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Abstract. We show that invariants of Mumford for moduli spaces of curves are
obtainable from a gauge fixed action of a topological quantum field theory in two
dimensions. The method is completely analogous to the relation of Donaldson
invariants with the topological quantum field theory for gauge theories in four
dimensions.

1. Introduction

Topological invariants possess an obvious gauge symmetry: Expressed as the
integral of a field dependent local expression, they are independent of any given
local deformation of these fields. One can generally associate a BRST symmetry
to such an extended gauge symmetry. Thus, given a topological invariant, one can
construct a partition function through the BRST formalism, and look for new
invariants defined as BRST invariant observables. The difference between the
BRST formalisms of ordinary gauge symmetries and of extended gauge symmetries
of topological invariants is as follows. In the ordinary case one has a dynamics for
the transverse modes already at the classical level. Gauge fixing is an operation
for defining the dynamics of longitudinal modes at the quantum level. One has a
consistent particle interpretation of the theory, which means a physical infinite
dimensional Hubert space with unitarity properties due to the BRST invariance.
For the topological theories no dynamics exists at the classical level. There is no
particle interpretation and the whole dynamics is only defined at the quantum
level, by the choice of gauge functions. The BRST procedure amounts to defining
a Lagrangian, which is d and BRST exact, and the quantum field theory is defined
perturbatively from a functional integral concentrated around the solutions
of the gauge functions. The observables only correspond to transitions between
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topological excitations: they must be invariants. Different gauge fixing are expected
to lead to different quantum theories, and thus to different invariants. On the
other hand, the invariants computed from these functional integrals are all expected
to be topological in the sense that the BRST construction guarantees their
independence of the choice of the metric which has to be done to give a meaning
to the quantization.

In this paper we follow closely our approach to the TQFT for Donaldson
invariants and show how to construct a TQFT for 2-D gravity which gives
invariants of Mumford [6c]. See also E. Miller [6a] and S. Morita [6b]. The
presentation is the same as in ref. [2]. In Sects. (2,3,4), choosing the appropriate
description of a worldsheet, we construct the BRST symmetry, the cocycles and
the action for a topological 2-D gravity. In Sect. (5), we give the geometrical
meaning of our construction and identify the observables of our theory with the
Mumford forms on moduli space.

Of the many papers on TQFT, in our view, the most pertinent to this paper
are [2,4,5,8,9]. In particular, see Sect. 6 of [4] and Sect. 2.2 of [8].1

2. Topological BRST Symmetry for 2-D Gravity

2-a. The Geometrical Ghost Sector. For 2-D gravity, the basic symmetry is
Weyl x Diffeomorphism. The natural variable, the source of the energy momentum
tensor T2Z9 is the Beltrami differential μz- [1]. By definition of μz- and μ\ , one has:

ds2 = exp φ(dz + μz-dz)(dz + μz

z dz), (1)

where ds2 measures the squared length of an infinitesimal line on the Riemann
surface, φ is the conformal Weyl weight of the metric. μz- is inert under Weyl
transformations, and transforms as follows under an infinitesimal diffeomorphism
along the vector field (λz, λz):

δμl = dzΛ
z + Λzdzμ

z-μldzΛ
z. (2)

(We have redefined Λz = λz + μz-λz.) One can express (2) in the form of a BRST
operation s:

sμl = dzc
z + czdzμl-μz

zdzc
z, scz = czdzc

z. (3)

(c is the anticommuting vector field ghost corresponding to Λ.) Equation (3) can
be rewritten under the following Maurer Cartan like equation:

(4)

We have defined:
=

d anticommutes with s and one has (d + s)2 = 0. There is of course an equation
conjugate to (4) in the antiholomorphic sector for μz- and cz.

