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Abstract. We show that deformation quantizations of the Poisson structures on
the Poisson Lie group SU(2) and its homogeneous space, the 2-sphere, are
compatible with Woronowicz's deformation quantization of Sί/(2)'s group struc-
ture and Podles' deformation quantization of 2-sphere's homogeneous structure,
respectively. So in a certain sense the multiplicativity of the Lie Poisson structure
on 5(7(2) at the classical level is preserved under quantization.

Introduction

In the area of quantization of (symplectic manifolds), there have been two major
approaches, namely geometric quantization and deformation quantization. In this
paper, we shall work with the second approach, which seems to be more realistic
physically, although the first approach is mathematically beautiful and intriguing.
In the seventies, Bayen, Flato, Fronsdal, Lichnerowicz and Sternheimer first
formalized the concept of deformation quantization of the symplectic (or Poisson)
structure of a manifold in terms of formal power series [Ba-Fl-Fr-Li-St]. Since
then there has been a lot of research in this direction. Recently, Marc A. Rieffel
formulated such a theory in the context of C*-algebras and obtained interesting
results [Ril, 2,3]. From a certain point of view, this formulation has the advantage
of being closer to the traditional way of quantization using operators on Hubert
spaces.

Parallel to the above quantization of geometric structures, there is a theory of
deformation quantization of group structures, namely the theory of quantum
groups [Dr]. Also recently, S. L. Woronowicz developed such a theory in the
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context of Hopf C*-algebras [Wol, 2]. In particular, he studied 5^(7(2), "the twisted
Sl/(2)" or the deformed Lie group 5(7(2), in great detail [Wol]. Meanwhile,
P. Podles constructed and studied the "quantum sphere" Sμc as the twisted
homogeneous 2-sphere of SμU(2) [Po].

What makes the whole situation more interesting is the discovery of
"multiplicative" Poisson structures on SU(n) (and more general Lie groups) and
corresponding Poisson structures on homogeneous spheres by J. H. Lu and
A. Weinstein [Lu-Wel,2].

A natural question now arises [Lu-Wel,Ri2], namely, whether there are
deformation quantizations (in the sense of Rieffel) of the Poisson structures on
5(7(2) and S2 which are "compatible" with Woronowicz's deformation quantization
of 5(7(2)'s group structure and Podles' deformation quantization of 2-sphere's
homogeneous structure. In this paper we shall give a positive answer to the above
question. This suggests in a sense that the multiplicativity of the Poisson structure
on Sl/(2) on the classical level is preserved on the quantum level under deformation
quantization.

Section 1. The Quantum SU(2) and Quantum 2-Spherc

Let us first recall the idea of quantum 5(7(2) of Woronowicz. In [Wol],
Woronowicz showed that the universal C*-algebras C(SμU(2)) generated by α and
y satisfying the following equations:

αα* + μ2γy* = 1, μyα = αy, yy* = y*y,

with — 1 ̂  μ ̂  1, are examples of certain Hopf C*-algebras, called compact matrix
pseudogroups [Wo2], and in a sense form a deformation of the classical
Hopf algebra of continuous functions on the Lie group 5(7(2) since C(5i (7(2)) £
C(5(7(2)). In other words, the corresponding underlying "pseudogroups" form a
"noncommutative" deformation of the topological group structure of 5(7(2). In
the appendix of [Wol], it was shown that the C(5μ(7(2))'s are isomorphic as
C*-algebras for all |μ| < 1 and that the structure of the C*-algebra C(Sμl/(2)) is
described as an extension [Do] of C(T) by C(T) (x) JΓ, i.e. there is a short exact
sequence of C*-algebras,

0 -> C(T) ® JΓ -> C(Sμ (7(2)) -> C(T) -> 0.

It was M. A. Rieffel who first observed that this structure of C(SμU(2)) coincides
with that of the unitized group C*-algebra [Pe] C*(5£(2,C))+ of the solvable Lie
group 5£(2,(C), which is the dual group of SU(2) in the sense of [Dr, Lu-Wel].
This discovery has encouraged the investigation which led to the results of this
paper, since Rieffel [Ril] has also related the group C*-algebra of such (and more
general) groups with the deformation quantization of linear Poisson structures on
their Lie algebra duals.

Before we turn to the quantum 2-sρhere, we will describe the structure of
C(SμU(2)) in a more constructive way to be used later. Recall that the C*-algebra
C*(£f) generated by the unilateral shift £f, a bounded linear operator defined by

= en+1 for an orthonormal basis {en}™=Q of a Hubert space J f , is an extension
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of C(T) by Jf [Col], i.e. there is a short exact sequence

0 -> jf -> C*(50 Ά C(T) -> 0,

where σ is the symbol map if we identify C*(y) with the Toeplitz C*-algebra on
the circle T [Do]. We shall recall some equivalent realizations of C*(Sf) as Toeplitz
algebras at the end of this section. Note that σ(£f) is the identity function z on T.

