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Abstract. We prove that the Mellin transform of a function log-concave (convex)
is, after division by Γ(v + 1), where v is the argument of the transform, itself
log-concave (convex) in v. This theorem is first applied to the moments of the
ground state wave function of the Schrodinger equation where the Laplacian of
the central potential has a given sign, and generalized to other situations. This is
used to derive inequalities linking the /th derivative of the ground state wave
function at the origin for angular momentum t and the expectation value of the
kinetic energy, and applied to quarkonium physics. A generalization to higher radial
excitations is shown to be plausible by using the WKB approximation. Finally,
new bounds on ground-state energies in power potentials are obtained.

1. Physical Motivation

In 1984, Baumgartner, Grosse and Martin [1] proved that if, in the Schrodinger
equation, the central potential has a Laplacian with a given sign, the order of levels
corresponding to what would be a degenerate multiplet for the Coulomb potential
is known. Specifically the multiplet is characterized by N = £ + n+l = const, £
being the angular momentum and n the number of nodes of the radial wave
function. Then if Δ V > 0, the energies decrease when £ increases for fixed N, and
if A V < 0 the energies increase when £ increases.

A crucial lemma to prove this theorem is the following:
3, Vr > 0,

-^-t-^0, Vr>0, (1)
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where uf is the reduced ground state wave function with angular momentum /.
It has been noticed by Ashbaugh and Benguria [2], who gave an alternative

derivation of (1), that (1) is equivalent to

O Vr>0. (2)

More recently, a third derivation of (1) was given by Martin [3]. Initially this
lemma was thought to be nothing more than a lemma, but later it was noticed
by Common [4] that property (1) leads to interesting inequalities on the expectation
values of rv - i.e., the moments - in the ground state of the angular momentum /.
Specifically, Common proved, by using (1) and making two integrations by parts,
that

3 - f j ? ) , α > & ( 3 )

where <rα> = ]r*u*(r)dr if A V ̂  0.

In the special case β = α — 1, we get

if Δ V ̂  0, so that if Δ V > 0 we get an inequality going in the opposite direction
to the Schwarz inequality, while if A V < 0 we get a "reinforced" Schwarz inequality.
Equation (4) can be rewritten as

3 + α) / ^ Γ(2<? + 4 + α) Γ(2/ + 2 + α)
(5)

if Δ V ̂  0. Equation (5) then looks like a kind of concavity (convexity) property
in α for

except for the fact that the variable has to jump by integers.
In using these types of properties to get inequalities linking the kinetic energy

and the wave function at the origin, for situations where the potential V belongs
to a different class [5, 6], such as

T--r^0 V r > 0> (?)drr dr

we met the need to prove that the quantity (6) is really concave or convex in α if
the Laplacian of the potential is correspondingly positive or negative.

With the reinterpretation of inequalities (1) by Ashbaugh and Benguria [2], and
after a redefinition of the variables and the functions, the problem is reduced to
studying the concavity or convexity of
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when logw(r) has a given concavity. In the physical case, w represents (u,//+l)2.
However, the property we shall obtain transcends the particular physical problem
which motivated it and belongs to pure mathematics.

2. The Theorem

Let w(r) be a positive continuous function, defined on RQ > su°h that all moments

r)Λ (8)

exist for v> v0 > —1.
If log w(r) is convex (concave) in r, then

iogGlτϊ)
is convex (concave) in v for all v > v0.

Proof. Here, for simplicity, we shall assume strict convexity or concavity, but it is
easy to see that it is an unnecessary assumption. First we remind the reader of
the property (or definition!)

Γ(v+ iμ-*"1 = J rve~λrdr. (9)

i) The Convex Case. For v > v0, ε > 0 such that v — ε > v0, with three parameters
λ > 0, σ > 0, μeR, we construct the following quantity

"λ<τr+μ]dr, (10)
oo Γ O rv 2εrv + ε Q-ε r v-e ~Ί

I== f LT ll Λ r Ueφ(r

Jo|_Πv+l) Γ(v+l+ε) Γ(v+l-ε)J L

where we have replaced w by eφ with φ strictly convex. The strategy will be, first
of all, to choose the parameters σ and μ such that the integrand is non-negative
for any given λ.

The change of variable t = λr will give

tv+ε tv

(v + \) Γ(v+l+ε) Γ(v+l-ε) >

If we look at the first bracket we see that it is negative for ί->0 and ί-> oo.
After factoring out tv~ε we see that it is a second-degree polynomial in x = f.

The discriminant of this polynomial is

Δ' = [Γ(v -f I)]'2 - [Γ(v -f 1 + e)Γ(v + 1 - e)]'1,

which is positive in view of the logarithmic convexity of the Γ function. Therefore
we find two distinct roots ί2 > ti > 0. As a consequence, the first bracket is positive
between the roots, negative outside.