The way the conformal factor φ transforms under a Weyl x Diffeomorphism
is as follows:

1 Added in proof: Further important developments can be found in [10] and [11].
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sφ = Ω + dzc
z + dzc

z

+ n \ Λ(cz - μ\cz)(dzφ - dzμϊ) + (<? - μϊcz)(dzφ - δ,μf)). (6)
(1-/ΦΦ

Ω is the ghost associated to the parameter of infinitesimal Weyl transformations.
Suppose we wish to define a partition function (and its correlation functions)

of the following type:

where /top is a topological invariant, and thus such that

^ = ̂  = ̂  = 0. (8)δμz- δμz

z δφ

The inhomogeneous transformation law of φ permits one to forget the integration
over this variable. On the other hand, the symmetry of /top is larger than the one
shown in Eq. (3): /top is invariant under any given transformation of μz- and μz

z.
The BRST symmetry must therefore be replaced by the following one:

'top Ψ\ = SZΦ
Z + Φzdzμ

z

z - μz

zdzΦ
z + czdz Ψz

z + Ψz

zdzc
z,

stopΦ
z=Φzdzc

z-czdzΦ
z. (9)

Going from (3) to (9) is the exact analog of going from the ordinary Yang-Mills
symmetry to the topological Yang-Mills symmetry which leaves invariant the
second Chern class. The way Ψ transforms reflects the fact that it is defined up
to a diffeomorphism, provided cz is redefined, as seen in the transformation law
of μ\. stop and d anticommute and one has of course st

2

op = 0. μz- and Φz are
commuting while cz and Ψ\ are anticommuting. Ghost numbers are respectively
0, 1, 1 and 2 for μz

z9 Ψ\, cz, and Φz.
The definition of stop is equivalent to the following equation, which is the analog

of the one existing in the topological Yang-Mills symmetry:

. (10)

As before one has A = (dz + dzμz- + cz)dz and we have defined Ψ = dz Ψz-dz and
Φ = Φzdz.

The diffeomorphism symmetry is intimately related to the local Lorentz
symmetry on the worldsheet. For example, the conformal anomaly can be seen
either as a diffeomorphism x Weyl, i.e. gravitational x Weyl, anomaly, or as a
Lorentz x Weyl anomaly. The shifts between the corresponding expressions of the
consistent anomalies are obtained by adding local counterterms to the actions.
For our present purposes, let us thus introduce a spin-connection, i.e. a gauge
field for Lorentz rotations ω = ωzdz + ωzdz. The two components of the zweibein

are ez = exp — (dz + μz

zdz) and ez = exp — (dz + μz

zdz). The spin connection is such

that the torsion vanishes, Tz = dez + ωez = 0 and Tz = dez — ωez = 0. If we put
equal to zero the conformal weight φ, and work at the lowest order in μz- and μ*,
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we get from the condition of vanishing torsion:

ω = dzdzμ
z--dzdzμ

z

z. (11)

The Lorentz curvature R = dω is thus:

R = dω = dzdz(d2

zμ
z

z + djμϊ). (12)

Since we know from (9) the transformation laws under stop of all fields, we can
write the expression of the BRST symmetry under the form of an equation similar
to (10), for the Lorentz curvature:

- R + dz(dz Ψz

z + d j c z ) - dz(d-z Ψz

z + d2

zc
z) + dzΦ

z - dzΦ
z. (13)

From this equation we see that dzc
z - dzc

z plays the role of a ghost for Lorentz

rotations. Moreover, (13) is of the type R = R° + R\ + R%, where the upper index
means ghost number and the lower one the usual form degree. It permits a
geometrical interpretation of dzψ

z- and dzΨ
z-9 as well as of dzΦ

z and dzΦ
z (see

Sect. (5)).

2-b. The Antighost Sector. To give a meaning to the functional integral, we must
introduce antighosts and Lagrange multiplier fields. In this way it becomes possible
to add to /top an action which is BRST exact and has ghost number zero. There
is a freedom in the choice of the antighost sector, which amounts to the freedom
in the choice of gauge functions. The structure of the spectrum of ghosts and
antighosts is however dictated from the requirement that (i) there is a grading
equal to the sum of the form degree and the ghost number, and (ii) the sum of all
degrees of freedom, counted positively for the fields with the right spin statistics
and negatively for the fields with the wrong statistics, vanishes. There are in fact
two possibilities. (We only present the antighosts and Lagrange multiplier fields
in the holomorphic sector; the other sector is trivially obtainable by the conjugation,

The first possibility is to introduce antighosts in such a way that there is a
mirror symmetry between ghosts and antighosts.