For various reasons (as we shall see later in this paper), it is suggestive to regard
C*(ί7) as a "non-commutative" (cf. [Con 1,2]) unit disc D with boundary, ormore
precisely, a foliation C*-algebra of the singular foliation (cf. [Da, Shi]) of D with
the interior D as one leaf and each point on T = dD as a leaf. The interior
corresponds to the ideal Jf of C*(£f\ while the boundary corresponds to the
quotient C(TΓ). With this concept in mind, we introduce another "non-commutative"
singular foliation, namely

(idφσΓ^l® C(T)) = {/eC(TΓ,C*(^))|σ(/(z)) = σ(/(l)) for all z in TΓ},

where id ® σ: C(T, C*(^)) = C(T) ® C*(&) -» C(T) ® C(T) with id the identify map
of C(T). This algebra is in some sense the fϊbered product of a circle family of
C*(«$0 over C(T), or the pull-back of a circle family of the same symbol map
σ:C*(£f)->C(W). Conceptually, the corresponding singular foliation is the one
constructed by glueing a circle family of disc leaves along their boundary circles
to one circle consisting of point leaves.

During the preparation of this paper, we learned that the following result may
also be obtained by combining the results of [Va-So] and [Ro]. But we shall
present a proof based on the universality of C(SμU(2)) and C*(y) [Col].

Proposition 1.1. For \μ\ < 1, we have, as C* -algebras,

Proof. As we mentioned above, all C(Sμ£/(2))'s with |μ| < 1 are isomorphic as
C*-algebras. So we shall assume that μ = 0 in the following discussion.

Let us denote the algebra on the right-hand side of the above identity by j/.
Then efi/ contains two distinguished elements α = 1 ® &** and γ = z ® p, where
p = I — ytf* is a rank 1 projection with σ(p) = 0 and z is the identity map on T.
It is easy to see that stf is an extension of C(T) by C(TΓ) ® jf, i.e. there is a short
exact sequence

0 ̂  C(T) ® JT -» j/ -̂  C(T) -> 0,

where σ(f):= σ(/(l)) for /EΛ/. Moreover si is generated by α and γ since σ(α) = z
generates C(T), while γ generates C(T)®p, and hence C(TΓ)® Jf is contained in
the C*-algebra C*(α,y) generated by α and y.

It is easy to see that α and γ satisfy the above relations (with μ = 0) defining
C(S0 U(2)). We claim that they are actually universal with respect to those relations.
More precisely, if α and γ satisfy (1.1), we prove that there is a homomorphism φ
from j/ to C*(α, y) sending α to α and γ to γ. Note that the identity αα* = 1 of
(1.1) implies that α* is an isometry and 1 — α*α is a projection (i.e. a self-adjoint
idempotent).

In fact, if α is unitary then 7 = 0 and it is well known that by functional calculus
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there is a homomorphism h from C(T) to C*(α) = C*(α, γ) sending z to α. So clearly
we can take φ:= h°σ.

If α is not unitary, then regarding C*(α,y) as a self-adjoint subalgebra of £pf),
the algebra of bounded linear operators on a Hubert space 3f, we have gyg = y,
where q = I — α*α is the orthogonal projection onto the kernel of α. So by the well
known result of [Ha] about decomposing an isometry into a direct sum of a block
unilateral shift and a unitary (sometimes called the Wold decomposition) and by
the universality of C*(&) [Col], we get

C*(α,y) * C*({l®y,qyq®p}) £ C*(qyq)® C*(&) * C*(y)® C*

identifying α* with \®£f and y with gyg ® p = y ® p. Note that 1 = q in C*(qγq) ̂
C*(y), since y is a unitary on the range of q = I — α*α. Now clearly there is a
homomorphism from C(TΓ) to C*(y) sending z to y and hence a homomorphism
from si to C*(α, y) sending α = 1 ® ̂ * and y = z (x) p to α and y respectively. Thus
«s/ with α and y is universal with respect to the relations (1.1) (with μ = 0) and
hence d ̂  C(S0 17(2)). Q.E.D

Now we recall Podles' results on the quantum spheres. In [Po], a family of
C*-algebras C(S2

μc) are constructed and shown to be co-modules of the Hopf
C*-algebras C(Sμl/(2)), and hence the corresponding imaginary "spaces" are
regarded as quantum (or pseudo-) homogeneous spaces of the quantum (or pseudo-)
groups SμU(2). Here we only consider S2

C with | μ | r g l and c^O. Note that
C(S?C) ̂  C(52). Recall that C(S2

μc) is a unital C*-algebra generated by two elements
A and B (and 1) [Po].

Using the classification of all irreducible representations of C(S2

μc) (as C*-algebras)
in [Po], we can get an explicit description of the C*-algebra structure of C(S2

C)
as follows.

Proposition 1.2. Let \μ\<l. (1) // c> 0, then C(S2

C) is the pull-back of two copies
of the symbol map of C*(£f\ namely,

C(S2

C) * C*(^)ΘσC*(^):= {(x,y)|x,yeC*(ίO ™d σ(x) = σ(y)}9

and so there is a short exact sequence

§-*tf@tf^ C(S2

C) -> C(T) -> 0.