Now let us look at the second bracket. It vanishes when φ(t/λ) = —σt + μ,
and since φ is strictly convex it vanishes at most twice. For any /l>0 we
define σ by
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and μ by

Then the second bracket vanishes at tί and £2 Furthermore it is negative between
the zeros and positive outside implying that / is negative.

Therefore, for any λ > 0, we have

2{rv) λε {rv+ε} {r»-ε}

Γ(v + 1) Γ(v + 1 + ε) Γ(v + 1 - ε)

with μ and σ defined as above.
Choosing

λ = l {r '-«}Γ(v+l+β)Y' 2

yields

' (v+l)- |_Γ(v+l-<Γ(v + 1) ~ L Γ(v + 1 - ε) Γ(v + 1+ ε)

which is the desired result.

ii) The Concave Case. The proof will follow the same lines and each step will give
the reversed inequality. However, the reversed version of (13) is only useful if σ = 1.

Then we would have:

2{rv} ε {rv+ε} _ ε {rv~ε}

Γ(v+l)= Γ(v+l+ε) Γ(v+l-ε) '

and the theorem would follow from the arithmetic-geometric-mean inequality.
Therefore it remains to show the existence of λ > 0 such that equality (12) is

satisfied with σ= 1. To do so, we prove the existence of a fixed point of the
continuous mapping

with g defined by
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First of all, we claim that g(λ) is monotone non-increasing in λ. To prove this we
need the following lemma that we state without proof.

Lemma. Let φ:R-»R be a continuous (strictly) concave function. Then, for any
a, ft, c, d such that

α < ft, c <d,

φ(c)~φ(g)^φ(d)-φ(b)
c~a = d-b ' ( j

The monotonicity of g(λ) is derived as follows. For λ' < λ we take

"τ '-7 »4 d-'i <20>
and apply the lemma.

From the monotonicity of g(λ) it follows that either g(λ) tends to + oo for
λ-»0, or has a limit. In the former case the mapping has necessarily a unique fixed
point since λ - g(λ) increases from - oo to + oo as λ varies from 0 to oo. If g(λ)
has a limit for /l-*0 let us show that this limit is necessarily strictly positive.

Assume 0(0) = lim0(λ)gO. Then, from monotonicity, #(λ)<0, λ>Q. Then
λ-*0

given any x and δ > 0, the previous lemma gives

t ( ) , (21)

provided λ is sufficiently small so that t2/λ>x + δ and t 1 / λ > x. Therefore φ would
be non-decreasing and the integral defining {rv} would diverge for v > — 1, contrary
to the assumption.

Hence 0(0) > 0 and λ — g(λ) increases monotonously from — g(0) < 0 to +00
and takes the value zero once and only once.

Therefore, in the concave case, there exists a unique value λ such that σ = 1 in
Eq. (11). Hence, inequality (16) holds for this particular value of λ and since
A2 + B2 > 2AB, we get

{ '
which establishes the theorem for the concave case.

Except for the factor Γ(v + 1) dividing {rv} we see that the theorem implies the
preservation of logarithmic concavity by the direct Mellin transform.

3. Implications for the Moments of the Schrόdinger Wave Function
for a Given Class of Potentials

In the introduction we have seen that if, in the Schrόdinger equation

E)uf = 0, (23)
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i concave
the potential has the property ΔV ^ 0, then log(M,//+1) is < , where u{ is
the ground state wave function. Hence ^

[concave
1S {convex'

or, changing notations,

f uJ

0

 f . I concave
1S [convex

It is obvious that Eqs. (3) and (4) in the introduction are consequences of this
concavity-convexity property. Notice that u] can be replaced by the product of
two wave functions with different /'s.

Now it has already been noticed [5-7] that one can also obtain interesting
results for other classes of potentials for which the Laplacian is not of a given sign.
A simple way to generate such classes is to make a change of variables

z = r* I
WΛ(z) = r<«-i)/2Mr)j (24)

Then the Schrόdinger equation becomes

with

™ ™ V^~E

2^+1-α
(25)

Then, if the Laplacian of 17 in the variable z has a given sign, we get interesting
properties on the order of energy levels. For instance, with α = 2 the property

^0 becomes ΔZU^O. (26)

Notice that the limit case of (26) is the harmonic oscillator. For positive energy
levels, the change of variable (24) shows that if

DaV(r) = + (5 - 3α) + 2(1 - α)(2 - α) > 0, (27)

Δ2U is positive. More generally, we can define two sets A and B of sufficient
conditions to have Y = -(w'/w)' - (λ + l)/z2 of a given sign:

