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Abstract. In this paper the author constructs Markov diffusion processes from a
given system of Borel probability measures on a d-dimensional Euclidean space.
He constructs a, so-called, variational process which does not always coincide
with a Nelson process. He also discusses Schrodinger's problem in quantum
mechanics.

0. Introduction

The theory of Markov processes has been developed by many authors (cf. Dynkin
[10, 11]). But

(Q) Under what information can we assume that the real world is Markovian?

Of course, it depends on how we consider the real world. But it is better if we
can assume that it is Markovian, because Markov property is a nice (kind of ideal)
property. Before we state our problem, we mention that some notations are given
in the end of this section.

In this paper we consider the following problem; let us fix T > 0. Assume that
we are given the system of Borel probability measures {p(ί, dx)}0 <,< τ on (9td, £(9ϊd))
which satisfies the following weak forward equation; for any /eC^' 2 ([0, T] x 9ld; 91)
and any 0 ^ s ^ t ^ Γ,

f f(t,x)p(t,dx)- J f(s9x)p(s9dx)

= } j tdf(u,x)/du + ( t ai\uix)d2f(uix)/dxidxJ)l2

d

b\u, x)df{u, x)/dXi]p(u, dx)du, (0.1)
i=ί
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where a(t,x) = (aίj(t,x))d

ij=1 is a Borel measurable, positive definite, symmetric
d x d-matrix and b(t,x) = (bι(t,x))d

i=1 is a Borel measurable d-dimensional vector.
In our setting, a(t,x) and b(t,x) can depend on p(t,dx) implicitly (cf. Application 2
below) and the following conditions are crucial;

T

j J <α(ί,x)"1fe(ί,x),fo(ί,x)>p(ί,dx)dί<oo, (0.2)
0 9ίd

p(ί, dx)/dx = p(t, x) exists for all 0 < t ^ T. (0.3)

Problem, /s £/zere a Markov diffusion process {^f(0}o<ί<r s u c n that for some Borel
measurable fe( , ) from [0, T] x 9ld to 9?d,

α(ί, X(ί)) 1 / 2 dmθ, (0.4)

P(X(ήedx) = p(ί, rfx) for all 0 ̂  ί ^ Γ, (0.5)

W(t) is a d-dimensional σ[X(s);s ^ t\-Wiener process!

The answer to the above problem is YES if a(t, x) is nice (see Sect. 1,
Theorem 1.1).

Remark 0.1. As we mention in Sect. 3, b(t, x) cannot always be determined uniquely
from {p(t,dx)}0<t^τ. Otherwise, all the properties of the path space (i.e. X( )) turn
out to be determined by the one-dimensional marginal distributions.

Definition 0.1. We call b(t,x) the mean forward derivatives of {p(t,dx)}0<t^τ (cf.
Nelson [30,31]).

Remark 0.2. If the answer to the problem is YES, then (0.2) is a finiteness condition
of the relative entropy of X(-) with respect to X°(-) which statisfies the following
stochastic differential equation in a weak sense (cf. Stroock and Varadhan [37]);

dX°(t) = a{t, X\t))ll2dW°{t\ (0.6)

P(X°(0)εdx) = p(0, dx\ (0.7)

where W°(t) is a d-dimensional σ[I °(s) ;5^ ί]-Wiener process (cf. Sect. 3, the proof
of Theorem 1.1).

Definition 0.2. We call the condition (0.2) the finite energy condition.

For what kind of problems can we apply the above result?
Applications are the following;

(Application 1). When we only consider one-dimensional marginal distributions
of continuous semimartingales (here we assume that martingale parts are square
integrable), we do not have to consider non-Markovian semimartingales; let X(t)
be a semimartingale on some probability space (Ω, 3, {3Jo <ί < r> P) which satisfies

dX(t) = β(t, ω)dt + dM(t), (0.8)

where β(t,ω) = (βi(t,ω))d

i^1 is (3t)-progressively measurable and satisfies

J J|j8(ί,ω)|AP(dω)< + oo, (0.9)

and M(t) = (M(ty)d

i = 1 is a square integrable (%)- martingale starting from o whose
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quadratic variational processes are absolutely continuous with respect to dt, P-a.s.
(cf. Ikeda and Watanabe [20]). Denote quadratic variational processes by the
following;

d(M\Mj)(t,ω) = oc%ω)dt for all ij = 1,..., d, (0.10)

where we take an O^-progressively measurable version αy(ί, ω), which is possible
from the integrability conditions of <Mf, MJ">(ί, ω)(i,j = 1,..., d).

Then by the I to formula (cf. Ikeda and Watanabe [20]), for any £ 2

([0,T] x K' M) and any O ^ s ^ ί ^ T,

f(v, X(υ))/dυ +1 £ <x'J(v, ω)d2f(v, X(v))/dxtdX] ) \ 2

t^{v,ω)Sf(v,X{v))ldxλdv

' Γ / d \ I
= IE\ 8f{v, X{v))/dv + Σ «iJ'(t;' x(v))d2f(v, X(v))/dx,dXj /2

+ Y β\v,X{v))df{v,X(v))ldxλdv, (0.1

where we denote by E the mean value with respect to P and put

SfJ(t9x) = E[μV(t9ω)\(t9X(t) = x)l (0.12)

β% x) = £[^(ί, ω)|(ί, X(ί) = x)]. (0.13)

Here the mean value is that by conditioning X(t) = x (cf. Nelson [31]). Therefore
if the finite energy condition (0.2) is satisfied and α(ί, x) is nice, then we can construct
a Markov process which satisfies (0.4) and (0.5) with α(ί, x) = α(ί, x) (cf. Sect. 1,
Theorem 1.1). Hence as far as we consider problems on semimartingales which
are related only to their one-dimensional marginal distributions, we can replace
semimartingales by Markov diffusion processes (cf. Mikami [28], Sect. 4 for
more details).
(Application 2). This Problem is quite similar to that of constructing a Nelson
process. Assume that we are given a normalized wave function ψ(t,x) (a solution
of Schrodinger equation); on [0, T] x 5Rd,

ί, x)/dt = - Δxφ(t, x)/2 + V(x)ψ(t, x),

J \ψ(t,x)\2dx=l forall O ^ ί ^ T ,

for some function K( ):9ΐdι->9ί (cf. Carlen [3], Sakurai [33]).
Then \ψ(t,x)\2dx satisfies (0.1) with a(t,x) = an identity matrix and

\o if ψ(t,x) = 0.