(2) Ifc = Q, then C(S2

C) ^ 3f is the unitization of Ctf ana so we have a short exact
sequence

Proof. (1) It is well known that the direct sum of all irreducible representations
of a C*-algebra is faithful [Pe]. So by Proposition 4(1) of [Po], we get a faithful
representation

zeT

of C(Sμc), where πz's are one-dimensional representations sending A to 0 and B to
c1/2z, while π+ are represented on separable (i.e. countably infinite dimensional)
Hubert spaces so that π + (A) are "weight operators" and π±(B) are weighted shifts
as described in the following. With respect to a suitably chosen orthonormal basis
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{en}9 n = 0,l,2,...,

π±(A)(en) = λ±μ2nen and

where
c±(n) = λ±μ2n-(λ±μ2n)2 + c and λ± = (1/2) ±(c

with e _ ! : = 0. One can easily check that lim (c ± (n) ) = c, λ + ̂  1 and A _< 0. So we get

(π±(B) - c1

with lim [(c + (n)1/2 - c1/2)] = 0 and hence π±(B) — c1/2^* is a compact operator

in C% '. On the other hand, since \μ\ < 1 and hence Iim(/l±μ2π) = 0, we get n±(A)
n

also a compact operator. Thus we have π±(C(S2

c)) g C*(y) and σ(π + (A)) = 0 while

Now it is easy to see that πz factors through π±, namely, πz = φz°σ°π±, where
</>z:C(TΓ)->C is the evaluation at zeT. From this, we get that π + 0 π _ is also a
faithful representation of C(S2

C).
It is clear that (π+ 0π_)(C(S2

c)) £ C*(^)®σC*(y). So it remains to prove the
inverse inclusion. Note that (π+ 0π_)(A) is a self adjoint operator with eM00 and
0©em as eigenvectors of distinct eigenvalues λ+μ2n and λ_μ2m respectively, and
hence the (orthogonal) projection to each one-dimensional space spanned by
en®0 or 0©em is in the C*-algebra (π+ ©π_)(C(52

c)) by functional calculus.
Now from this and the fact that π+(B) are weighted shifts with nonvanishing
weights, it is easy to see that the matrix elements ε^-00 and 00ε fJ for all
U=έO, which generate Jf φjf, are in the C*-algebra (π+ 0π_)(C(S2

c)), where

εij(ek) = djket for all k. So we get Jf 0Jf g(π+ 0π_)(C(52

c))g C*(^)0σC*(^)
such that σ[(π+0π_)(C(52

c))] = C(T), where σ(x,y):=σ(x) = σ(y) for (x,j;) in
C*(^)0σC*(^). This shows that (π+ 0π_)(C(S2

c)) = C*(^)©σC*(^).
(2) When c = 0, the above description of irreducible representations is still valid

except that we do not have the representation π_. Now

n+(A)(en) = μ2nen and

where c+(n) = \μ\2n(l — μ2") converges to 0, while πz(A) = πz(B) = 0. So π+(A) and
π+(B) are compact operators and hence π+(C(S2

c))g tf (remember that C(S2

C)
contains the identity). Clearly πz still factors through π+ and so π+ is faithful.
Again, as in (1), the matrix units ε0 are in π+(C(S2

c)), so we get the conclusion.
Q.E.D

Remark. We learned that results similar to part (2) of the above proposition have
also been obtained by Soibelman.

As in the case of Sl/(2), we may regard C(S2

C) with |μ| < 1 as the foliation
C*-algebra of a singular foliation on S2 constructed by glueing two disc leaves
along their boundaries to a circle of point leaves if c> 0, and by glueing a disc
leaf along the boundary to a single point leaf if c = 0.

In the rest of this section, we shall recall a few well known realizations of C*(5^)
as Toeplitz algebras.

Let H2(dD) be the Hardy space over the unit disc D in C, i.e. the closure of
the space of continuous functions on 3D, which can be extended continuously to
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holomorphic functions on D, in the Hubert space L2(dD) (with respect to the
normalized arc length measure on T = 3D). Then it is easy to see that {zπ}^°=0 form
an orthonormal basis. Let P be the orthogonal projection from L2(dD) onto H2(dD).
The Toeplitz C*-algebra 3Γ(dD) = ^(TΓ) is defined to be the C*-algebra generated
by the operators Tφ:= PMφ restricted to H2(dD\ where φ is a continuous function
on dD = T and Mφ is the multiplication operator by φ on L2(dD). It is easy to see
that the Toeplitz operator Tz on H2(dD) is simply a unilateral shift with respect
to the orthonormal basis {z"} and hence 3~(dD) ^ C*(ίf). It is well known that
the map sending Tφ to φ can be extended to a homomorphism σ, called the symbol
map, from F(dD) onto C(dD) = C(TΓ).

Replacing H2(dD) by H2(D\ the Bergman space over D, i.e. the Hubert subspace
of L2(D) consisting of holomorphic^ZΛfunctions over D with the Lebesgue measure,
and replacing φεC(dD) by φeC(D), we can repeat the above process to construct
the Toeplitz algebra F(D) on H2(D). It is well known [Co2] that y(D) ̂
(see [Sh2] for a more general result) and the corresponding symbol map on
extends the map sending Tφ to φ\dD.