Set A (Γ>0)
(i) DαK(r)>0 l < α < 2
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(ii) DxV(r)>Q α < l K(r)<0, (28)

d2V dV dV
(iii) r— + (3-2α)— >0, — ->0, l<α<2,

ar ar dr

SetB (F<0)
(i) DxV(r)<0 α>2 or α < l V(r)>C

(ii) ϋΛK(r)<0 l < α < 2 F(r)<L.

d2V dV
(iii) r- Γ̂ + (3-2α)— <0, α>2. (29)

Returning now to our present problem, we notice first that the change of variables,
function and angular momentum defined by (24) and (25) leaves u,(r)//+l

"invariant," i.e.,

(30)

If V(r) belongs to set (A,α) or (B,α), then

is concave or, respectively, convex. Translating back in the variable r, we conclude

is concave or convex (31)

α

if V belongs respectively to set (A, α) or (£, α).

4 Application to Inequalities Between the €th Derivative of the Wave Function
at the Origin and the Kinetic Energy (Angular and Total)

In ref. [6] we have obtained inequalities linking the wave function at the origin
for ( = 0 states and the expectation value of the kinetic energy. Some of these
inequalities were not optimal because we did not know the theorem established
in the present paper and the generalization to arbitrary angular momentum was
missing. We do this here, lim (u,//+l) is proportional to the *fth derivative of the

wave function at the origin. It is easy to see that
00

0 ' (32)

α

The quantity appearing on the right-hand side of (32) is the same as that appearing



516

in (31). If we call

A. K. Common, A. Martin and J. Stubbe

(33)

we have, if V belongs to sets (A, α), (B, α)

(34)

so

Γ|
2/+1

α

( + (1/2)

(35)

But we also have [5]

(36)

where <T>0>/ is the expectation value of the kinetic energy in the ground state
with angular momentum t, if V belongs to sets (A, α), (£,α) respectively, so that we
have

\

r + ι \
~J

In particular, if AV ^ 0 (α = 1, A or B)

^(T^) ^4<Γ(2°/+3) '

(37)

(38)

and if

+ (3/2)

In the special case f = 0 (38) gives the same result as ref. [6]:

for zlK^O, while (39) leads to an improvement:

dldV.
for -Γ--Γ".dr r dr

(39)

(40)

(41)
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instead of

|κ'(0)|2<f<Γ>2ί2 (42)

restricted to

ilfϊα
dr r dr

For the linear potential, which corresponds to class A with OL — 3/2, we get

3/8\ 3 / 2 1

not too far from the exact answer (3/£0)
3/2 = 1-455, where - £0 is the first zero of

the Airy function.
For convex potentials, we do not do as well as with the special trick used in

ref. [6].
Before closing this section we want to give an illustration of the possible uses

of these inequalities in quarkonium physics. It is known that the cc and bb systems
are well described by potential models [8], but it is interesting to try to obtain
results which do not depend on a particular potential, but only on rather general
features. An inequality previously derived by Bertlmann and Martin [9] links, for
arbitrary potentials, the expectation value of the kinematic energy, appearing
already in this section and the ground state and first angular excitation energies. It is

< Γ>0,o ̂  J[E(n = OX = 1) - E(n = 0, t = 0)]. (43)

This inequality is saturated by an harmonic oscillator potential.
This inequality can be combined with inequality (41), with d/dr l/r dV/dr < 0,

also saturated by the harmonic oscillator potential, to give directly an inequality
linking the wave function at the origin and the two energy levels. It happens that
the static potential between quarks derived from lattice QCD is monotonous
increasing and concave [10], i.e., V > 0 and V" < 0. This implies that d/dr l/r dV/dr
is indeed negative in reasonable models.

Then one gets
4 /2\3 / 2

|u'(0)|2 > -W J [&EV = 1) - E(f = O))]3/2. (44)

Reinserting the mass dependence omitted in Eq. (23) and taking into account
the angular integration we have

Iι/KO)|2 > -\H &Mq(E(S = 1) - E(f = 0))]3/2, (45)
7ϋ

where Mq is the quark mass in the quark-antiquark system.
Now the wave function at the origin enters in the Van Royen-Weisskopf

formula for the leptonic width:

Γe+e-
 = 16πα2βρ ~—> (46)

My

where Mv is the mass of the quark-antiquark system, eQ is the charge of the quark,
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2/3 for c quarks, — 1/3 for b quarks, and α"1 = 137, the inverse of the fine structure
constant.

Therefore we obtain an inequality between physically accessible quantities
(except for the "constituent" quark mass, slightly model-dependent):

=!)-£(/ = 0))]3/2. (47)
71 NL

This can be applied to the cc system with [11,8]

*Q = 3>

M^=1.5tol.8GeV.

