφ(t) Λ

dφ0

if
r o P

Proof. From (II.2) we have

\j **• \^j

Differentiating the above expression, after some computations we get

*"* \Ω(r(s)) ί Γι Ί ^

dr dφ
In order to have a closed equation we need to express in terms of -—. To
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do so we differentiate the last of the (II. 1) with respect to φ0 and obtain

dr 2r 2r2 dφ

<9φ0 Ω(r)l

where we have used the first of (Π.2). Using the above expression and changing
variables in the integral the lemma is proven.

Using the preceding lemma we can obtain an interesting integral inequality.

Lemma Π.2. Let r(t) / 0 Vίe[0, T]. Then 3C3, C4eR+ such that

dφ(t)
= 3 ° 4r(θPdφ0

dp.

Proof. We will consider the case r(t) < r0; the other case can be treated in the same
way. Conditions (3.2), (3.6) imply ί2eC1(R+) and, according to Theorem 5.1,
Ω(r) ^ 12(0) > 0; so

h(r0)l-2 1

•M,r-/r=f«

The lemma follows from the above estimate.

To obtain a bound for -— we need the following technical lemma.
dφ0

Lemma II.3. // x(r) satisfies the integral inequality

\x(r)\ ^ A + β]-\x(p)\dp Vr 0 > r > 0; A,
r P

then

where

|x | | r= sup \x(p)\.
pe[r,r0]

Proof. The first step is to prove, by induction, the following
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For N = 1 it is trivially true. Let us suppose it is true for N then

log(ro/r) Γ Λ T - 1 1

f \A Σ -^Bκζ
o ( κ=oJ^i rdζ

Now for each r there exists N: - -̂ - < 1 which implies that || x ||r is bounded.

The result follows then taking the limit N-> oo.

We are now able to state the announced result.

Lemma II.4. If the conditions of Theorem 5.1 holds then for each T sup log
fe[0,Γ]

dφ(t)

dφ0

Proof. From Lemmas II.2, II.3 we obtain that for / Φ 0,

sup log
ί6[0,Γ]

dφ(f)

dφ0

^ sup log
dφ

^ sup log
Γ Γ — Pmin |_

(l + C3 |tanφ0 |) —

C3 |tan<j!>ol) + C4l
min

where rmin is defined by the equation h(rmin) = I2. Given the relation between h and
Ω we have that rmin > C5r0 [cos<p0]~(2/β(0)) which implies

sup log
ίe[0,Γ]

dφ(t)
log [cos φc I'^L1

with respect to the measure r0dr0dθQdφ0.

Finally the result follows from similar estimates on the other elements of the
Jacobian and from the fact that the norm in polar coordinates does not introduce
further divergences.

Appendix III. Mixed Potentials

In addition to conditions (5.14a-e), we also require that the potential satisfy

.{EMiμ fs(vα
where 0 ̂  rp < rc < R, and

4h(rp)<h(rc)Ω(rp)
2. (5.14g)

We will show that (5.13) holds for a potential satisfying (5.14a-g). These
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conditions are not intended to be optimal and there are other ways to construct
potentials satisfying (5.13) (see Alternative Construction).

Conditions (5.14c,e) imply that Ω" ^ 0 in some neighborhood of rc, which in
turn implies that (5.14f) holds in some interval [rp,rj. Condition (5.14g) is a
requirement that this interval be sufficiently large. (If we could take rp = 0, then
(5.14g) would hold, while (5.14g) fails if rp = rc). Note that if Ω(rp) > 2 (corresponding
to a potential with a repelling part) (5.14g) is always satisfied, since h(rp)<h(rc).
Our conditions generalize the non-increasing curvature condition that Burns and
Gerber derived for a focusing cap in the case of geodesic flow [BG2]. We will
relate the two situations in Lemma III.2.