_
Φz L Φz

c is the ordinary diffeomorphism antighost. Ψ and Φ are the mirror antighosts
for Ψ and Φ respectively. L is the middle ghost of ghost which occurs when one
has^ ghost of ghost phenomena. The ghost numbers are — 1, — 1, —2 and 0 for
c, Ψ, Φ and L. One can understand the ghost spectrum as follows. Introduce an
antighost number, such that for instance c has form degree 0, ghost number 1 and
antighost number 0 while c has form degree 0, ghost number 0 and antighost
number 1. With this definition, the grading of a field is determined by the knowledge
of the triplet of numbers (form degree, ghost number, antighost number) and equal
to the sum modulo two of the usual form degree, ghost number and antighost
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number. For Φ, L and Φ, these triplets are respectively (0, 2, 0), (0, 1, 1) and (0, 0, 2).
It thus follows that Φ, L and Φ are all possibilities of having a generalized two-form
with ordinary form degree equal to zero. Ψ and Ψ are also 2-forms: their triplets
are (1, 1,0) and (1,0, 1). If one reads Eq. (14) from the top to the bottom, one sees
that the ordinary form degree decreases by one unit line after line, but the grading
is unchanged. All the fields in (14) can thus be unified in generalized forms. The
BRST transforms of the antighosts are as follows:

scz = bz, sbz = 0,

sL = η, sη = Q. (15)

The ghost numbers of the auxiliary fields b, β, η and ή are obvious since the action
of s increases ghost number by one unit.

The second possibility is a less symmetric combination of antighosts, obtained
by suppressing Ψ and L. (These fields have opposite statistics, and compensate
each other.) In this case, one has:

Ψ\, cz cz/ \
Φz Φz. (16)

The BRST transformations of the antighosts are now:

scz = bz9 sbz = 0,

sφz = ήz, sήz = 0. (17)

In the topological Yang-Mills theory for obtaining the Donaldson invariants,
one has an antighost spectrum comparable to the one in (16). The anticommuting
self-dual two-form antighost which occurs in this theory can be understood as the
combination of an anticommuting one form and a commuting 0-form.

3. Cocycles

As in the topological Yang-Mills symmetry, the important equation is (10). If one
applies the operator dz to both sides of this equation, we find cocycles for the
BRST differential operators stop defined in (9). One has indeed:

stop j 4}=0, stop^ = 0, (18)
1 cycle

with:
ΔΛ = dz(d ΨZ- -}- czd μ — μd cz\

Δ = d φz -f czd2 cz. (19)

One has similar equations in the antiholomorphic sector, simply obtained by
changing z<->z.
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4. Gauge Fixing

To gauge fix /top we choose the ghost spectrum in (16). For simplicity we do not
consider the one in (13). By the same method as the one that we shall follow, this
would lead to other conformal field theories, with two other pairs ( Ψ, L) of bosons
and fermions. (Incorporating these fields in the formalism with the gauge function
DZL is in fact an interesting exercise, but we don't know how to interpret the
resulting theory. It would also be interesting to do different gauge fixing in the
left and right sector.) In the holomorphic sector, we have Lagrange multipliers bz

and ήz. The choice of gauge functions for μz- and Ψ\ defines the theory, and is
thus the main subtlety which we must overcome. We are guided by the requirement
that the expectation values of the second cocycle Φ be possibly non-zero. As in
the Donaldson theory, this necessitates the presence of a cubic ghost interaction
of the type ΦΨΨm the BRST invariant Lagrangian that we shall build [2,9].
It is easy to convince onself that the conformal gauge, i.e., the choice of the gauge
function μz- — μz-0 for μ?, where μz-0 is a given fixed background for μ|, cannot lead
to such interacting terms: choosing such a gauge in a BRST invariant way would
lead us to an algebraic, and thus spurious, Ψ dependence in the action.