If V(') is a Rellich class potential, then there exists a Markov process which satisfies
(0.4) and (0.5) (cf. Carlen [3], [4]).
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(Application 3). Schrόdinger's problem. We can also consider the following
problem (cf. Schrόdinger [34,35]); let us assume that we are given systems of Borel
probability measures {r(t,dx)}0<t<τ whose end point distributions r(0,dx) and
r(T,dx) are independent of all r. Then what kind of r minimizes the energy integral
(0.2)? The answer is a system of one-dimensional marginal distributions of a
Markovian Bernstein process (P^i-process). For more details, see Sect. 4.

In Sect. 1, we define and prove the existence and the uniqueness of a Variational
Process which is the unique Markov diffusion process whose family of one-
dimensional marginal distributions is a given solution {p(t,dx)}0<t^τ °f a weak
forward equation and whose mean forward derivative (cf. Nelson [30,31]) attains
the minimum of the energy integral among those with which {p{Udx)}0^tύT

satisfies the weak forward equation.
In Sect. 2 we give some results necessary for the proof of the existence and the

uniqueness of a variational process.
In Sect. 3 we prove the existence and the uniqueness of a variational process.

There we mention that the mean forward derivatives cannot always be determined
uniquely from a given {p(ί, dx)}0^t^τ. In the proof, Markovian Bernstein processes
(P(φ)1 -processes), a dynamic programming equation, Fleming's logarithmic trans-
formation, Follmer's entropy approach and his results on the time reversal of
Markov processes play crucial roles.

In Sect. 4, we discuss Schrodinger's problem.
Finally we give some notations.

o 5Rd = a ^-dimensional Euclidean space.

o o = the origin in 9ld.
/ ά \l/2

o \β\ = [Σtf\2) for β = (βi)U1eKd.
o < , > Ξ an inner product in 9?d.

o Id = a d x d-identity matrix.

o Vx = ψx,)Ui-
o Δx=td2/dxf.

o B(S) = the smallest σ-field which contains all open subset of a topological
space S.

o X(t) = X(t9ω).
o σ[X(s)\s S 0 = the smallest σ-fϊeld which makes the map ωt-+X(s9 ω) measurable

for all 0 ^ s ^ t.
o Cj' 2 ([0,71 xK';9l) = the set of functions f(t,x) of [0,Γ] xM d to « with

continuous and bounded derivatives up to the first order with respect to t and
up to the second order with respect to x, respectively.

o C(A; B) = a set of continuous functions from a set A to a set B whose topology
is that induced by the sup norm.

o C™(A\B) = 2i set of infinitely differentiate functions from a set A to a set B
with compact supports.

o C£(A;B) = a set of functions from a set A to a set B with bounded derivatives
of all orders.
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1. Variational Processes

In this section we consider the weak forward equation by way of a variational
method and introduce variational processes. From now on, we fix T > 0.

Let us define the variational problem associated with a solution {p(t,dx)}0<t^τ

of the weak forward equation.

Definition 1.1. For a given solution {p(t,dx)}0<t<τ of the weak forward
equation (0.1% let us denote by A = Ap the set of Borel measurable functions b(\ •)' =
{h\'>')'}ϊ=ι of[0, T] x 9ίd to <Rd such that for anyfeC^dO, T] x SRd;9t) and any

T,

J f(t,x)p(t,dx)- J f(s,x)p(s,dx)

= } f \df(u,x)/du + ( Σ €P{u,x)d2f(u

+ t b\u9 x)'df(u, x)/dxλp{u, dx)du. (1.1)
i=ί J

The variational problem associated with {p(ί, dx)}0^t^τ is to find the optimal b°eA
such that

inf J f <α(ί,x)-16(ί,x)/,6(ί,x)'>p(ί,dx)it/2
A 9? d

b'eA 0

= j J <α(ί,x)-1ft(ί,x)β,&(ίίx)°>P(ί,Λc)Λ/2 < + (X). (1.2)
d0

Let us state assumptions.
(A.0). p(t, dx)/dx = p(t9 x) exists for all 0 < t ^ T.
(A.I). The infimum in (1.2) is finite.
(A.2). a(t, x) = (aij(t, x))lj= i is a uniformly positive definite, symmetric d x d-matrix
on [0, T] x W* which is bounded, once continuously differentiable and uniformly
Holder continuous. Vxa(t,x) is bounded and the first derivatives of α(ί,x) are
uniformly Holder continuous with respect to x.

Then we get the following theorem which is proved in Sect. 3.

Theorem 1.1. Suppose that (A.0)-(A.2) hold. Then for a solution {p(t,dx)}0^t^τ of
the weak forward equation (0.1), there exist a unique solution b° of the variational
problem associated with {ρ(t,dx)}OύtύT and a unique ^-valued Markov process
{} on (C([0,T];« d),5(C(t0;T];« d))) such that

dX(t) = b(uX(t))°dt + a(uX(t)γ'2dW(t\ (1.3)

where W(t) is a d-dimensional σ\X(s)\s ^ t\-Wiener process and that

P(X(t)edx) = p(t,dx) for all O g ί ^ T (1.4)

and that for almost all we(0, T], p(u, x) is absolutely continuous and for any 0 < t ^ T,

J j \b{s9xf - VxP(s,x)lp(s,x)\2p(sJx)ds < oo. (1.5)
t <Rd
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Remark 1.1. Suppose that (A.2) holds. Then (A.O) and (A.I) are also necessary
conditions in Theorem 1.1. (A.I) holds automatically. (A.O) can be proved in the
following way; ρ(t,dx) = P(X(t)edx) is absolutely continuous with respect to
P{X°(t)edx) (cf. Remark 0.2 for notation) for all 0 ^ t g T from (A.I) (cf. Liptser
and Shiryaev [24], Theorem 7.10) and P(X°(t)edx) is absolutely continuous with
respect to dx for all 0 < ί ^ T from (A.2) (cf. Stroock and Varadhan [37]).