What we need in this paper is the third realization, which is less well known
and can be derived easily from the work of Berger and Coburn [Be-Col,2] as
follows. Let μ be the Gaussian measure on (C, i.e.

dμ(z) = exp ( — | z \2)dxdy for z = x + iy in C.

We consider the Segal-Bargmann space //2(C), i.e. the Hubert subspace of L2((C,μ)
consisting of holomorphic (μ-L2 -^functions on (C. As before, P denotes the
orthogonal projection from L2((C,μ) onto H2(C). Then a Toeplitz operator Tφ with
symbol φeL°°(<C,μ) is defined as the restriction of PMφ to f/2(C). In [Be-Col,2],
a through study has been done on the maximal possible symbol space Q g L°°((C, μ)
such that 2Γ(Q)/tf is commutative, where F(Q) is the C*-algebra generated by
Tφ with φeQ. What we need in this paper is a much smaller symbol space C(C)
consisting of continuous functions on (C uniformly converging radially to a
continuous function on T, i.e. φr(z):= φ(rz), zeT, converges uniformly to φ^(z)
as r goes to oo and φ^ is a continuous function on T. By the results of
[Be-Co2] that jf = ̂ "(C0(C)) and that there is an isomorphism from ^"(Q)/Jf
to Cb(C)n£5K/C0((C) identifying [Tφ~\ with [<£] for φ in C?(C)n£SF, where ESV
is the space of functions which "oscillate" slowly at oo, it is easy to deduce that

«r (C)/Jf * [C(C) π Q,(C) π ES7]/[C(<D) n C0(C)] = C(C)/C0(C) * C(T)

which identifies [T^] with φ^ for φ in C(C), where ^~(€):= ^(C(C)). Thus we get
a short exact sequence

0 -> Jf -+ 3T (C) -^ C(T) -^ 0,

where σ sends _Γφ to φ^. In order to see that (̂C) = C*(£f\ we only need to note
that Tz/|Z|e«^"((C) is a weighted shift (with respect to the orthonormal basis
{zn/|| z" || 2}) with positive weights απ converging to 1 [Be-Col] and hence Tz/|z) — £f
is compact. (Note that although the bounded function z/|z| is not continuous at
the origin, it can be checked that Tz/|z| can be approximated by Tφ with 0eC(C)
uniformly bounded and equal to z/|z| except in shrinking neighborhoods of the
origin.)
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Section 2. Deformation Quantization of Poisson Structure

In this section, we shall recall RieffeΓs strict deformation quantization of the Poisson
structure on a manifold and introduce a variation of this notion.

Definition 2.1. [Rieffel] Given a Poisson manifold (M, {,}) and a *-subalgebra A
of C£°(M) containing C™(M) and closed under the Poisson bracket {,}, a family
of normed involutive algebra structures (A,#h, *h, \\ \\h) on A9 with #Λ,*fo and
|| || h as the product, involution and norm respectively for all 0 ̂  h< ε and some
ε > 0, is called a strict deformation quantization of the Poisson algebra A if || ||h
is a C*-norm for all h and (A9#0,*09\\ ||0) is the normed involutive algebra
structure of A inherited from Cb(M) (with multiplication, conjugation and
sup-norm), such that

(1) ||/||Λ is continuous in /ιe[0,ε) for any fixed feA9

(2) | | ( i h Γ l ( f # h g - g#hf) - {/,g] ||* converges to 0 as h goes to 0 for any fixed /
and g in A.

We shall denote by Ah the C*-algebra completion of the pre-C*-algebra
(A,#h,*h,\\ ||,).

Note that the above definition can be applied to any *-subalgebra A of Cb(M)
(containing CC°°(M)), on which a Poisson bracket consistent with the original one
on CC°°(M) is well defined.

Since every C*-algebra can be realized as a closed *-subalgebra of bounded
linear operators on some Hubert space. We may regard (A,#Λ,*/ι, || ||Λ) as a
*-subalgebra of operators and state the above definition in a way similar to the
next definition (but slightly stronger). Note that conditions (1) and (2) in the above
definition are the core idea of quantizing the Poisson bracket {,} by deformation
and we feel that the other conditions may be loosened slightly without losing the
spirit of deformation quantization. In particular, we shall not require A to be
closed under the product #h and just consider it as a *-subspace of operators. So
we introduce the following slightly weaker notion needed in stating the result of
this paper.

Definition 2.2. Given a Poisson manifold (M, {,}) and a *-subalgebra A of Q°(M)
containing C?(M) and closed under the Poisson bracket {,}, a family of pairs
(A9 ph) with 0 ̂  h< ε for some ε > 0 is called an operator deformation quantization
of A if p0 is the embedding of A into the commutative C*-algebra Cb(M) (realized
as an algebra of operators through some faithful representation) and ph is a
*-preserving linear isomorphism from A onto a dense linear subspace of a
*-subalgebra (or equivalently, of a C*-subalgebra) of bounded linear operators on
some Hubert space for 0 < h< ε, such that

(1) IIPfc(/)l l is continuous in /ιe[0,ε) for any fixed feA,
(2) I ( i h ) - 1 [ p h ( f ) , p h ( g ) ~ ] - p h ( { f 9 g } ) \ \ converges to 0 as h goes to 0 for any fixed
/ and g in A.