We thus choose covariant harmonic gauges for μ\ and Ψ\. In the holomorphic
sector, our gauge functions are:

Dxμl, DZΨ\. (20)

In the antiholomorphic sector, they are:

Dxμί, DZΨI (21)

Here, the differential operators Dz and D- are defined by their action on conformal
Z,...,2,Z,...,Z

fields:^'* = X~~*Γ "ΊΓ" of conformal weights R and /, with:

DXX> * = (dz - μϊdx + (/ - R)dxμϊ)Xl *9 (22)

D-XX
1 * = (δ- - μ\dx + (R- l)dzμ

z)Xl>R. (23)

One has thus Dxμ\ = (dz - μ'djμϊ - dμ\dxμ\ and DΣΨ
z = (dz-μϊdz)Ψl-

1Ψz

zdzμ
z

z in Eq. (20), and the conjugate equations in (21).
The partition function (7) is thus defined as follows:

J [Λ> J IdΨ?] [dΦ ] [dΦJ [Λ/ J Idμϊ] [dc*] [dcf]

• [<» J id ΨZJ IdΦn WΦJ ίdήχ ] exp - /GF = f [.dp-] exp - /GF (24)

^GF = /top + \d2zsiop(czDzμ
z

z + ΦZDZ Ψ\ + (z~z)). (25)

Expanding this action by using our definition of stop, we obtain

IGF = V+ !d2z(b D & - δ*D* Ψ't + Φ*D*DϊΦ* + ί*D* ψl
+ Φz( Ψ'fdt Ψ\ - ttsW' ψD) - cz( ψ'&μlL - 2d,( Ψ'/μl) + (z~z)). (26)
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We have defined Ψ'j = Ψzz
z + d-2c

z + czdzμ\ - μz-dzc
z = Ψz

z + D-zc
z. /GF can be

rewritten as:

'GF = Λop_+ $d2z(bzDzμl - (cz - ήz)Dz Ψ'-z + ΦZDZDZΦ
Z + ή,D,Dgc*

+ Φz( Ψ'zdz Ψ\ - 2d,(ψ'zψD) - cz(V 'zdzμl - 2dz( Ψ'/μD) + (z~z)). (27)

We see in (27) that our gauge fixed action is a conformally invariant action
whichjnvolves in the holomorphic sector two couples of commuting fields (μ|, bz)
and (Φz, Φ

z), and two couples of anticommuting fields, (ή'z, Ψ'/) and (ήz,c
 2), with

ή'z = cz — ήz. The quadratic_approximation of /GF is well defined, and we have the
expected cubic interaction Φz( Ψ

tzd- Ψz- - 2d-( Ψ'z Ψz.)) which is the analogous term
of Tr Φ[ Ψ9 Ψ~\ of the topological Yang-Mills action. Thus, by the same mechanism
as discussed in ref. [2], the action (27) permits one to compute invariants by
inserting polynomials of the cocycles dzΦ

z and d-Φz in front of the functional
integral measure in (24).

5. Geometric Setup

In order to interpret geometrically many of the equations in the previous sections,
we need to describe the case of gravity in a way similar to the case of gauge
theories [2,9].

Let Met denote the space of smooth Riemannian metrics on the oriented
compact manifold N of dimension n. Let B denote the bundle of oriented bases
(vielbein) of N, and let Q be the submanifold of B x Met consisting of (el5..., en) x 0,
where {e^ is an oriented orthonormal base relative to the metric g.

The group of diffeomorphisms of N, Diff(JV) acts on Q. The quotient β/Diff(N)
is a principal SO(N) bundle Q whose base space is itself a fibre bundle
2 = N x Met/Diff(ΛO with fibre N and base Met/Diff(N). For the moment we
ignore the difficulties posed by the fixed points of Diff(]V) on Met.