Definition 1.2. We call the Markov process {^(0}o<ί<r in Theorem 1.1 a
variational process associated with a solution {p(t,dx)}0<t<τ of the weak forward
equation (0.1). We also call b° the optimal mean forward derivative (cf. Nelson
[30,31]).

Remark 1.2. There are other results concerning this problem. Carlen's result [3]
whose generalization can be found in Carlen [4] is by way of a semigroup approach
(see also Krylov [23]). Its probabilistic counterpart is Carmona [5]. Nagasawa
[29] is by way of the transformations of measures and their setting is different
from Carlen's. Zheng [39] is by way of the convergence of semimartingales.

Remark 13. The definition of a variational process is different from Zambrini's
[38]. In [38], Zambrini considered, by the dynamic programming equation, the
variational problem with constraints on marginal distributions at time t = 0 and
t = Γand only semimartingales (see also Dai Pra [8]). Follmer's approach is direct,
simple and does not have to use the dynamic programming equation (cf. Fδllmer
[14], Sect. 2.1.3). In our case, the constraints are on one-dimensional marginal
distributions in the whole time interval [0, T] and we consider systems of Borel
probability measures* on (9ίd, B($ld)), which includes those of one-dimensional
marginal distributions of semimartingales (cf. Sect. 0, Application 1). And the
dynamic programming equation plays a crucial role (we cannot avoid using it).
The problem considered by Zambrini was originally considered by Schrδdinger
(cf. [34,35]). We call the problem Schrόdinger's Problem and extend the class of
one-dimensional marginal distributions under considerations from that of
semimartingales to that of Borel probability measures on (9ld, B($ld)) in Sect. 4.

2. Lemmas

In this section we give results necessary for the proof of Theorem 1.1. All the
assumptions can be found in Sect. 1. First we introduce Bernstein processes
(one-dimensional local Markov random fields), especially Markovian Bernstein
processes {P(φ)i-processes). A Bernstein process is also called a reciprocal process.
Thr original idea of Bernstein process can be found in E. Schrδdinger's articles
[34,35], where he tried to consider quantum mechanics by way of the probability
theory. E. Schrδdinger's idea was studied, independently, by S. Bernstein [1].

In this section the state space of the stochastic processes is 9ίd.
Let us give some definitions.

Definition 2.1. For Γ > 0 , let {^(ί)}o<t<r be an ^-valued stochastic process on
some probability space. We call {X(t)}0^t^τ a Bernstein process {one-dimensional
local Markov random field) iff for any 0l^s<t<u^ T and any AB(yi%

P(X(t)eΛIX{v\ ve[0, s] u [w, T]) = P(X(t)eΛ \X(s\ X(u)\ (2.1)
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Definition 2.2. (cf. Jamison [21]). The functions {p(s,x;Uy;u,z)}0^s<t<u^Txyze^d

are called Bernstein transition probability density functions iff
(1) for any 0 ^ s < ί < u ^ T and x9ze9ld

9 the map

B(<Sld)eA h-> J p(s9 x; t, y; u, z)dy (2.2)
A

defines a probability measure on (SRd, B(9ld)),
(2) for any 0^s<t<u^T and any AeB{SΆd\ the map

(x,z)\^>$p(s,x;t,y;u,z)dy (2.3)
A

is £(«d) x B(md)-measurable, and
(3)forany0^s<t<u<v^T, x9 ze9ld and any A,

J p(s9 x; u9y; v9z)ljp(s9 x; t9 w; u9 y)dw )dy
A \C J

= J p(s9 x; t9 y; υ9 z) ( J p(t9 y; u9 w; v9 z)dw ) dy. (2.4)
C \A J

Let Ω be the set of 5Rd-valued functions on [0, T] (this notation has nothing
to do with that in Sect. 0).

Let Σ be the smallest σ-field such that the map

πt:Ω\-+W9 πt(ω) = ω(t) (2.5)

is measurable for all 0 ̂  t ^ T.
Let {q(s9x;t9y)}0<s<t<Txye9{d be continuous, strictly positive transition

probability density functions of X°( ) (cf. Remark 0.2), where we assume (A.2) (cf.
Stroock and Varadhan [37]).

For a n y O ^ s < ί < w ^ T and x, y,ze9ΐd, put

p(s9 x; t, y; u9 z) = q(s, x; t9 y)q{t9 y; u9 z)/q(s9 x; u9 z). (2.6)

Then {p(s,x;t9y;u9z)}Ό<s<t<U£TtXtytZeχd become Bernstein transition probability
density functions (cf. Definition 2.2) and for each probability measure μ on
B(9ld) x 2?(9ίd), there exists a unique 9ϊd-valued Bernstein process (one-dimensional
local Markov random field) {X(t) = Xμ(ή}OύtύT on (Ω9Σ) such that for any

P(X(t)edz I X(s)9 X(u)) = p(s, X(s); ί, z; u, X(u))dz9

P(X(0)edxi X(T)edy) = μ(dxdy) (2.7)

(cf. Jamison [21], Theorem 2.1).
The following theorem characterizes a Markovian Bernstein process

(P(φ)1 -process) constructed from a Markov process as above.

Theorem 2.1. (cf. Jamison [2J], Theorem 3.1). Let {-X"(ί)}o^r be a Bernstein
process (one-dimensional local Markov random field) on (Ω~Σ) constructed from
{q(s9x;t9y)}Oza<tςTtXtye9id and μ as above. Then {X(t)}p^^τ is a Markov process
iff there exist σ finite measures v0 and vτ on 5(9ld) such that

μ(dxdy) = 4(0, x; T, y)vo(dx)vτ(dy). (2.8)
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Remark 2.1. The Markov process constructed in Theorem 2.1 is a fi-path process
by Doob (cf. Doob [9]) and is called a Markovian Bernstein process (P(φ)1 -process)
constructed from q(s,x;t,y) and μ (see also Simon [36]).