Proof of Theorem 5.9. For r ̂  rc, the proof is identical to the case of Theorem 5.1.
Next, we use that h(R) = R2, h(f) = I2 and (3.12), to rewrite (3.13), getting

- ...... )
For fe[rp,rc) an estimate can be obtained by dividing the integral into two parts:

h'(s)
SΩ(s) ίh(s)

h'(s)

= 2 Ws)-h(f)T12

= (2 - Ω(f)){ lh(rc) -

and

- h'(s)

\ Ω(s) - ' 2 S

"Λ Ω(f) [_h(rc)-h(s)^'2\ h'(s)

H Wrc)-h(s)Y>2 Ω(s) J [ A ( s ) - 3 / 2 ' ( *

which by condition (5.14f)

h'(s)

'

Changing variables to u = -—— — — — we obtain
h(rc) - h(r)

[/z(rc) - /ι(r)]1/2 o ( cos θ j sin2 θ

Combining this estimate and (IΠ.2), we get
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For re[0,rp] it is necessary to divide the interval of integration in (III.l) in three
parts, namely [rc, K], [rp, rc] and [r, rp]. Estimate (III.2) applies for the first interval.
The second interval can be treated according to (III.3) yielding

-"a 1
1Ω(s)

h(rc)-h(rp)

Wrp) -

using Ω(r)^Ω(rp), by (5.14e),

The contribution of the third interval is negative, due to (5.14e), in analogy with
Theorem 5.6. Combining the previous estimates give

Δff(φ) ϊ 2 - 2[fl2 - n ̂  [h(rc) - /z(r)] " ̂  - 2Ω(f)~ 1
_

v cJ ^v / J

- 2 - 2[K2 - /2]1/2[/ι(rc) - h(f)-] ~ lΩ(rp)^

'{{h(rc) - h(r)^2Ω(rp) - 2\h(rp) - h(r)^2}. (111.5)

According to (III.5) the theorem is proven provided that

CMO - h(f)-]Ω(rp)
2 > 4[h(rp) - h(?)l

which is implied by (5.14g).

Remark III.L If condition (5.14f ) holds for all r < rc9 then the previous estimates
imply that Δθ'(φ) < 0 for all φe(φC9π/2].

Burns and Gerber [BG2] showed that if a Riemannian metric inside the disk
had a closed orbit at rc, was of negative Gaussian curvature K(r) < 0, re(rc,jR), and

satisfied — - — < 0 for all r e(0, rc), then the rotation function would satisfy Δθ'(φ) < 0,

φe(φC9π/2]. Our condition (5.14f) is a generalization of their result.

Lemma III.2. Let K(r) be the curvature of the Maupertius metric. If

then (5.14f) holds for all r < rc.

Proof. Using identities (3.12), (7.3) and explicit computation yields

g(r)h(r)__

dr Ω(r) 2rΩ(r)2 [h(rc) -

where

= Ω(r)2-2K(r)[h(rc}-h(r)-\.
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Accordingly
. id (\h(rc)-h(r)γi2

slgnUi — 5w —
Using (3.12), and (7.3) again,

g'(r)=-2K'(r}\h(rc)-h(r)-}>$

and, since g(rc) = 0, this implies that g(r) < 0 for all r < rc.

Alternative Construction of Potential. Another way to produce a potential that will
satisfy (5.13) is as follows (see [Dl, Sect. 9] for the analogous construction in the
geodesic flow case). Let Ω(r) > 0, re(0, rc) be an arbitrary smooth function satisfying
(5.14d) with Ω"(rc) > 0. Then there exists a value of R and a way to define Ω(r\
re(rc,R) such that ΛΘ'(φ)<Q for all φe(φc,π/2]. To achieve this, let Ω satisfy
(5.14a,c) and make Ω very close to zero for a long interval after rc. Such a choice
of Ω will cause the contribution from the integral in (III.2) to become large negative
and outweigh the possibly positive, but bounded, contribution from (III.4).

Appendix IV. Ergodicity for Systems with Singularity

We use the methods of [SC] as modified by [KSS3] (see also [Bu]) to prove
ergodicity for the flows discussed in the paper. We will prove ergodicity of a return
map T to a Poincare section £f± from which ergodicity of the flow φ* will follow.

We define the cross-section &Ί as ^v{(q,p)\πί(q) = — l/2}v{(q,p)\π2(q) =
— 1/2}, where ̂  is given in Sect. 3 and π^q) is the i coordinate of q. We assume
that the torus is a square of width one centered at the origin. By augmenting
the original cross-section £f we insure that the return time to the cross-section is
finite. We equip Sf ± with the measure μ1 induced by the Liouville measure and a
metric induced by the Riemannian metric. Furthermore we induce two cone fields
C+ and C~ on &v. For xe^, C+(x) is the projection of the cone C(x), defined in
Sect. 4, onto the tangent space SΓ^y. For xe^V^, C+(x) is defined by pushing
forward the cones: if j; = Tkx for xe^ and k minimum, then we set C(y) = DTk(C(x)).
The cone C~(x) is defined to be the closure of the complement of C+(x).