For n = 2, Q is an 50(2) = ί/(l) bundle over &. When the genus g of N is
greater than one, the space of curvature —1 metrics Met_! is contained in Met
and the submanifold N x Met_ 1/Diff(Λf) = ^Γff of £ can be identified with the
universal curve over moduli space Mg = Met_1/Diff(N). We leave the minor
modifications needed to cover g = 1 and g = 0 to the reader.

We make the analogy to Yang-Mills explicit; β<->P x J//G, <£?<-» M x sf/G and
the finite dimensional space Jf a <£ is analogous to the moduli space of antidual
connections on P.

Rather than the space of metrics, it is instructive to also consider the space of
complex structures Com on N. In fact Com = Met/^, where W is the group of
conformal factors. Moreover Diflf(N) acts on Com [i^ is a normal subgroup in
W > Diff(N)] and N x Com/Diff(N) ^^Vgίorg^l. From the complex point of
view we have the bundle Qc = {(n,e,J); neN.e^Q a vector in Λ 1>0(n) relative to
the complex structure J.} Since Diff (N) acts on βc, we get a C*-bundle Qc over
jVg. The line bundle associated to Qc is the tangent spaces to the fibers in Ji'g
over Mg. The choice of constant curvature metrics reduces the C* bundle to a
17(1) bundle and reduces the tangent bundle to the unit circle bundle.
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We can summarize our constructions so far by the following diagram:

Qc t ^ β <= B x Met

Diff(ΛΓ)/ I C5le I \Diff(ΛO

or

x Com *

Diff(N)

Met/Diff(ΛT).

The differential of the action of Diff (N) on the various spaces gives a map from
smooth vector fields on N into vector field along the orbits. Let L denote this
differential (into Met), i.e., L: C°°(Γ(N))^ T(Met, g) = C°°(Sym T(JV)® T(ΛO); L(V) =

SymD^For Ll^Vj — ) = DtVj f + DjVi9 where Dt is the Riemannian covariant

differential. J

In the complex category, we note that Com has a natural almost complex
structure, since Γ(Com, J) ̂  Horn ( Λ 1'°(J), Λ °'1(J)). Given J9 we can identify T(N)
with Γ1>0(J) and symmetric traceless tensors with the complex line bundle ( Λ °'1)2.
Then the differential above is δ C00^1'0)-^00^1'0® Λ0 '1). In the presence of
a metric C^Γ1'0) ̂  c00^1-0)** s C^Γ1-0)*)* s C°°( Λ 1'0)* 2 C°°( Λ °'1), so that
we can identify L with δ: C°°( Λ °'1) ̂  C°°(( Λ °'1)2) after projecting the range of L
into traceless symmetric tensors. In the presence of a metric p, L*: C°°(Sym T® T) ->
C°°(Γ) sends 5 -* divp S. In the complex category, L* = d: C°°(( Λ 1'0)2) -+ C°°( Λ 1'°).
We are restricting L* to traceless symmetric tensors because the Weyl factor has
no effect on Com. If we identify Λ 1>0 with Λ °4 by conjugation, or equivalently
using the metric identity one space with its adjoint, then L* = δ:C00((Λ°'1)2)->
C00^0'1) and L'L C^Λ0'1)-^00^0'1) is dd. In the notation of Sect. 3,

6. Mumford Invariants

We next pursue the analogy with the Donaldson invariants to obtain in the gravity
case invariants of Mumford [6]. In the gauge theories case we took Chern classes
(in particular the second Chern class) in the curvature & on M x s//G. We
integrated c2 = tr(J^2) over a cycle σ in M, giving a differential form of jj/G of
degree 4 — i if σ is an ί-cycle. We restricted such forms ωσ to the moduli space of
antidual solutions M and obtained the Donaldson invariants \ ωσι Λ

/ M

where 4 — dim σ = dim M.