Next let us consider Schrodinger's functional equations which determine the
σ-finite measures v0 and vτ on £(9ίd) for one-dimensional marginal distributions
of a given probability measure μ on B(SRd) x B(9id) in Theorem 2.1.

Definition 2.3. For probability measures μ0 and μτ on B(*3{d) and q(0, x; T, y\ the
following equations are called Schrodinger's functional equations;

μo(dx) = vo(dx) J q(0, x; T, y)vτ{dy), (2.9)

μτ(dy) = vτ(dy) J q(09 x; T, y)vo(dx), (2.10)
<R d

where v0 and vτ are σ-finite measures on B(9ld).

Schrodinger's functional equations have been considered by Beurling [2],
Fortet [15] and Jamison [21]. The following theorem together with Theorem 2.1
imply the existence and the uniqueness of a Markovian Bernstein process
(P(φ)i -process) constructed from two end point distributions μo(dx), μτ{dx) and
q(s9x;t9y).

Theorem 2.2. (cf. Jamison [21\ Theorem 3.2). For given probability measures μ0

and μτ on B(9ld), there exists a unique solution (vo,vΓ) of Schrodinger's functional
equations.

From now on, we assume that we are given end point distributions μo(dx),
μτ(dx) and the solutions vo(dx\ vτ(dx) of Schrodinger's functional equations for
μo{dx), μτ(dx) (cf. Definition 2.3 and Theorem 2.2).

Put, for vτ(dy) in (2.10),

h(t9x)= J q(t,x;T9y)vτ(dy). (2.11)
<R d

Then the following results are known.

Lemma 2.3. (cf. Jamison \22\ p. 330). Suppose that (Λ.2) holds. Then
h(t,x)eCU2([0, T) x 9ίd;9ϊ) and on (0, T) x 9ίd,

dh(t9x)/dt=-( Σ aij(t,x)d2h(t,x)/dxidxjj 2. (2.12)

Theorem 2.4. (cf. Jamison \_22\ Theorem 2 or Dai Pra [8], Theorem 2.1). Suppose
that (A.2) holds. If vτ(dy) in (2.10) is absolutely continuous with respect to the
Lebesgue measure dy, then the Markovian Bernstein process (P(φ) ̂ process)
constructed as above is a weak solution (cf. Stroock and Varadhan [37]) of

dX(t) = a(t9X(t))Vxlogh{t9X(t))dt + a(t,X(t))ί/2dW(ή on [0, T]. (2.13)

where W(t) is a d-dimensίonal σ[X(s);s :§ t]-Wiener process.

Before we give a crucial lemma, let us give some notations and a definition. Put

β τ = {^ l5^2,...}:the set of rational numbers in (0, T). (2.14)
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Take

Q n , T = { < l o = Q><lni>---><ln-i><l"=T} f o r a l l n ^ l , (2.15)

so that

Qn,τ^Qn+i,τ for all n ^ l , (2.16)

0 β-.r\{0, T} = QT. (2.17)
n = 2

Definition 2.4. A system of Borel probability measures {r(t,dx)}0<t<τ is in the set
AM iff there exists a Borel measurable function b(t,x)r from [0, T] x SRd to $id such
that for any feCy (10, T] x 5Rd; 91) and any 0 ^ s ^ ί ^ T,

J /(ί, x)r(ί, rfx) — J /(s, x)r(s, rfx)

f ( d •
= f f [^/(w? X)/5M + I J] alJ(w, x)d2f(u, x)/dXidXj

s9ld \U=1

+ X 6'(ιι,XX3/(II,x)/3xjr(iι,dx)dιι, (2.18)
i = l

for all i = 0,...,n (2.19)

(cf. (2.15)).
Put

J <£i(ί,x)-16(ί,xr,ft(ί,x)' >r(ί,dx)Λ/2;r6A l l,6 rl (2.20)
9? d J

Here we take the infimum over all possible br for each reAn.

Remark 2.2. Ln is bounded from (A.I) and (A.2), since peAn for all n ^ 1.
Define b(t,xf, piecewise on [g", qn

i + ί)(i = 0,..., n - 1), by,

og/i7(ί,x) (2.21)

(cf. Theorem 2.4), where we put

Λ?(ί,x) = j «(ί,x;<tf + ! , jθv?+ ^dy). (2.22)

Here vn

i+1(dy) is a σ-finite measure on (9ίd,£(9ίd)) determined by p(q",dx) and
p(qn

i+1,dx). More precisely, on [ g " , # " + 1 ] , we consider Schrodinger's functional
equation (see Definition 2.3) with end point distributions ρ(qn

i,dx) and p{qn

i + ι,dx).
v"+1(dy) is one of the solutions which is equivalent to p(qn

i + 1,dx) (cf. (2.11) and
Theorem 2.4).

The following lemma can be proved by Fleming's logarithmic transformation
and reduces the argument on one-dimensional marginal distributions to that on
the path space.

Lemma 2.5. Suppose that (A.0)-(A.2) hold. Then the infimum in (2.20) can be attained
by the system of probability measures on (5Rd,2?(9ΐd)) which are one-dimensional
marginal distributions of the ^-valued Markovίan Bernstein process (P(φ) ^process)
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on (C([0, Γ];SRd), JΪ(C([O, Γ];W'))) which satisfies

p(q'!,dx) for all i = O,...,n, (2.23)

dXn(t) = b(t9 X
n(t))ndt + α(ί, X n ( ί ) ) 1 / 2 ^ W^ί) (2.24)

(in α weak sense) for bn in (2.21), where Wn(t) is a d-dimensional σ[Xn(s)\ s ^ t]-Wiener
process (cf. Theorem 2.4). We also have the following',

Ln= J dμx"log(dμx"/dμX°)
C([O,Γ];<Rd)

= "Σ £DogΛ?(ί?+1,^"(«?+1))/Λ?(«?,^"(«7))], (2-25)
i = 0

w/iic/i is bounded with respect ton^.1. Here we denote by μχn and μx° the distributions
ofXn and X° on (C([0, T];« d ), B(C([0,T];Md)))> respectively.