In all the cases under consideration we assume that the stable and unstable
manifolds exist almost everywhere in ̂ 1 and that these manifolds have the property
of absolute continuity. If the original flow was smooth, then these results follows
from Pesin theory [P]; if the flow has singularities, we refer to [KS]. Before
proceeding further we introduce some additional notations.

Definition IV.l.

(1)
T it is not smooth at x}9

T~1 it is not smooth at x},

(2) A point XE&Ί is sufficient for T if there exists n(x) such that

i) T\x)φ®\ fc

ii) DTn(x\C+(x)) c
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(3) A point xe&Ί is sufficient for T~l if the analogous of properties (i), (ii) holds
for the complementary cornfield C~ and the set $~.

Since our system has positive Lyapunov exponents almost everywhere, Pesin
theory [P], in the version by Katok and Strelcyn [KS], implies that for the maps T
under consideration the set &Ί is the union (modulo a set of zero measure) of a
countable number of ergodic components. The next theorem categorizes the points
that belong to an ergodic component with a nice local structure (non-empty
interior).

Theorem IV.2 (Local Ergodicity). Choose xe&Ί for which Tk is smooth for all
fc^O. Ifx is sufficient for both T and T~l then there exists a neighborhood ^ί(x)
of x that belongs to one ergodic component.

To prove global ergodicity we need first a simple extension of Theorem IV.2.

Theorem IV.3 (Crossing Singularity Lines). Choose xεT~n&+ (Tn&~) for which
T'kx(Tkx) is smooth for all k> 0. Ifx is sufficient for T~\T) then T~n^+(Tn^-)
cannot be the boundary between two different ergodic components.

Global ergodicity then follows from an analysis of the set of non-sufficient
points.

Theorem IV.4 (Global Ergodicity). If the set of non-sufficient points for T and T'1

does not separate &Ί then there is only one ergodic component.

Note that sufficiency is equivalent to a trajectory entering the disk. The only
trajectories that do not enter the disk are periodic orbits that move on the torus
with a rational angle. For a given rational angle, there will always be a non-empty
set of trajectories that enter the disk, so the condition of Theorem IV.4 is satisfied.
We will not discuss explicitly Theorem IV. 3 since its proof is analogous to part of
the proof of Theorem IV.2.

Proof of Theorem IV. 2 (A Sketch). We refer to [KSS3] for the details of the proof.
Here we confine ourselves to a discussion of the changes needed to apply their
results to our situation and how they fit into the general argument. The proof of
[KSS3] requires the following properties.

Property I (Double Singularities). The set of double singularities of order n (i.e.
points that enter $ + before n forward iterates and also enter 3fc~ before n backward
iterates of T) is a finite union of isolated points.

Property II (Ansatz). Let v be the measure induced by μ1 on &+{j&~9 then for
v-almost every yE&+(&~) the map τ~k(Tk) is smooth for all k> 0 and y is sufficient
for T~\T}.

Both properties can be proven using the same technique. First we notice that
the singularity set £% and the set of non-sufficient points are the union of a finite
number of smooth manifolds. Then we study how the tangent vectors to these
manifolds are situated with respect to the cone structure on tf ^

We illustrate the argument in the case of an attracting potential. Let <%ί a&+

be the manifold of points that in future time hit the center of the potential. A
tangent vector to the manifold ̂  gives rise to a variation of trajectories that is
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converging. Hence this tangent vector must lie in C~. Analogously, the manifold
0t~ c ̂ ~, of the trajectories that hit the singularity in the past has tangent vectors
belonging to the cones C+. Given the invariance property of the cone families,
any intersection of the manifolds T~k^ and T>3%1 (double singularities) is
transversal (the tangent vectors to the manifolds belonging to complementary
cones). Carrying out a similar analysis for all the singular points and non-sufficient
points of our examples yields Properties I, II.

Property III (Expansion). The vectors inside the cones C+(C~) expand monotonic-

Here the expansion is measured by the induced metric on <9V The length of
a vector ^e^^Ί in this induced metric is just the length of the vector ξe$~Jt
in the original metric, where ξ is the unique vector in the [Xv±, Xφ} plane which
projects under the flow to ξl.

Hence to prove Property III for T(T~^\ we study the corresponding property
for the projected flow (i.e. flow under φ* and then project onto the {Xv±,Xφ} plane).
We split the analysis into two cases:

(1) Δθ' ̂ 2 or 40' ^0.