We shall use Ah to denote the C*-algebra obtained by completing ph(A).
In [Ril, 2], many interesting examples of strict deformation quantization have

been found. What we need in this paper is a more classical result from the Weyl
calculus. In the following, we summarize the relevant facts (extracted from [Vo])
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and refer the interested reader to [Ho, Ho, Vo] for a detailed account and historical
references.

We define the symbol space Sm to be the space of 0eC°°(R2) with the property
that there exists an asymptotic expansion

in the sense that for all n,α, βeN there is a C > 0 such that

for all (ξ, x) outside a compact subset of R2, where ak are homogeneous functions
in (ξ,x) of degree k. It is easy to check that Sm is a Lie subalgebra of C£°(R2), i.e.
closed under the standard Poisson bracket {,}. On Sm, we have a Frechet space
structure defined by the seminorms

||α ||* = sup {\D*ξD
β

xa(ξ,x)\(l + ξ2 + x2)(α+/?-m)/2:fex)eR2 and α + β ̂  k}.

Given 0eSm, we define a (possibly unbounded) linear operator Wh(a) on L2(R), for
Λ>0,

Wh(a)u(x) = (2πhΓlίa(ξ9 (x + x')/2) exp (iξ(x - x')/h)u(x')dξdx'

for ιιeCc°°(R). It is easy to check that Wh(ά)=Wh(a)*. When m^O, Wh(a)
is bounded. We define the Moyal product (or twisted product) a#hb by

Wh(a#hb)=Wh(a)Wh(b).

Then #h defines a map from Sk x Sl to Sfc+/, and we have an asymptotic expansion
for #Λ, namely

(a#hb)(ξ,*) ~ Σ (
k = 0

and one for its commutator, namely

(a#hb-b#hά)(ξ,x)

~ f ih(-

Note that for h > 0, the operators Wh(ά) and W(ah) have the same norm since they

are unitarily equivalent, where ah(ξ,x) = a(^/hξ,^/hx) and W:=Wί. We set
W0(a) = <zeC&(R2) which can be represented faithfully as multiplication operators
on L2(R2) and hence it is natural to define a#0b = ab.

Although the enormous literature on the Weyl calculus seems to guarantee
that Wh does form an operator deformation quantization of S°, we are unable to
find theorems written in exactly the form we need and so we shall briefly describe
how to verify the requirements using known results from the literature. (In fact, it
is known that the Weyl correspondence does give rise to a strict deformation
quantization of the Schwarz functions on R2 [Ril], but for this bigger class S° of
symbols, the proof is trickier.)
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First we point out that the proof of Theorem 3.1.3 in [Ho] shows that if A g S°
is bounded with respect to the seminorm || ||4 then there is a constant C such
that for all aεA and 0 < h < 1, || Wh(a) \\£C\\ ah ||4. Clearly Aδ = [ah-at\ 1 >£, A><5}
with δ > 0 is such an example of A. For h > 0, we have at approximating ah in
|| || 4 when ί converges to h, and so by the above remark, Wt(d) converges
to Wh(d) in norm as t goes to h. Thus || Wh(d) \\ is continuous in h > 0.

Before we prove the continuity of || Wh(ά) || at A = 0, we recall that [Gr-Lo-St]
if we represent 0eS° as an operator acting on L2(R2) (instead of on L2(R)) by the
twisted product α#Λ , we get a representation (of the algebra (S°,#Λ)) equivalent to
Wh (or more precisely a countable direct sum of the representation Wh) and hence
\\Wh(a)\\ = \\a#h \\.

We shall first prove that || Wh(ά) \\ is upper semi-continuous at A = 0, i.e.
lim-supll Wh(a)\\ ^ \\ W0(a)\\ = \\a\\„. By Proposition 4 of [Gr-Lo-St], the period

fc->0

2 Fourier transform a (and similarly aj;) of a (and ah) used in [Ho] is a smooth
distribution on R2\{0} vanishing at infinity rapidly. Since (δ4 + 54)αeS~4 £ ̂ (R2),
we have

for (ξ, x) Φ (0,0), where M is the Z^-norm of (δ4 + δ4)α. Let l^(/> r ^0 be a
C°°-function on R2 supported in Kr:= {(ξ,x)\x4 + ξ4 < r} and equal to 1 on Kr/2.
Then

|| ((1 - φr)afr) || co ^ || (1 - 0r)αϊ|| x ^ MrA,

where Mr is the integral of Mπ~4(x4 + ^4)~1 over R2\Xr/2. Thus from

we easily get lim \\(φra$~\\ = \\a\\ m because II^IL = H α l L . Since φraς is a

compactly supported distribution with smooth Fourier transform, we get by the
remark following Theorem 3.1.1 of [Ho] that

for some constant c0 independent of r and A, since supp (φraj;) £ Xr g βy^ the ball
of radius !̂ /2r . On the other hand, by identifying #h with the twisted convolution
[K,Ril], one can derive

|| W(((\ - φjafr) || ̂  || (1 - φ,)^ , g hMr,

and so

|| W(ah) || g (1 + c0 V>)2 II (ΦΛ-)-|| „ + hMr,

which shows that for any fixed r>0, lim-sup || W(ah)\\ ^(1 + coy2r)2||α||00.
So we get h^°