Remark 2.3. We are considering the following change of measures:

(dμr/dμ*°){X°)

(2.26)

This is true from (2.21) and the following; for i = 0,..., n — 1,

3fc?(ί, x)/3ί = - ( t aJk(t> x)d2K(t, x)/dxjdxλ 12 on (tf, ̂ + 1 ) x 9ϊd (2.27)

from Lemma 2.3. This is the way to tie down X° so that (2.23) is satisfied.

Remark 2.4. Finiteness of Ln is equivalent to the following condition;

" Σ £[|logΛ?fa?+ 1,A-(^+ 1))| + |logΛ7(ί?,^"(^))|] < oo (2.28)
i = 0

(cf. Csiszar [7]).
Let us prove Lemma 2.5.

Proof of Lemma 2.5. We prove Lemma 2.5 only when n= 1, since for rc^2, we
can prove it, piecewise, in the same way as in the case in which n = 1.

Take 0GCO°°( |X| < 1; [0, oo)). For R > 0 and α > 0, put

(2.29)

h(t,x)R "(t,x) = j q{t,x;T,y)ί J φx(y-z)[min(vτ(z),R)]dz )dy, (2.30)

h(t,x)R = $ q(t,x; T,y)lmin(vτ(y),R)ldy, (2.31)

h(t, x) = ^ q(t, x; T, y)vτ(y)dy, (2.32)

where we put

= vl(dy)/dy, (2.33)
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which exists from (A.O) (see (2.10) and (2.22)). Then

Λ* βe U Ci 2([0,Γ-ε]x9t d;9l), (2.34)
0<e<r

ΛJ t βΛJt β e C ( [ 0 , Γ ] x « " ; « ) , (2.35)

eC^ίW W) (2.36)

(cf. Friedman [16 or 17]).
For any ε > 0, by Fleming's logarithmic transformation, we have the following

dynamic programming equation; on (0, Γ) x W1,

dlog(h(t,x)R « + ε)/dt

= - (. Σ ai%x)d2log(h(t,x)R x +

(2.37)

since

dh(t9x)R-a/dt=-( Σ aij(t9x)d2h(t9x)R'a/dxidXj\ 2. (2.38)

Hence for any 0 < t < T and any reAx (see Definition 2.4 for notations; in
particular, V has nothing to do with bn\

0 <Rd

£ aij(s,x)d2log(h(s,x)R * + e)/dXιdxλl2

< b(s, x)r, VJog(h{s, x)R a

} I
0 <R"

+ < b{s, xf, Wx \og(h(s, xf * + ε) >]r(s, dx)<is J

= J log(fc(ί,x)RΛ + e)r(ί,dx) - j log(Λ(0,x)*'* + β)r(0,ix) (2.39)

from (0.1), (2.34), (2.37) and (2.38).
L e t t e r in (2.39). Then

] I {a(s,x)-1b(s,xγ)b(s,xγ}r(s,dx)ds/2
o w

^ J log(ft(Γ,x)κ α + e)r(T,dx)- J log(M0,x)* α + β)r(O,ώc) (2.40)
9 ! " SR"



30 T. Mikami

from the weak continuity of r(-,dx) which implies the tightness of r( ,dx\ and from
(2.35M2.36).

Let α-»0 in (2.40). Then from the bounded convergence theorem and the
constraints on r(T,dx) and r(0,dx),

J j ia(s9x)-1b(s9xY9b(s9xY>r(s9dx)ds/2
o md

£ E[log{(h(T,Xί(T))R + ε)/(h(0,Xι(0))R + ε)}]

= El{h(T, X°(T))/h(0, X°(0))} log {(h(T, X°(T)f + ε)/(h(0, X°(0))R + ε)}]
(2.41)

(cf. (2.26)). Let ε->0 and R-> oo in (2.41) at the same time. Then

f J {a(s,x)-1b(s,xγ,b(s,xγ}r(s,dx)ds/2
0 SH

^El{h(T,X0(T))/h(0,X0(0))}log{h(T,X0(T))/h(0,X0(0))U

= E^ogiHZXHWh^X'mn (2-42)

from Fatou's lemma. Here we used the following inequalities; if h(T,X°(T)) ^ R,

{h(T,X°(T))/h(0,X°(0))}log{(h(T,X°(T)f + β)/(Λ(0,X°(0)f + e)} ^ 0. (2.43)

To get (2.43), from (2.31),

h(0,X°(0)f^R; (2.44)

if h(T,X°{T))SR,

{h(T, X°(T))/h(0, X°(0))} log{(h(T, X°(T))R + ε)/(h(0, X°(0))R + ε)}

^ {h(T,X°(T))/h(0,Z°(0))}log{(h(T,X°(T)) + β)/(Λ(0,X°(0)) + ε)}, (2.45)

since from (2.31) and (2.32),

h(0, X°{0))R ^ h(0, X°(0)); (2.46)

{h(T, X°(T))/h(0, X°(0))}log{(h(T, X°(T)) + ε)l(h(0, X°(0)) + ε)}

if h(T,X°(T))^h(0,X°(0))oτh(T,X0(T)) = 0;

e- 1 if 0<h(T,X°(T))^h(0,X°(0)).

Here we used the following inequality;

(xMlogiix + εyiy + ε^^ixMlogixM^-e-1 for all y^x>0. (2.48)

Q.E.D.