Λ ωσ

We proceed similarly. Since the group is (7(1), we have only one Chern class
The natural forms are then c\+1; let nr= ] c\+l, a 2r form on Met/DifΓ(ΛΓ)

fibre
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and let nr be the restriction of nr to Mg G-+ Met/Diff(/V). Suppose & is a complex
cycle in Mg of complex dimension s, then we have the Mumford invariant

N2(rl9...,rk) = jnn Λ Λ nrk, where s = £ r,,
z j = l

As in the gauge theories case, where the Donaldson invariants were interpreted
as expectation values in a four dimensional topological quantum field theory, our
aim is to interpret the Mumford invariants as expectation values for fields in the
topological two dimensional quantum gravity described in Sect. 4.

To do so we have to compute the Chern class c1 explicitly as a curvature two
form 3F which will involve a Green's function as in the gauge theory case.

Before doing this we make two remarks:

1. The natural category here is a 2-surface with s punctures, its diffeomorphism
group, its space of complete finite area metrics, and its moduli space. We have
not explored the extension of our methods to this case [7].
2. As in the Donaldson case, the "infra-red" problem of integration over Mg needs
careful consideration. The line bundle associated to βc extends to Ji'g over Mg9

the Deligne-Mumford compactification; the dualizing sheaf and the Grothendieck
Riemann Roch Theorem describe the index of the family d along the fibers in
terms of Mumford forms [3]. However in the quantum field theory computation
explicit differential terms are to be integrated. We have not explored their behavior
at infinity. We note that if one uses the (—1) curvature metric for the holomorphic
line bundle, then its first Chern class will diverge at oo [3].

Moreover, if we use the Quillen metric on the determinant line bundle for 5,
one finds that its first Chern class C has a logarithm singularity at oo. From
Grothendieck Riemann-Roch, C is the cohomology class of the two forms on Mg

we have denoted by n{ = j c\.
fibre

We have yet to explore the relationship between our n^ and the 2-form obtained
via the Quillen metric.

7. Curvature on Q

As promised, we now describe a natural (7(1) connection μ on Q over 5f, whose
curvature is OF = c^ needed for the Mumford invariants. Note that Met has a
natural metric invariant under the action of Diff(TV). The tangent space to Met at
0eMet, T(Met,0) are two-tensor fields ψ symmetric under p. Then <^1?^2> =

]Φ1'Ψ2 VOl,.
N

The orthogonal compliments to the orbits of Diff(Λ^) gives a connection μ2 of
Met over Met/Diff(JV) with group Diff(N). The group 50(2) x Diflf(N) acts on Q.
Now the submanifold of Q with the metric g fixed is an 50(2) bundle over TV with
connection, the Riemannian connection determined by g. As g varies we get an
SO(2) connection on Q. Combining this 50(2) connection with the μ2 connection
gives a connection μ1 of Q over <£ with group 50(2) x Diff(Λ/) invariant under
Diff(N). Dividing μ1 by Diff(N) gives the described 5O(2) connection μ.

N x Met also has a natural metric (at (n,g) the metric on T(N, n) is g), invariant
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under Diff(N). So we have a natural connection μ3 on N x Met over 5£ with
group Diff (TV), the orthogonal compliment to the orbit. Finally 3? = N x Met/
Diff(N) has a natural metric. As a result, the curvature !F on μ is
• 2̂,o + «^"i.i +«^"o,2» where #"2f0 is & along the fibres, #"0f2 is the cur-
vature 2-form in directions orthogonal to the fibre, and J* l t l is the mixed
curvature.

In the complex category, although Com has a natural almost complex structure
described earlier, it does not have a natural inner product. A choice of metric g
on N consistent with the complex structure gives one: If μ7eT(Com,J) then
<^i>^2> = J A*i/*2 VOV Thus Diff(N) connections on Com depend on underlying

metrics. Frequently one chooses the constant curvature metric equal to — 1
consistent with each conformal structure. One could also fix the volume once and
for all.

There are many ways to compute the curvature of the connections we have
just described. One method can be found in Sect. 9 below. Here we give the
curvature formulas and relate them to the formulas in Sect. 1-3, thus interpreting
these formulas geometrically.