According to (4.12) the vector ξ = JXυ± + J'Xφ is mapped into the vector

Δff ( j

JRsmφ

from entering to leaving the disk. Thus for ξeC(x) given by (4.2),

And using (4.1 1), we get that outside the disk || Dφ*ξ\\ ^ || I'll which implies the result.

(2) 0 < Δθ' ^ 2 - δ, for some δe(Q, 2).

In this case we have to consider only vectors of the form ξ = (1, u) we[0, wtop],

wtop = — — - (see (4.26)). Using (IV.l) and (4.11) it follows that the image of the
K(2 - ό)

vector ξ, from entering to entering the potential again, is

(IV.2)

where τ is the time from existing the potential to entering again. According to the
2 D^2 fi]

hypothesis of Theorem 4.3, τ ̂  ίmin > . Thus
o

-J'^—ί— + u(δ-l)^- + u(δ-l) = uto*(2-δ) + u(δ-l)^u
Rsmφ R

/
(Λflf n jL) 1

40' -2

#sin(p *

Δff-

+

2

uΓRλfi' <ιin ro -1- M/9

i-jίM^7 n

1YrΊijτj

=ί~Ί
WT
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and

-J^-l+!inun + tt[(5-2)K + (5^

which again implies || ξ\\ > \\ ξ \\.
The last property requiring an independent proof in our cases is the following:

Property IV (Parallelization). The width of the cones goes monotonically to 0.

Recalling (4.20), u=fφ(u) = J'/J, it is a direct computation to check that
d

-r-fju) = (J/J)~2. Property IV is then a consequence of the above estimates.
du

This last property insures that the singularity lines become almost parallel to
the (un)stable fibres and hence allows one to bound the measure of fibres that
come close to the singularity lines.

Even if the unstable fibre, for example, through the point T~kx gets cut by a
singularity line, and hence is short, it is still possible that the fiber through
x = Tk(T~kx) is sufficiently long: one would need that the map Tk expands the
fiber sufficiently. This behavior can be achieved if at the singular point which cuts
the fiber the map DTk is expansive.

Thus, as in [KSS3], we define

<oO>)= inf \\DTξ\\.
ξeC + (T-ny)

Then for v-almost all point ye^~, we have lim k+0(y)= oo. This statement is a
n-»oo

consequence of Property III, which implies that a sufficient point keeps expanding
at least linearly (since this is the rate at which vectors in the interior of the cone
expand outside of the potential, in the free motion) and, of Proposition I, which
implies that almost every point in ^~ is sufficient.

Using all the previous information it is possible to apply [KSS3] to prove that
the stable and unstable fiber are long enough to perform the standard Hopf [H]
argument and prove ergodicity in a neighborhood of our original point xe&Ί.

Appendix V. Embedding

Given a function f(p\ /?e[0,#], we define a surface of revolution as

{(x,y,z)εR3:x = pcosθ, y = psmθ, z = f(p) for θe[0,2π), pe[0

The metric dσ2 induced on this surface by the Euclidean metric on #3 is

dσ2 = (1 + f'2(p))dp2 + p2dθ2. (V.I)

Suppose that our abstract metric ds2 on the disk D can be isometrically
embedded in R3 as a surface of revolution. Then there exists a monotone increasing
function g(r), re[0, K], with 0(0) = 0, g(R) = R such that for p = g(r) one has

(1 + Γ2(d(r)W2(r)dr2 = (1- 2V(r))dr2, (V.2a)

g2(r)dθ2 = (1 - 2V(r))r2dθ2. (V.2b)
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Lemma V.I. The disk D equipped with the metric ds2 can be isometrically embedded
in R3 if

ii. Ω(r) ̂  0, Vr e [0, K], with equality holding at no more than a finite number of points,
iii. lim r2V(r) = 0 and V(R) = 0.

r-»oo

The functions g and f are given by

where
1/2

Proof. We can solve (V.2b) by setting

g(r) = r(l - 2V(r))1/2 = hl/2(r). (V.3)

Combining this with (iii) gives that 0(0) = 0 and that g(R) = R. Since h'(r) =
(h(r)Ω(r))/r, (ii) implies that g(r) is monotone increasing.

Using (V.3) in (V.2a) gives that

so that (V.2a) is satisfied if
v l / 2

This equation is well defined if |β(r)| ^2. We define / by f(R) = 0 and/(/>) =

}f'(p)dp.
P
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