3. Proof of Main Result

Let us prove Theorem 1.1. All the assumptions can be found in Sect. 1. First we
outline the idea of the proof of Theorem 1.1. Consider p( ,dx) as a probability
measure (on (9td, B(9id))) valued function on [0, T]. For each n ̂  1, we approximate
this function by a "piecewise linear" function. By a "piecewise linear" function, we
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mean a probability measure (on (SRd,£(9td))) valued function on [0, Γ] which
attains the infimum in (2.20). As a minimizing function, we can take a system of
one-dimensional marginal distributions of a Markovian Bernstein process
(P(φ)1 -process) Xn( ) (cf. Lemma 2.5) which converges, as n-> + oo, to a Markov
process in Theorem 1.1. To prove this convergence, we use Fόllmer's entropy
argument which inspired us Theorem 1.1 (cf. (Step 1) below). Ln in (2.20) is less
than the infimum in (1.2) and converge to the infimum in (1.2) as n-+ oo (cf. (Step
3) below). (1.5) can be proved by Follmer's approach (cf. Follmer [14]).

Proof of Theorem 3. Put

(cf. Lemma 2.5).
We divide the proof into 6 steps.

(Step 1). From Lemma 2.5, there exist a continuous semimartingale X( ) on
(C([0,T];9ίd), B(C([0,Γ];9ld))) and a σ[X(s);s^ t]-adapted process u(t9ω) such
that

dX(t) = u(t, ω)dt + α(ί, X{t))1/2dW(t), (3.2)

where W(t) is a d-dimensional σ[X(s);s ^ ί]-Wiener process and that

H(μx;μx°) = ]£[<α(ί,X(ί))"1w(ί,ω),W(ί,ω)>]Λ/2 < oo. (3.3)
o

Let us prove (3.2)—(3.3). The following equality is true;

Lm = H(μχm;μχ0) = H(μχrn;μχn) + Ln for all m^n, (3.4)

since

Ω

log(dμχm/dμχn) + f ίίμχ m log(dμχn/dμx°), (3.5)

*log(dμχn/dμx°) = £ E[loghn

i(qn

i + 1,X
m(qn

i + 1)) — \oghn

i(qn

i,X
m(qrl))~\

Ω i = 0

n-ί

i = 0

Ω

for all m ̂  n. Here we used Remarks 2.3 and 2.4, and the following fact;

PiX^q^edx) = P(Xn(qΊ)Gdx) = p(q"i9dx) for all ί = 0,...,n (3.7)

for m ̂  n from (2.16).
Since {Ln}n>1 is a bounded monotone sequence (cf. Remark 2.2), Ln converges
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as n -> oo and from (3.4),

| |μ*"_μx™ | | γ ^ {2H(μχm;μχn)}ίl2->0 as m ^ n-> oo (3.8)

(cf. Csiszar [6] or Fδllmer [14], p. 133, (3.4)) where || \\v denotes a total variation
norm.

Therefore there exists a probability measure μx on (C([0, T];5Rd)>
£(C([0,T];9ld))) such that

II μ χ n - μ x ||->0 asπ->oo, (3.9)

tf(//;μ*°)<oo, (3.10)

since

limH(μχn;μχ0)^H(μx;μx°l (3.11)
π-» oo

from Fatou's lemma. (3.10) implies that μx is absolutely continuous with respect
to μχ0 and that μx is a probability law of a semimartingale X(ή which satisfies
(3.2)-(3.3) for some σ[X(s);s ^ ί]-adapted w(ί,ω) (cf. Liptser and Shiryaev [24],
Theorem 7.11). Until now, we used Fδllmer's entropy approach (cf. Fόllmer [14],
Sect. 2.1.4).
(Step 2). By the continuity of {X(t)}0^t^τ and (0.1), (1.4) holds. In fact, from the
construction,

P(X(q)edx) = p(q9dx) for all <?eβΓu{0,Γ}. (3.12)

For any /eC;J(9ΐd;91) and any 0 ̂  t ^ T, there exists a sequence {gj^ ι^Q τ which
converges to ί as I -> oo and

EU(X(t)Ώ = lim £[/(Xfe))] = lim J f(x)p(ql9 dx) = f /(x)p(ί, dx), (3.13)

since from (0.1), J f(x)p(t,dx) is continuous.

(Step 3). We also have
X(s)) ] = u(s9ω). (3.14)

In fact, since P(X(ήedx) = p(t,dx)eAn with

b{s9xY = Elu\(s,X(s) = x)] (3.15)

(cf. Sect. 0,(0.11)-(0.13)),

f J {a(t,xr1b(tixYMt,xY}p(t,dx)dt/2 ^ lim Ln (3.16)

from (2.20). On the other hand,

J J <a(t,x)-1b(t,xy,b(t,xY>p(t,dx)dtβ, (3.17)
0 9?"
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by (3.11) and Jensen's inequality (cf. Rockafellar [32]). From (3.16) and (3.17),

= ί£[<α(t,Z(ί))-1£[u|(ί,^(t))],£[u|(t,X(ί))]>W2, (3.18)
0

which implies (3.14) from the strict convexity of

(a(t,x)~1u,u} as a function of u (3.19)

for all 0 ̂  t ^ T and xe9?d (from (A.2)).
(Step 4). Let us prove the existence and the uniqueness of the solution of the
variational problem associated with {p(t,dx)}0<t<τ. From (2.20) and (3.15)—(3.17),
b(t,x)p is a solution b(t,x)° of the variational problem associated with
{p(t,dx)}0£t£T. The uniqueness can be proved in the following way; for b(t9x)'eA
and OCE%

<ώ(t, x)' + (1 - φ(t9 x)°eA (3.20)

(see Definition 1.2) and

J (a{Ux)-\θLb{Ux
<R d

this is,

o*(ί,x') + (1 - φ(t,x)o}p(t,dx)dtJ / rfα|α=0 = 0, (3.21)

f J (a(t,x)-1b(t,xY,b(Uxy-b(t,xY}p(tJx)dt = O. (3.22)
o « d

Hence

J J {a(t,xy1b(t,x)0Mt,x)°>p(tJx)dt/2
0 <Rd

= - Π <a(t9x)-1b(t9xYMt,x)0>p(t,dx)dt/2
0 9? d

+ f f
0 9? d

+ f f <fl(ί,x)-16(ί,x)',ft(ί,xy>p(ί,dx)dί/2, (3.23)
0 <Rd

which implies the uniqueness of b°.
(Step 5). The uniqueness and the Markov property of X(-) can be derived from
(3.2), (3.10) and (3.14). In fact, (3.10) implies the existence and the uniqueness of
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Maruyama-Girsanov density dμx/dμχ0 (cf. Liptser and Shiryaev [24], Theorem 7.10)
and therefore the Markov property of X from that of X°, (3.2) and (3.14).
(Step 6). (1.5) can be proved in the same way as in Fδllmer [13].