In formula (3), 5 is the exterior differential along the orbit of Diff(ΛΓ) on
N x Com, having identified diff(ΛΓ) with C°°(Γli0); cz represents the Cartan
tautological 1-form, and d is the exterior differential along N. The connection A
in formula (4) has curvature zero because the left invariant connection on any
smooth group is flat. However in formulas (9) we have extended s to stop the
differential on N x Com. Given a Diff (N) connection A on N x Com over Jf ' g 9 its
curvature has components of type (0,2) and (1,1) relative to the fibering of Jf 'g
over Mg\ these are the terms φ and ψ in formula 10. The (2,0) component of the
curvature is 0 and a compliment to the fibre N in Jί 'g has to be chosen to allow
the decomposition. "Ghost number," in this geometric interpretation refers to the
component in the Mg = Com/Diff (N) direction (or Met/Diff (N)) direction in
the metric case). Again we emphasize that in formulas (9) and (10) and the
definition of the connection 1-form A we have identified diff(ΛΓ) = C°°(T(ΛΓ)) with

Theorem. The curvature ^ = ̂ 20 + ̂ 11+^02 of the U(l)-connection μ on
is

(a) ^2,0 at (n>y) — tne curvature 2-form of the fibre N of the metric class g,
(b) 3F i ι(v,S) at (n,g)= — <div^S,f>; from the holomorphic point of view,
Fltl(dz,ψ)=-dzψl*(dzΛdz)9

(c) J%,2(£ S) at (n, g) = divβ G{(VPS)°S - (VpS)°5); in complex terms, #Ό. 2$ Ψ) =

(i) In terms^of a frame, VgS°S = S(div5) = V^Sy*.
(ii) 5 and S in T(Met_ί9g) are traceless symmetric tensor fields. G = (L*L)-1 on

or its dual.

The proof can be found in Sect. 9. Note the similarity with the Yang-Mills
case in [2]. Turning back to Sect. 2, formula (13) express the curvature 3F above
in local coordinates z, z. In <F there are no c terms because we are working modulo
Diff (AT). Also, the last term in (15), dzΦ

z - d-Φ*, express how #Όf2 can be computed
from the curvature K of μ2
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8. Mumford Invariants as Expectation Values

In the path integral, we interpret the gauge functions (20) and (21) as projections
from N x Com to the quotient Ji'g with μ the Beltrami variable and T(N x Com)
to T(jVg) with φ in the tangent space. Using the complex conjugate as well means
that the gauge functions project N x Met to <£?, and the restriction of the Weyl
factor to be 0 means restriction to Jf g cι_> <£.

Now consider the expectation <(div Φ)(n)> = j[dp>/GF(div Φ)(n) (see Eq. (20)).
We are only concerned with the weak coupling limit. The relevant cubic term in
/GF is J Φz(φz

zdzφ
z

z — 2dz(Ψz

zΨ
z-) whose integrand for brevity we will denote by

_ N

Φ-φ°φ. When e~'Gf is expanded as a power series, we find in e~/GF_(divΦ)(π),
the term Φ-φ°φ div Φ(n). In view of the quad£atic term ΦZDZD-ΦZ = Φ L*LΦ in
the action, integration with respect to [dΦz] \_dΦz~] gives the term div Gφ°φat n.

Now φoφ = φz

zd-φz- - 2dz(φz

zφl). Hence divGφ°φ = *SzG(φz

zd-(φD -
2*dzGd-(φz

zφ
z-)). But *dzGd- is projection on the orthogonal complement of the

kernel of d- (on functions) and hence is the identity. Hence div Gφ°φ = ̂ Ot2(n) —

2(φ2

zφ
2-). Now φz

zφl is purely imaginary since φz

zφl = — φz

zφ
z

z = — φz

zφ
z

z and so
drops out under z<->z.

Hence «div Φ(n)» =J^oj2(n\ where « » means partial integration, only
with respect to [dΦz][ί/ΦJ. The present situation is completely analogous to the
Yang-Mills case and the comments in that case apply here as well.