Next we shall prove the lower semi-continuity of || Wh(a) \\ at A = 0. By setting
a(A, ξ, x) = a(ξ, x) for αeS°, we get an admissible symbol of [Vo]. By Theorem 3.4.1



226 A. J.-L. Sheu with J.-H. Lu and A. Weinstein

of [Vo], for any u,veC?(R2)9 we have that

{h ~ i [(a#u)(A, , •) - a(Λ, , )u(Λ, v)] I β > * > 0}

or equivalently

{h-l(a#hu-au)\ε>h>0}

is a bounded subset of S~2 if ε is sufficiently small. So

L2(R2} = Jf ί(a#hu) - aύ](ξ,x)υ(ξ9x)dξdx

converges to 0 as ft goes to 0 since v has compact support. From the earlier remarks,
we know that || Wh(a) \\ and hence || a#h- \\ is uniformly bounded for fixed αeS°. By
this fact and that

<α#hw,ί;> converges to <α#0w,ι;> = <0w,t;>

for all M j t eC^IR2) g L2(R2), it is an easy exercise to show that a#h- converges to
the multiplication operator a- weakly and hence | | W Λ ( Λ ) || = ||α#Λ || is lower
semi-continuous at h = 0. Now we have proved the continuity of || Wh(a) \\ for
fc^O.

It remains to show that (ih)~^[_Wh(a\ Wh(b)~\ — Wh({a,b}) converges to 0 in
norm as h goes to 0. By Theorem 3.4.1 (ii) of [Vo], for any α,ί?eS°, the set

{/Γ2[(a#b - b#a)(λ, , •) - iA{a(Λ, , •), b(Λ, v)}] l« > h > 0}

or equivalently

{h~2(a#hb - b#ha - ih{a, b})\s > h > 0}

is bounded in S~4 for ε sufficiently small. So there is C > 0 such that

h-2 1| Wh(a)Wh(b) - Wh(b)Wh(a) - ihWh({a, b})\\

= h-2\\Wh(a#hb-b#ha-ih{a,b})\\^C,

which is uniformly bounded for all ε > h > 0, and hence we get what we want. Let
us remark that the same kind of argument used in this paragraph can be used to
prove that || Wh(f)Wh(g)- Wh(fg)\\ = \\ Wh(f#hg-fg)\\ converges to 0 as h goes
toO.

Thus we have proved the following theorem.

Theorem 2.1. (S°, Wh) is an operator deformation quantization of S° and
(S°, #Λ, *ft, || || h) is a strict deformation quantization of S° over the symplectic
manifold 1R2, "where *h is just the ordinary complex conjugation of functions and
\\a\\h:=\\Wh(a)\\.

In the rest of this section, we shall relate the C*-algebra (̂C) generated by
the Weyl operators Wh(a) with αeS° to the Toeplitz algebra (̂C). We first state
some known facts about Weyl operators and Toeplitz operators and refer the
reader to the paper [Gu] of Guillemin and references there for details. Since
Wh(a(-9 -)) = WΊ(fl(ft , •)), we have ̂ (C) = ̂ (C) and so we shall work with W:= W±
only.

The fact we need from [Gu, Gu-St] is that

W(a) = Tφ mod smoothing operators ( g Jf )
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for aeS° with an asymptotic expansion

00

<*(ξ,χ)~ Σ a-2k(ξ,χ)
k = 0

and φeS° with an asymptotic expansion

φ(ξ,X)~ ΣΦ-2n(ξ,X)

>-*-ΓΣιL*=o
such that φ-2n = Y (l/kl)(Δ/2)n~ka-2k where A is the Laplacian d2/dzdz. It is

|_fc = o J
well known that Weyl operators (respectively Toeplitz operators) with rapidly
decreasing (or even compactly supported) smooth symbols a (respectively φ)
generate <yf as a C*-algebra. On the other hand, Weyl operators and Toeplitz
operators with symbols a and φ of order no greater than — 1 are compact and
hence can be approximated by the same kinds of operators with rapidly decreasing
smooth symbols. From these facts, we get i^((C) = 3~(<C) and that for αeS° with
asymptotic expansion

00

a(ξ,x)~ £ a-k(ξ,x),

with α_ f e smooth and homogeneous of degree — fc,

σ(W(a)) = a0°z\Ί[= lim a(rz\τ) = aao.
r->oo

We summarize in the following proposition.