Put, for 0 ̂  t ̂  T,

X°(t) = X°(T-ή. K ' }

Then from Haussmann and Pardoux's results [19], X°(t) is a weak solution of the
following stochastic differential equation (cf. Stroock and Varadhan [37]);

dX°(t) = b(t, X°(t))dt + α(ί, X°(t))ί/2dW°(t) on [0, T),

P{X°(0)edx) = P(X°{T)edx),

where W°(t) is a ^-dimensional σ[X°(s);0 ^ s ̂  t]-Wiener process. Here we put

ά(t,x) = a(T-t,x\ (3.26)

t d(ά%x)p(T-t,x))/dxJ)
d , (3.27)

(3.28)

(see below (2.5)).

The remaining part of the proof is the same as Fδllmer [13]. Q.E.D.

Remark 3.1.

H(μx;μχn)^0 asn-»oo, (3.29)

that is,

] J {a(t,x)-1(b(t9xγ-b(t,xnb(t,xr-b(t,xryp(t
o n d

= Σ ί ί <α(ί,x)-1(6(ί,xr-α(ί,
i = 0 if 9ϊd

• 6(ί, x)° - α(ί, x)V, log ΛJ (ί, x) > p(ί,

->0 as n-»oo, (3.30)

which implies that b° is not always equal to b (cf. Proposition 3.1). This is true, since

H(μx;μχn)

= \dμx\og(dμxldμχn)
Ω

= J dμxlog(dμx/dμx°) - J dμxlθg(dμχn/dμx°)
Ω Ω

= H(μ

x;μχ0)-H(μ

χn;μ

χ0)

-^0 asn-^oo (3.31)

from (3.16) and (3.17). Here we used the same argument as in (3.6).
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A mean forward derivative of a variational process can be approximated as in
(3.30) and is not always unique. But when is b for which (0.2) holds equal to b°Ί
We conclude this section with the following proposition.

Proposition 3.1. Suppose that (A.0)-(A.2) hold. Then bfor which (0.2) holds is equal
to b° in Theorem 1.1 if there exists a sequence of functions {fn(t,x)} for which
f% x)eCl2 (Iql qn

i+1) x Kd;«) π Cft([tf, qn

i + J x *<*;«) for alii = 0, . . . , * - 1 and
fn(qΊ,x)eC^d;«) for alli=l,...9n such that

lim J J (a(t,xy1(b(t,x)-a(t,x)Vxf%x)l
"->°° o nd

b(t,x) - a(t9x)Vxf%x)yp(t,dx)dt = 0. (3.32)

Moreover, if for any compact subset K a [0, Γ] x 9ΐd, there exists a constant Cκ>0
such that

p(t,x)^Cκ onK, (3.33)

then there exists a function Φ( , •) for which Φ(ί, )eHj)c(9td) /or α/mosί
such that

a~% x)b{U x) = VxΦ(ί, x) dt dx-a.e. (3.34)

iίere 7/^(91^) denotes the completion of^C^°(5Rd;9i) wiί/i respect to the semίnorms;
for φεC (M';9t)

f (φ(x)2 + |Vφ(x)|2)dx /orα// N ^ l . (3.35)

Proof Let us prove the first part.

J f
0

T

= J J (a(t,xy1b(t,x)°,b(t,x
o <Rd

- 2 J J <Ht,x)°,Vxf%x)}p(t,dx)dt
0 9ίd

+ Π <a(t,x)VJn(t,x),Vxf%x)}p(t,dx)dt

0 9ϊd

Γ

= ί ί (a(t,x)~1b(t9x),b(t,x)yp(t,dx)dt
o <Rd

- 2 J J <6(t,xχvj -(t,x)>p(t,dx)dt
0 ftd

+ Π <a(t,xWxnt,x),VJ\t,x)yp(t,dx)it
0 9ϊd

T

= J J < α(ί, x)" \b(U x) - «(ί, xWJ\U x)\ b(t, x) - a(t, x)Vxf% x) >p(ί, rfx)dί
0 <Rd

^•0 a s n ^ o o (3.36)



36 T. Mikami

from (3.32). Here we used the optimality of b° and the fact that

f J < 6(t, xf - 6(ί, x), Vxf% x) > p(ί, dx)dt = 0, (3.37)
0 <Rd

since b°eA (see the argument below (2.40)).
Let us prove (3.34). From (3.33),

flfcxΓ1^*) = lίm Vx/"(ί,x) in ^ ( [ O , T] x «d), (3.38)

where L^ c([0,T] x <Rd) denotes the set of functions / ( v ) : [ 0 , T ] x 9ldh->9t such
that for any compact subset F cz [0, T] x 9ld,

(3.39)

Therefore for almost all 0 ^ t ^ T, there exists a generalized function G(ί, •) such
that

a(t, x)- ^( ί , x) = VxG(ί, x) dxdt-?L&.. (3.40)

From (A.I), G(ί,x) can be identified with some function Φ(t,x) for which Φ(ί, )e
#ioc(W) f o r almost all 0 ^ ί ^ T. (cf. Maz'ja [26], p. 23, Corollary). Q.E.D.

4. Schrodinger's Problem: Revisited

In this section we consider the application of Theorem 1.1. In this section, we fix
T> 0. All the assumptions can be found in Sect. 1.