This gives

Γe+e->3.9to5.2KeV,

to be compared to 4.7 ± 0.35 KeV experimentally [11]. The agreement is almost
too good since we know that the cc potential is rather far from the harmonic
oscillator potential. This is an indication that, as many people think, the Van
Royen-Weisskopf formula should be "renormalized."

For the bb system, with [11,8]

Mq = 5.174 GeV,

we get

/Vβ->0.7KeV,

while experiment gives

Γe+e-^ 1.34 ±0.05 KeV.

5. A Conjecture on the Wave Function at the Origin
for Higher Radial Excitations

For ΔV^O'we have seen that we have inequality (40):

For ΔV — 0, i.e., V = — const/r, one has, for all radial excitations:

where n is the number of nodes of the wave function and, because of the virial
theorem, <T> = -£,

J/2. (49)
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For potentials such that ΔV^ 0 and K(oo) = 0, one can integrate

Λ4V d2V.
(50)

ur ur

from r to infinity, and get

and hence, from the virial theorem:

(Tyn$\En\. (52)

Therefore, for n = 0, from (40):

We want to make the conjecture that this holds for an arbitrary radial excitation
n, i.e.,

K(0)|2£4|E,,|3/2, (53)

if ΔV ^ 0 and K(oo) = 0. We shall make this conjecture plausible in the framework
of the WKB approximation. Then for t — 0 we have

= 0)-K, (54)

where rτ is the turning point. For simplicity, assume dV/dr > 0 everywhere. Then
the turning point is unique (ΔV>Q allows, a priori, two turning points). In the
WKB framework n can be regarded as continuous as well as /, and the theorem
on the level-ordering for ΔV^O can be written in a somewhat generalized form:

dn δ '

and, for t = 0, this means, by differentiating (49),

u2dr

Ί *
(56)

2π o JE.-V

The second integral is cut off at rτ because, in the WKB approximation, the rest
is negligible. Now, since (d/dr)r2(dV/dr)^0, we have

VZV(rτ) + r^-±-^
drτ r

and, remembering that En =

1 7 dr ^ 1 1 7 rfr ' *™ - ' r
f ^> Γ

9^ i /i- ίy^^T^? /7ϊ/\i72" J

2dV

2π έ./£~ΓT7^2π/ ^Fλ1/2 Jn /i Γ .(ΛV\112 4 / dV\3'2
—V ° /III ^r2—V'2 4 f r—Y'
drλτ V ' ^'v \ *Λr V A ΛT
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But, from (51),

and

1 7 * > drrτ

2πl^-Ξψ<4 |£π|
3/2 '

and hence inequality (55), expressing the level ordering, gives

* <57)

and hence

rT dV ( dV\ fT I,2

K(0)l2=K^£(r2^ΓJ fadr$4\En\™, (58)

which is what we wanted to "prove." In the sequence of inequalities (58) the sign
of the Laplacian appears again, since we use the fact that r2(dV/dr) increases or
decreases.

6. Bounds on the Ground State Energy for Power Potentials

For any potential one has the sum rule, for ( > 0
fdV^

(59)
\ Uf /

and for / = 0
fdV\

=lim W + l)<r- 3> = |t/'(0)|2. (60)
. dr

In the special case

V = r\ v>0, (61)

(59) reduces to

v<r v ~ 1 > = 2/(/+l)<r-3>. (62)

On the other hand, the energy of any state is given by the virial theorem

If we were using only the general property of convexity of log <rμ> in μ (valid
for any state), we could write

__
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and, combining with (62) and (63),

2
£>- (65)

a not terribly interesting inequality, becoming trivial for t = 0.
However, noticing that V = rv belongs, for v ̂  2, to set A defined in (28), with

α = 2 and set B with α = (v + 2)/2, we can use instead the convexity or concavity
of log/α(μ), defined by (33) and get, for the ground-state energy,

2

v/(v + 2)

which leads to

.v + 2'

2f + 3 + v

v + 2

Γ

Γ 2

2Γ(ί + 2)

vΓ

v/(v+2)

3 -

v + 2

Γ
2v

v + 2

v/(v + 2)

(66)

(67)

These inequalities have non-trivial limits for f -> 0. It happens that the upper bound
(66) is better, numerically, then the previously obtained upper bound [6], at least
for v > 4:

(68)

7. Concluding Remarks

We have shown various applications to the Schrόdinger equation of the main
theorem of this paper, including, as an illustration, a comparison with experimental
data on quarkonium physics. This list, of course, is not limitative. The fact is, we
believe that the theorem, though motivated by some of the applications, transcends
them and might later be used in a completely different area of mathematical physics.

Independently, we have come close to the proof of a conjecture on the wave
function at the origin for radial excitations. This results, or a similar one, might
be relevant in quarkonium physics or in atomic physics, where direct calculations
of the wave function at the origin are difficult and unstable.
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