Proposition 2.1. i^h((C) and « "̂(C) are isomorphίc as C*-algebras for Λ > 0, and

Section 3. Deformation Quantization of Poisson SU(2) and S2

In this section, we shall construct operator deformation quantizations of smooth
functions over the Poisson SU(2) and Poisson spheres. We refer readers to
[Lu-Wel,2] by Lu and Weinstein for the geometric properties of Poisson SU(2)
and Poisson spheres used in this section.

We recall that the singular foliation of Poisson SU(2) by symplectic leaves
consists of a circle family of open disks, each one symplectomorphic to the canonical
symplectic R2, and a circle (namely, £7(1)) of 0-dimensional symplectic leaves, to
which the open disks are glued together along their boundaries. We can find a
diffeomorphism /:T x R2->Sl/(2)\E7(l) such that on each {z}xR2,/ is a
symplectomorphism onto a symplectic leaf of Sl/(2), and lim /(z, re(θ)) = e(θ)e 17(1),

r-+oo

where e(0):=exρ(2π/0) for 0^0^1. (We shall freely consider e(0) to be in
TTgC, in R or in t/(l)£SC7(2) according to the context.) In fact, we can
fix a non-degenerate symplectic leaf L of SU(2) and a symplectomorphism

0:R2^L (e.g. g(re(θ)) = (l- R2)V2e(θ) + R , where R = exp(-r2/4))

such that lim 0(re(0)) = e(0)eE7(l), and define f(z9ζ}:=Z'g(z'1ζ) for zeT= [/(I)



228 A. J.-L. Sheu with J.-H. Lu and A. Weinstein

and (eC = R2. Then we have

/*(C°°(SΪ7(2))) g /*(C°°(S17(2)~))

r oo ^
= \ seQ°°(T x R2)|s(z, •) ~ Σ S-XZ> 0 with so independent of z V,

I j = o J

where the asymptotic expansion is in the sense that for all rc,α,/?eN there is a
C > 0 such that

for all zeT and x, £eR, with sfc(z, •) homogeneous functions in (ξ,x) of degree /c
(and smooth in z), and the subalgebra C°°(Sl/(2)~) of C(S17(2)) is defined by the
last equality so that for any 0eC°°(Sl/(2)~), we have (fl°/(v))oo = a\U(1)9 i.e.

It is easy to see that we can extend the Poisson bracket on C°°(S17(2)) to
C°°(S[/(2)~) by defining for any a9beCVD(SU(2)M)9

and {a,b}(p) = 0 for peϊ/(l), since the original Poisson bracket on C**(SU(2))
coincides with the bracket defined by the symplectic structure on each symplectic
leaf (or more precisely, the Poisson 2-tensor of SU(2) is "tangent" to the symplectic
leaves) [We]. So we get a Poisson algebra C°°(S17(2)~) containing C°°(S17(2)) as a
sub-Poisson algebra.

It is easy to see that for 0eC°°(Sίy(2)~), the set {a°/(z, )|zeTΓ} is bounded in
S°, and hence by Theorem 3.1.3 of [Ho] (as used in Sect. 2), for any fixed h > 0,
the map ph(a) sending zeT to (Wh(a°f(z9 )))e J*((C) is (norm) continuous. Actually
ph(a) belongs to (id <g> σ)~ *(1 (x) C(T)) g C(T) ® C*(̂ ), since

is independent of zeT, where τh is the map on T (the space of rays in R2) induced
'by the linear map on R2 sending (ξ, x) to (hξ9 x).

We claim that ph form an operator deformation quantization of C°°(S17(2))
(remember that any C*-algebra can be realized as a *-algebra of operators) and
give rise to a strict deformation quantization of CQO(5l/(2)~). (Note that the essential
difference here is that ph(C°°(Sl/(2))) is not a subalgebra of (idφσΓ^lφCCT)),
while obviously ph(CGO(SU(2y)) is because Wh(S°) is an algebra as discussed in
Sect. 2.) The proof is similar to what we did for S° in Sect. 2 and we only need to
note that the argument used there is still valid when a smooth parameter zeT of
the symbol a is introduced. We shall omit this routine verification.

It is easy (using the partitions of unity on T) to check that C(T) (x) Jf g
C*({ph(a)\aeC?(SU(2)\U(l))}) for h > 0 since Wh(Cc(Ί&2)) is dense in jf, and to
construct an αeC°°(5ί7(2)) with a\ϋ(1) equal to any given φeC(T). So we get

Thus for l^/ ι^0 and μ = 1 — h, by Proposition 1.1, we have

C«(SU(2))h = C«(SU(2)~)h * C(SμU(2)).
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This shows, in a sense, that the deformation quantizations of the group structure
and of the (multiplicative) Poisson structure on SU(2) are consistent, and hence
the group structure and the Poisson structure on SU(2) are compatible on the
quantum level as they are on the classical level.

We summarize in the following theorem.