Let us reformulate Schrodinger's Problem as we mentioned in Remark 1.3.
Let p be the set of systems of Borel probability measures {r(t9dx)}0^t^τ which

satisfies the following; for any /eC£' 2 ([0, T] x <Rd; 9Ϊ) and any 0 ^ 5 ̂ fί 1 Γ,

$ f(t,x)r(t,dx)- $ f(s,x)r(s,dx)

= ] $\df(u,x)/Bu + ( t ai\u9x)d2f(u,x)/dxidxJ)l2

Λ (4.1)
for some b(t, x)r = (hf(ί, x)r)?= 1 ? where α(ί, x) = (aij(t, x))d

iJ= x satisfies (A.2).
Put, for each rep and br,

E(r,br)^] j <fl(ί,x)-1i(ί,x/,6(ί,x)r>r(ί,Λc)dί. (4.2)
0 W

Notice that there may be many V for each rep and in the next theorem the
infimum is taken over all rep and all br.

Theorem 4.1. Suppose that (A.2) holds. Then for any probability measures ρo(dx)
and pτ(dx) = pτ{x)dx on (5Rd, £(9ϊd)) for which

inf {£(r, 60; r(0, dx) = p o ( ^ λ KΓ, dx) = Pr(^X rep, b'} < oo, (4.3)
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the infimum in (4.3) can be attained by the system of one-dimensional marginal dis-
tributions of an W1-valued Markov process {X(ή = X(t,ω)}OύtύT on (C([0, T]; <&*),
β(C([0, T];W*))) which satisfies

dX(t) = a(t, X(t))Vx log h(t, * ( ί ) ) Λ + a(t, X(t))1/2dW(t) (4.4)

k and Varadhan
Wiener process, a

(P(X(0)edx) =

\

in a weak sense (cf. Stroock and Varadhan [37]) (see (2.11)), where W(t) is a
d-dimensional σ[X(s)\s ^ t]-Wiener process, and

\p(X(T)edx) = (d)

mϊ{E(r, 60; r(0, dx) = po(dx)> r(Γ, dx) = pτ(dx), rep, br}

α(ί, X(ί))V, log h(t, X(ί))>]Λ. (4.6)

Moreover, if (A.O) is satisfied for all rep which attains the infimum in (4.3), then the
infimum in (4.3) can be attained only by the system of one-dimensional marginal
distributions ofX(-) which satisfies (4.4)-(4.5).

Proof. We only have to prove the uniqueness from Lemma 2.5, where our case is
that in which n = 1. Notice that the set {rεp; r(0, dx) = po(dx), r(T, dx) = pτ(dx)} is
a set Ax in Definition 2.4 with ρ(q^,dx) = po(dx) and p(q[,dx) = ρτ(dx).

From the proof of the existence (2.39)-(2.48) (especially (2.39)), for any reA1

which attains the infimum in L1 (see Definition 2.4),

T

lim sup J j < a(t, x)" \b(t, x)r - a(t, x)Vx log(ft(ί, x)R + ε)),
ε-»O,K->oo o 9?d

b(t, x)r - α(ί, x)Vx log(Λ(t, x)R + ε) > r(ί, dx)dt = 0. (4.7)

Therefore

b(t, x)r = a(t, x)Vx log h(t, x)( = 6(ί, x)1) r(ί, rfx)dί a.e. (4.8)

(cf. (2.21)) from (A.2), which implies the uniqueness of the mean forward derivative.
Notice that r in b(t,x)r is not a number but a probability measure in Ax.

Consider the variational problem associated with {r(t,dx)}0^t<τ. Then from
Theorem 1.1, there exists a unique optimal mean forward derivative br'° such that

f f <a(t,x)-1b(t,x)r,b(t,x)r}r(t,dx)dt
o

^ J J <α(ί,x)-16(ί,xΓ,6(ί,xr >r(ί,dx)ίί. (4.9)
0 9ίd

But from the definition of b\

J J (αfe
0 «Rd

^ J j < α(ί, x ) " x b(t, x)r, b(t, x)r > r(t, dx)dt. (4.10)
o ttd
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From (4.9)-(4.10) and the uniqueness of the optimal mean forward derivative,

Moreover, again from Theorem 1.1, {r(t,dx)}0<t<τ is a system of the one-
dimensional marginal distributions of the Markov diffusion process {^r(0}o<r<r
which satisfies the following stochastic differential equation (in a weak sense) (cf.
Stroock and Varadhan [37]);

dXr(ή = α(ί, Xr{t))Vx log h(t9 X\t))dt + a(t9 X\t))ll2dWr(t\

with

H(μχr;μχ0)<oo.

(4.13) implies the absolute continuity of μχr with respect to μχ0 and the uniqueness
of the weak solution of (4.12) (cf. Liptser and Shiryaev [24], Theorem 7.10) and
hence that of {r(t9dx)}Oύt^τ. Q.E.D.

Definition 4.1. The problem to find a Markov process which satisfies (4.5)-(4.6) from
given two Borel probability measures po(dx) and pτ(dx) on (9ld,B(9lii)) is called
Schrόdinger's Problem.

Remark 4.1. As we mentioned in Remark 1.3, our class of systems of
one-dimensional marginal distributions under consideration is those of Borel
probability measures on (9ld

9B(9{d)) and larger than that considered by Zambrini
[38] (cf. also Dai pra [8], Fόllmer [14], and Schrodinger [34, 35]). They only
considered semimartingales. The uniqueness in Theorem 4.1 is equivalent to that
of a solution {p(t,dx)}0^t^τ of the following weak forward equation; for any
/ e C j 2([0, T] x md; JR) and any 0 ^ 5 ̂  t ^ T,

J f(t9x)p(t,dx)- J f(s9x)p(s,dx)

π ( Σ JfaxjdtfM/dx
sRd\_ \ij=ί

+ < φ , x)Vx log h(u, x), Vx/(w, x) > Ί p(w, dx)du. (4.14)

If we restrict the class of systems of one-dimensional marginal distributions under
consideration to those of semimartingales, then (4.14) has a unique solution in
that class (see (4.12)-(4.13) and Remark 1.1). In fact, to prove the existence, we do
not need to use the condition (A.0) (cf. the proof of Lemma 2.5).

Remark 4.2. The Markov process in Theorem 4.1 is a Markovian Bernstein process
{P(φ)1 -process) constructed from q(s,x;t,y) and end point distributions
Po(dx)9pτ(dx) (see Definition 2.3-Theorem 2.2).
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