There one integrates over all /-cycles on M ί = 0,..., 4. In the gravity case, the
natural cycles are the fibres TV in ^Vg. (The cocycle Δ2 with siopΔ

2 = 0 in (20) and
(21).) The cocycle J Δ\is not invariant under Diflf(JV) and hence does not give

1-cycle

a topological invariant. We note however that when our category is extended
to Riemann surfaces with punctures, the punctures will be fixed under the
corresponding diffeomorphism group so that evaluation at these 0 cycles and
averaging will give topological invariants.

For the moment, we have only the forms nr which are obtained by integrating
^1,1 Λ C^"o,2)Γ~1 + ̂ 2,0(^0,2)Γ over trιe fibres. Because of the integration with
respect to \d Ψ2

Z~] [d 1P|], these are all expectation values.

9. Proof of the Theorem

To compute the curvature of the connection μ, we first compute the curvature of
μ2 = GL*, since LGL* is the projection of Γ(Met, g) onto the tangent space of the
orbit at g, with G = (L*L)~1. If S1 and S2 are two symmetric tensor fields, they
are constant vector fields on Met. Assume they are orthogonal to the orbit at g,
i.e., L*(S 0 = 0,j= 1,2. Then Sj-LpGpL*Sj are horizontal vector fields on Met

over Met/Diff. So the curvature Kμ:L of μ2 is given by Xμ2(/S1,52) = μ([S1—

LPGPL*S\ S2 - LPGPL^S2] atp = g. Since [S1, S2] = 0 on Met and since L*Sj = 0,
we have



264 L. Baulieu and I. M. Singer

d
Since L*S = 2 divpS-dual dtdrS, — Lg + tS2

where in local coordinates VgS2°S* =(DίS?k)Sίί. Hence

When S1 and S2 are traceless, we have Kμ2(S1,S2) = G{V1S
2oS1 - VgS^S2}. In

the complex category since L*ψ = dψ = dz\l/\, and since for small variations of
- - δL*

complex structures, d^d-ψld/l-ψlΨΪ, we get (^)= -(^d^l).

Because the curvature is of type (1,1), we obtain Kμ2(ψ,ψ) = G{ψz

zd-(ψz-)-

Φ*MΦl)}
We can extend the connection μί in Q (see Sect. 7) to a connection μ3 on

B x Met by uniquely extending the Riemannian connection ωg of g (the spin
connection) to a connection on B the bundle of all bases. At geMet, μ3 = ωg + μ2.
To compute the (0, 2) component, ^0 2 of μ, we bracket two horizontal vector
fields along Met, project on the orbit of 50(2) x Diff (TV), and divided by Diff(ΛΓ).

If V is a smooth vector field, its image in Q at g is (F,div K,LK), where we
have decomposed Γ(β, g) = T(Bg) © T(Met) and T(Bg) ^ T(N) ® >so(2) using the
connection ωr Dividing out Difϊ(N) implies that divK-hL(K) is in the kernel
of the map from Q to Q. We conclude &0ί2(S1,S2)= -di\Kll2(S1,S2) =
divG(VpS l oS 2 - VPS2°S1) for traceless symmetric tensors. In the complex
category,

To compute the other two components of J*, we note that J^Q is the curvature
restricted to the fibre n and hence is the curvature 2-form of the metric class g.

Finally, for 3F γ Λ let V(p) be the horizontal lift at p of a vector field V on N
to B x Met relative to the connection μ3; and let S be a symmetric tensor field,
i.e., a constant vector field on Met. Then ^ltί(V(n)S) at (n,e^e2,g) is the so(2)

component of dμ3(V9S) - dωg(V,S) = ωg[V,5] + Sωg(V) - Vωg(S) = ωg(\V,S]).

(?; + «)• But ωf+ί5(f;+ίl) = 0Since S is a constant field of B x Met, [K, S] = —

d
by definition; so [K,S] = 1= -<(div.S)K>. Hence

— < diV0 S, v >. Again from the holomorphic point of view 3F l Λ (dz, ψ) =
— dzψ

z-*(dz Λ dz).
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