Theorem 3.1. (C°°(S17(2))),pΛ) form an operator deformation quantization of

CCO(SU(2))9 and (C°°(Sl/(2)~), #Λ,*M ||Λ) is a strict deformation quantization of
CCO(SU(2)~), where #h and \\ \\h are the product and the norm pulled back from

C(T) (x) C*(&*) through ph respectively (for h>0), and *h is the conjugation of

functions. Moreover

C"(SU(2))h = C"(SU(2Γ)h = C(SμU(2))

for 1 ̂  h ̂  0 and μ = 1 - h.
From the results of Lu and Weinstein [Lu-Wel,2], there is a family of

"homogeneous" Poisson structures on the 2-sphere (with a suitable parameter c),
and for c>0, the Poisson sphere (S2,(,}c) consists of two disks, each one
symplectically isomorphic to the canonical R2, glued along their boundaries to
one circle of 0-dimensional leaves, while for c = 0, the Poisson sphere degenerates
to one disk leaf (symplectically isomorphic to R2) attached to one singleton leaf
{n}. So using arguments similar to the above, by "glueing" together two copies of
Weyl quantization of S°, we can get, for c>0, operator deformation quantizations
phιC of C°°(S2) with respect to (,}c and the associated C*-algebras C™(S\,C are
isomorphic to C(S2

C), where μ = 1 — h. Similarly, when c = 0, let /:R2 -> S2\{n} be
a symplectomorphism, then phtQ(a):= Wh(a°f) for aeCco(S2) defines an operator
deformation quantization of C°°(S2) with respect to {, }0 and C^S2)^ = C(S2

0)
with μ=l-h. Since the detail is similar to the case of SU(2) (but simpler), we
shall omit it.

Appendix. Classification of 5ί/(2)-Covariant
Poisson Structures on S2

Jiang-Hua Lu and Alan Weinstein

Department of Mathematics, University of California, Berkeley, CA 94720, USA

A Poisson Lie group is a Lie group G with a Poisson structure such that the
multiplication map G x G->G is a Poisson map. Let σ:G x P->P be an action of
a Poisson Lie group G on a Poisson manifold P with Poisson structure πp. We
say that πp is G-invariant if for each geG, the map σ^eDiff (P) preserves πp. We
say that np is G-covariant if σ is a Poisson map, where G x P has the product
Poisson structure. In this case, σ is called a Poisson action of G on P. The difference
of two G-covariant Poisson structures on P is G-invariant, but not necessarily
Poisson (see Theorem 2.6 in [Lu-We]).

Consider the Lie group

/ α

-f
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We choose the following basis

1Λ 0 \ _ ! / 0 1\ _1/0 /

for the Lie algebra su(2) of SU(2) to identify sw(2)^R3. Then the adjoint action
of SU(2) on su(2) becomes the action by rotations. The isotropy subgroup of the

point e1 = (1,0,0) is S1 = < ( _w 1:0elR >, and its orbit is the unit sphere S2

in R3. This way S2 ̂  SU(2)/S1 becomes a homogeneous SU(2)-space, and the
natural projection p:SU(2)-+S2 is given by

A Poisson structure on SU(2) can be defined by [Lu-We]

π(g) = rgΛ-lgΛ, geG,

where rg and lg respectively denote the right and left translations on G by g, as well as
their differential maps extended to multi vector Jields, and A = e2 Λ e3esu(2) Λ su(2).
The Lie brackets of the functions α,ά,/? and /? are given as follows:

Sl/(2) together with π becomes a Poisson Lie group. We will describe all
(SU(2)9 π)-covariant Poisson structures on S2.

One can check that π vanishes on the subgroup S1; hence there is an induced
Poisson structure π t on SU(2)/S1 ^S2 such that the projection p:SU(2)^S2 is a
Poisson map [Lu-We]. Moreover, the left action of SU(2) on S2 is a Poisson
action. Therefore π^ is one Sί/(2)-co variant Poisson structure on S2. By using the
explicit formula for p, we get the Lie brackets of the coordinate functions xί9x2

and x3 on S2 as follows:

Notice that πί=(l—xί)πθ9 where π0 is the standard SU(2)-mvariant Poisson
(symplectic) structure on S2, i.e.,

In fact, π1 can also be considered as an SU(2)-covariant Poisson structure on R3 ̂
su(2)* with the unit 2-sphere as a Poisson submanifold.

Theorem. Any SU(2)-covariant Poisson structure on S2 is of the form πx + cπ0, where
c is a constant.

Proof. Let π be any S U(2)-covariant Poisson structure on S2. Then π — π1 is
SU(2)-mvariant. Since π0 is nondegenerate, there exists feCco(S2) such that
π — π1 = /π0. But / has to be Sί/(2)-invariant, whence / must be a constant c,
and π = π1 + cπ0.

Since πx = (1 — x^πo, every SU(2)-covariant Poisson structure π on S2 is of
the form (c - X^UQ for some constant c. When c< — l o r c > l , π i s nondegenerate
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and therefore symplectic. When c = ± 1, π has one point and the remaining 2-cell
as its symplectic leaves. When — 1 < c < 1, the symplectic leaves of π are two open
discs and the points of the circle separating them. The symplectic leaf space in
each case coincides with the primitive ideal space of the sphere algebra of Podles
[Po]. See also [Va-So].
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